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STUDIA MATHEMATICA, T. XX. (1961)

On the Carleman determinants

by

ROMAN SIKORSKI (Warszawa)

Fredholm [1] defined the notion of determinants and subdeter-
minants of all orders for the integral equation

1 (s)+ [z(s, )a(t)dt = ay(s)
0

with continuous kernel z(s,?). Fredholm’s determinant theory was
recently generalized (Grothendieck [1-2], Lezanfski [1-2], Ruston [1-2],
Sikorski [1-4]; see also the expository paper by Sikorski [5]) over the
case of linear equations

(2) o+Tao =z,

in arbitrary Banach spaces X, under some hypothesis on the operators 7.

In the general theory of determinants in Banach spaces X, two
notions of the subdeterminant of an order n can be introduced: the first
one coincides with the algebraic notion of subdeterminants in the case
where X is finitely dimensional; the second one coincides with the
original Fredholm subdeterminant in the case where X is the space €
(for details, see Grothendieck [1] and Sikorski [4-5]).

In the case where X is a Hilbert space, the general determinant
theory is applicable to (2) if and only if T is nuclear, i. e. (see e. g.
Sikorski [2], Theorem V) if T = T,T,, where T,, T, are Hilbert-Schmidt
operators. An operator T in a Hilbert space X is said to be a Hilbert-
Schmidt operator if, given any orthogonal system of coordinates in X
(i. . a complete orthonormal set in X), T is represented by an infinite
square matrix (v; ;) such that

(3) 121 =3/ Jlmusl? < oo

In the case of the Hilbert space L?, Carleman [1] (see also Hille and
Tamarkin [1-2], Smithies [2]) defined the notion of determinant and
subdeterminants- for the integral equation (1) under the hypothesis that

11

[[ Iz(s, Dirdsdt < oo.

[
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Carleman’s formulae were a simple modification of those of Fredholm:
1

everywhere the expressions .}'r(s,s)ds were replaced by zero, following
0

an idea of Hilbert [1].

In the abstract formulation (2), the case investigated by Carleman ig
that where T is & Hilbert-Schmidt operator. A very interesting treatment
of the Carleman determinant and the first subdeterminant in an abstract
Hilbert space X is due to Smithies [1] who also gave a simple proof of
the convergence of series defining the determinant and the first sub-
determinant (1). '

The subject of this paper is to give a complete determinant theory
for the equation (2) in an abstract Hilbert space X, T being a Hilbert-
Schmidt operator. The subdeterminants of all orders are defined. Simi-
larly, as in the general determinant theory in Banach spaces, two notions
of subdeterminants of an order n are introduced. They are -called,
respectively, the Carleman subdeterminant and the Carleman-Fredholm
subdeterminant. Carleman’s original subdeterminants coincide with the
Carleman-Fredholm subdeterminants, in the terminology assumed in
this paper.

It is easy to know what formulae should define the subdeterminants
of (2). Indeed, the subdeterminants should be defined by the same series
as in the case of a nuclear T, with only one modification: everywhere

1 .
the trace of T' (i. e. the abstract substitute of [z(s, s)ds) should be replaced
0

by 0. The only difficulty is to prove that the series converge. Fortunately,
this difficulty is only on the surface. Using an argument of Grothendieck
[1], the convergence of series defining the subdeterminants can be deduced
from the Carleman-Smithies theorem stating the convergence of the
series defining the determinant.

§1. Terminology and notation. We shall consider a fixed Hilbert
space X. The letter 5 will denote the Hilbert space of all linear bounded
functionals on X. The letters z, y, # (with indices, ¥ necessary) denote
always elements of X, and the letters £, 5, { — elements of Z. The value
of a functional £ at a point » is denoted by &u.

The symbol O, will denote the Banach space of all 2n-linear bound-
ed functionals on 5"x X" If BeD,, then the value of B at a point
(E1y ooy &y @1y o0y 8,) eE" X X™ will be usnally denoted by

B(fu e En)_
R YRPRrE A

(*) For another theory of determinants of operators in an abstract Hilbert
space, see Fuglede and Kadison [1, 2].
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The norm of B in O, is

1B| =

sup

1 ST, i, 1S L, gl < 1

B(£17 tery “fn.)

Byyoney @y,

In particular, O, is the Banach space of all bounded bilinear funec-

tionals 4 on ZxX. If 4¢O,, we write also £4 instead of 4 (E) . Hle-
ments in O, are called operators. - K

Let 4¢9,. For every & there exists exactly one y such that &y = £ dx
for every £ We denote this element ¥ by Aw. Similarly, for every £ there
exists exactly ome 5 such that nz = Az for every x. We denote this
element 7 by £4. Obviously, the mappings ¥y = 4z and n = £4 are
adjoint endomorphisms in X and = respectively, and their ordinary
norms coineide with the norm 4] of 4 in O,. Conversely, every endo-
morphism in X or in = is of the above form. Thus every operator can
be simultaneously interpreted as a bilinear functional on 5 x X, or an
endomorphism in X, or as an endomorphism in 5. The three interpre-
tations of any Ao, will be systematically used in this paper.

The set O, of operators is a Banach algebra with the following
definition of the product 4,4, of 4, 4,e9;:

§(4,4,)0 = (04,)(4,3).

In other words, the product 4,4, interpreted as an endomorphism in X
(in F) is the superposition of the endomorphism 4;, 4, in X (of the endo-
morphism 4,, 4, in 5). The unit element of the algebra O, is the funda-
mental bilinear funectional I:

Elx = &,

By definition, Iw = » and &7 = £ for all z and &.
Let @, & be fixed. The operator K, defined by the formula

ER o = &3y Gy

(i. e. the product of numbers gz, and &) is called one-dimensional and
denoted by #,°%. By definition, K,z = @y~ &x, and (K = &xy &, (the
dot replaces here parentheses).
m
Any finite sum K = '@~ & of one-dimensional operators is called
i=1
finitely dimensional operator.
The letter T denotes always Hilbert-Schmidt operators, and the
letter © denotes the Banach algebra of all Hilbert-Schmidt operators T
with the norm | 7| defined by (3). © is an ideal in O,. Moreover,

(4) w0~ &o] = ol - | &l
(4 [T} < |T| for every TeS,
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and
(4" |TA] <|T) 141, |AT| < |4|-|T] for every A<D, and TeS.

Any nuclear operator T, i. e. a product T = T, T, of two Schmidt
operators 7'y, T, has a well defined trace denoted by trT. Viz. if, in a
given system of orthogonal coordinates in X, T, and T, are represented
by matrices (v;;) and (o;;) respectively, then

trl = 2 75,i 01,5
i,7

The number tr7 just defined depends neither on the representation
of T in the form 7T,T,, nor on the choice of the -system of coordinates
in X. We have

(5) tr8T = trT§ and  [trST| < |87
for T, SeS.

Suppose that B(il’ 5") is a 2n-linear functional on E"x X" such

Ly eees @
that B considered as function of &, and z, only is a Hilbert-Schmidt
operator, i.e., for any fixed &,,..., & 1, @1y---3 Tp_y,
B(&,..., En) — &8,
Byyoeny By

where SeS. Let Te¢S. The number tr T8 will also be denoted by
Eiyeeny En)

: T. . B(
(6) non Lyyoeny iy

The number (6) does not depend on the bound variables &,, #, but it

depends on &y, ..., &1y Byy ey By, Viz. it I8 a (2n—2)-linear funec-
tional Bl(il’“"i"fi on E"'xX"'. Suppose that B, interpreted
1ty YR —

as a function of &, ; and #, , only is a Hilbert-Schmidt operator, and
that 7" ¢S. Then
Eyiiny 5,,,)

T, T . B
Ep—m1%g—1 7 Ep 2,
n—1% n%n Diy ooy by

is the number T;ﬂ_l%_lBl('s" E”“). Continuing this procedure we can

Lyy vees Tp—1, )
define, under similar hypotheses, the expression
&, €
T,E',,r...TlflxlB( S ") (r < m)
Dyyoeey By
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for Ty,...,T,¢S. It is not difficult to verify that the required hypotheses
are fulfilled in the case where

1 1

0 &, Ei®y ... & 2, \
&y 0 Ly ... .1'
Bfli"ﬂfn)_r 1 243 52 n}
Biy ey By _‘faml &z, O &y |
o e
1]
| Entty £ny Epmg ... O

In the sequel we shall consider some analytic functions D(T)on &
and some analytic mappings D(T) from S into a Banach space. Then
D'(T'; T,) will denote the first differential of D(T), i.e.

D'(T; Ty) = lim e (D(T + T'y) —D(T)).
>0

By induction,

D(m)(T§ Tiy ooy T
= gjﬂgs—l(D(T'i"ETm; Tiyenny Ton1)—D(T; Tyy..., Tm—-l))
for T, T4, ..., Tne®. Clearly D™(T; Ty, ..., Ty,) is linear and symmetric
in variables T,, ..., T,.
It values of D(T) belong to O,, then also D™(T; Ty, ..., T,)eO,,
and DUNT; Ty, ..., Ty) (j‘j") is the value of the 2n-linear fumc-
19 =5 Iy,

tional DY(T; Ty, ..., Ty,) at the DPoint (&, ..., &uyByyeeny 2y)e T X X",
according to the notation assumed at the beginning of this section.

The symbol D(T) (51;") has the analogous meaning.
T

15 -

§ 2. The Carleman determinant. Let T ¢O. By the Carleman deter-
minant of the operator A = I4+7 we understand the number

M DD = 3] Do),
where Dy,(T) = 1 and, for m > 0,
0 m—1 0 0 ... 0 0 0

tr(T?) 0 m—2 0 0 0 0
tr(T%)  tr(T%) 0 m—3 ... 0 0 0

(8) Do’m(T) S !
tr(T™Y) tr(T™?) wT 0 1
tr(T™  tr(T™) tr(T%) tr(T? 0
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i. e., by an easy verification,

0 61562 51503 e Elwm

! fzmj, 0 fzwa A Ezmm

(9) DO,WL(T) = Té’l:rl . 'Tﬁmmm anl £3w2 0 anm
57,1371 fmwz ‘Emwii 0

Carleman [1] and Smithies [1] have proved that

e \™2
(10) 1Dy, (T)] < m!(&») Iz
Thus the series (7) converges absolutely. It follows from (9) that D, ,,(T)
is & homogeneous polynomial of 7' of the degree m. Hence it follows that
Dy(T) is an analytic function defined on the Banach space S. Carleman [1]
and Smithies [1] have proved that

(11) 1D(T)| < exp (F{T]*).

" By the general theory of homogeneous polynomials (see e. g. Hille
and Phillips [1], Chapter XXVI), there exists an m-linear functional
0n(Tyy ..., Tyy) on &™, symmetric in variables Ty, ..., TS, such that

(12) Do,m(T) = 0111(T7"‘7T)'

The functional 6,, is uniquely determined by Dy ., viz.
1 . o . .
(13) 0n(Tyyooes T) = MZ (=1t timd Dy o (8 T4 oo o400 Tm) 5

where the summation is extended over all sequences iy, ..., 4, composed
of numbers 0 and 1. It follows easily from (10) and (13) that the norm

\eml = sup lem(Tla RS T'm)\
[ESTES IE S B
of 6, satisfies the inequality
(14) 10, < m™*(2Ve)™
We can write an explicit formula for 6,,:
0 é&m, £y,
Ey O £, 2,
(15} Bm(le“"Tm)=T15111“'Tm5m"m = o

En®y Em®y ... O
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In fact, the right side of (15) is a symmetric functional satisfying (12)
on account of (9). The detailed proof of the symmetry is similar to an
argument in Lezanski [1], p. 248.

Since
m! ,
DP(T5 Ty, ... Ty) = )i Ty ooy Ty Ty ooty Ty) for o < m,
0 for n > m,
we have
o 1
(16) -D(n)(.T§T1;‘“,Tn)= W0m+n(T,---;-TyTl:'--yTn)-
m=0 =
By (14),
lem+n(T}-")T7 Tl?"'7Tﬂ)!

n+m

3

<(ntm) T 2Ve | T|™Ty| ... | T,

Putting T = #,-£&,,..., T, = @, £, we obtain (see (4))

(17) Ianuﬂ(Ta-'-7-T7a:1'§17'“ywn'§n)|

n+m

5

< (ntm) * Ve T ) £l 2l [l
For every fixed Te«S the expressions Omsn (T T2y &y, w0 £,) and
(18)  DYN(T58, &y ey 207 Ey) '

o1 1
= Zmem+ﬂ(T7 o Tymy &y ey w0 &)
m<0

(see (16)) are 2mu-linear bounded functionals on Z"x X", i.e. elementg
of O,. It follows from (17) that, for every fixed TS, the series of elementg
of O, on the right side of (18) converges in norm to the left side of (18),

§ 3. The Carleman subdeterminants. By the first Carleman sub-
determinant of an operator 4 = I+T (T<3) we shall understand the
bilinear functional D,(T) defined by the equality

E ’
(19) £D,(T)a = Dy(T) (m) = Dy(T; x-£)+Dy(T)- éa.
By induction, the #n-th Carleman subdeterminant of A = I4+T is
the 2n-linear functional D,(T) defined by the equality

(20) DH(T)(E“ U E")
Lyyeoey iy
= D;L—I(T; wn'fn)(fl’ v Eﬂ_l) +D,_,(T) (517 o En*l)'fnmn.*
11:"'3'”71—1 a"l]"‘ﬂmﬂ~l
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The differentiation on the right side is feasible because one proves, by
induction, that D,(T) is an analytic mapping from S into O,. Conse-

quently

1
(21) 2 P Dy, (T,

0
M=

c

where D, . (T) is a homogeneous polynomial (of the variable T'¢&) of the
degree m, with values in O,. It is not difficult to prove by induction
on n that

£y ey ‘En)

24 D, (T
( Z) w,m( )(w”'”’mn

Elml flwvn, ‘Elmn«ﬂ 51(17”.]_2 . flmn—(-m

Snml e Enm-n Enmn-}-l En”—”’n—yn ... fnwn+w1
= Tfn«}'lzn-}—l'“T5n+m£n~l—m é:n—;-lml §:L+1mn 0 é)uylwn-r‘.z- .o §7L4-1$n+>n

En,;z ml e ‘§n+‘l wn §n+2 m‘n+l 0 e E7L+2xn+m

Eﬂ-{nn”] vee En-)-nzwn En+1nwn—)»1 EM.—HIL$'IL+2 see 0

Hence it follows that

| Th,  m, 0, 0, 0, ..., 0, 0
‘T, 0, m—1, 0, 0, ..., 0, 0
T;Jn tT-sz 0, m—2,0, ..., 0, 0
23)  Duw(T)= |18, 1%, @I 0, m—3,..., 0, 0
/A o A ¥ A eeey 0, 1
T, e wr oy BT 0
where
(24) T:f(é”""é”)
Byy eeny B,

&gy, ..., &, Ths, £ T, ..., elT"nmnl

£ Ty, ...y &, T, | 1 &M, ..., £ T,

the summation being extended over all sequences iy, ..., ¢, of non-nega-
tive integers whose sum is equal to m. ‘
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It follows from (22) or (23) that Dn,m(T)(El"”’E") is skew sym-

Tys ey Xn

metric in £, ..., &, and in @, ...,2,. Thus, by (21), D,,(T)(il"”’ j)
12 +++s In
is also skew symmetric in £, ..., £, and in By enny By

We can write immediate formulae for D,(T):

E1yenny &

D(n) . -
o, . ;'Z'n) (T30 81y .00y 200 &) +

(25) Dn(T)(
+ ED(()'LWI)(T§ By €yy ey By, Bii1 Eivry ooy By En) Ea+

n—2
+ 2 D )(T By &y ey By € gy Bisrt Eiiry ey B &y B,
i< ooy Bt £) &1 Eymy+

+ ZDS(Ti B ) ExBr e Byt i Byt Epiy+
=1
+Do(T) &1, .. &, 2.
It follows from (18), (21) and (25) that

511 sey En

s, '”>mn) = om«y-n(Ta seny T?"‘Ul'fl) ---7mn'§n)+

(26)  Dym (T)(
:|'2 0m+n—1(T5 ey T,ml'fly ey xi-1'§i~19wi+1'5£+17 cees Bt &) G+

+ Z‘Bmfn— Ty ey Ty &y ey 1 & 1y By Eiyyy oo
i7=1
t<d ey By By Byt Eyag ey B £a) Eume £ mi

n
+ 2 91?L+1<T’ ey Ta mi'Ei)'Elml"-"Ei—lwivl'£i+1$i+1"'-'£n$n+
i=1
O (T ey T) Extye. . Enin:

By (17), and (26) we have the following estimation of the norm of
the 2n-linear functional D, ,(T):

n+m

@n 1D , ml T)l 211. ,n_‘_m> (QV’;)nerHTHm.

This proves that, for every fixed TS, the series (21) on elements of O,
converges in norm.
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Formula (25) expresses D, (T) by means of D,(T) and its derivatives.
The following formula expresses the derivatives of Dy(T) by means of
Dyyeovy Dyt

£y iy 3,
(28) D(g")(T;wl'fU"']mn'fn).:DM(T)( v )—
19 +eey By
o S een i by e b
- Dn—T(U A &y
z‘é: 1( )w17--3,mi-17wi+17-"7mn

(517 ey £y 51'4—17 sy Ef—l: EH-I’ vy &y

Lryevey @1y Biyggy ey By gy Bypry ey By

+ Z D, _(T) ) & @y £ —

i,7=1
1<

+( _1)72_1.;1“01('[’)(?)'51”1' et S @i Sty

3!

F(=1)"Dy(T) &1, £y,
Formula (28) follows immediately from (20) and (19).

§ 4. Applications to the theory of linear equations. First we
shall prove that

(1) For every Hilberi-Schmidt operator T, the sequence
(29) Dy(T), D, (T), Dy(T), ...

s @ determinant system for the operator 4 = I-+T.

For the definition of determinant system —see Sikorski [3] p. 172,
conditions (d,)-(d;). We have observed in §3 that (d,) and (d,) hold.
(ds) also holds because X, Z are Hilbert spaces.

We have to prove (d,), i. e. that, for every fixed T &, at least one of
the multilinear functionals (29) does not vanish identically. Suppose the
contrary, i.e. that, for a T'e®, we have D, (T) = 0 for »=0,1,2,...
Hence, by (28),

(30) D{NT; Tyyevey Tn) = 0

for n =0,1,2,... and for all one-dimensional operators Tiyoony Tne
Since Df?(T; Ty, ..., T,) is linear in T,, ..., T,, (30) holds for all finitely
dimensional operators T, ..., T,. Since D{(T; Ty, ..., T,) is continuous
in T4,...,7,¢© and finitely dimensional operators are dense in &,
(30) holds for every n and for all T, T,, ..., T, ¢S. Since the analytic
funetion Dy(7) vanishes at the point 7 with all its derivatives, it is
equal to zero everywhere. This is impossible since D,y(0) = 1.
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Now we have to prove (d;), i.e. the identities
£0A7 517 ey En)

x()? wl’ ""xn

(81)  Dpua(T) (

n ; oy o v o , En)
= -1 5 i'-Dn T (
ig:o( Ve @ By voey Bi_1y Big1s ooy Byl
é.07 517 ey En)
(52) Dasa(T) (Amo’ Byy oeey Ty
= f?(—l)ifimo-nn(m)(g‘” v S B e 5“).
i=0 Dy o o v o0 o 0w v 3 &,

By the same argument as in Lezafski [1], p.254-256, we prove first
those identities for Dy.y n(T), Dy w(T) instead of an (), Dy(T) res-
pectively. Hence we obtain (31), (32).

The next theorem follows immediately from (i) and Sikorski [3],
Theorem II. -

(ii) Let T' be a Hilbert-Schmidt operator, and let v be the smallest integer
such that the 2v-linear functional D, does not vanish identically. Let 1,y ..., 1y,
Y1y +oey Yr be such that

N1y eves Ur
nm ) w0,
+T) Yiyoees Yr
Then there ewist elements Ty, ..., Cpy %1y ovy @ annd an operator B such that,
for all &,
(T (111, ........... ,n,)
Y1y ooos Y13 &y Yigas ooos Yo
Liw = ) ’

N1y eees Nr
D.(T (
(1) Yy ooey Yr

Ty enny N1y Ea Mig1y - oos 7]1‘)

&z, = 7 E]
My eeey e
D, T( )
(T) M

&y M,y --'7779') A
Ly Yyy-oesYr .

UETRERER/1
D T( )
"y,

The elements Ly, ..., &y are linearly independent in E, and so are 2y, ..., 2,

D)
EBx =

cin X.

22
Studia Mathematica XX
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The equation
a+Te = %,
has a solution @ if and only of L;my =0 for ¢ =1,...,7. Then the general
form of the solution is
% = Byt ¢,2,+ ...+ ¢, 2,.
The adjoint equation
E+ET = &

has a solution & if and only if £z, =0 for ¢ =1,...,7. Then the general
form of the solution is ‘

) E=§B+o b+t 0,8,

In the case of » = 0 Theorem (ii) asserts that
D,(T)
Dy(T)

(33) = (I+T)-.

) § 5. Some identities for the Carleman determinant and subdeter-
minants. Now we shall prove that

(iii) Do(T) is the only analytic function on the Bamach spac
) I e S of all
Hilbert-Sehmidt operators, such that ? /

(34) Di(T; (I+T)Ts) = —Do(T)- 0(ITy) (T, T;1S)
and
(35) Dy(0) = 1.
First consider the case where Dy(T) = 0, i.e. (I4+T)1 exists. Let
8 =I+T)2—1I.

Since 8 = —7—8T and & in an ideal in O, we have §«S. The identity
(33) can be written

Do(T)(I4 8) = Dy(T).
This equality and (19) imply
Dy(T; @+ &) = Dy(T)- £8m.

The number £Sz is the trace of the product of S and the one-dimensional
operator I'y = ¢-x. Thus the last equality can be written

(36) Dy(T; Ty) = Dy(T)-tx 8T,

fqr all gne—dimensiona,l operators T, . By linearity, (36) holds for all finitely
dimensional operators T',. By continuity, it holds for all T, since the
set of ?,]l ﬁmtely dimensional operators is dense in the Banach space O.
Replacing in (36) T, by (I +T}T, we get (31) under the hypothesis that
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Do(T) # 0. Since Do(T) is analytic, the set {I': Do(T) = 0} is nowhere
dense in ©. Hence it follows, by continuity, that (34) holds for every
T¢S. By the definition on p. 331, Dy(0) =1. Thus the Carleman
determinant is a solution of the differential equation (33) with the
initial condition (34). :

The proof that it is the only solution of (33) with the initial condition
(34) is similar to the proof of the corresponding part of the analogous
Theorem 6 in Sikorski [4] §6. The proof of uniqueness given there yields
also the uniqueness of solution in a neighbourhood of 0e&.

(iv) For sufficiently small Hilbert-Schmidt operators T (e. g. for
171 < 1)
(87) Dy(T) = exptr(log(I+T)—T),
the logarithm being defined by the infinite series:

o

log(I4+T) = 2

ne=1

_1 7 —1
D"
b

This follows from (iii) sinece the analytic function on the right side
of (37) satisfies, in a neighbourhood of 0, the differential equation (33)
with the initial condition (34).

For every Hilbert-Schmidt operator T, such that (I+T)y* exists,
let Dy (T) = 1 and, for n> 0, let D, (T) be the 2n-linear bounded functional
defined by the equality

EL(THT) gy ey E(THT) 0 |

(38) Dp(T) (51’ T 5") Y .
L1y veey D
E T4 21y ooey ETHT) 0
Obviously, D,(T) is an analytic mapping from the open dense set

(T: Dy(T) 0} CS into O,. By a general theorem on determinant
systems (see Sikorski [3], p.183)

(39) Du(T) = Do(T) Dp(T) (n=0,1, 2,...).
For every nuclear operator T, let
D,(T), D,(T), Dy(T), ...
be the Lezafski determinant system for A = I+T (for definition, see
e. g. Sikorski [4], §2). We have
(40) D, (T) = Dy(T) Dp(T) (n=0,1,2,...)

by the same argument as in the case of (39).
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Every nuclear operator is a Hilbert-Schmidt operator, and the set
of all nuclear operators is a dense subset of ©. The nuclear norm HEAl
of a nuclear operator T' satisfies the inequality

(41) 171 < 1T

(for the definition of the nuclear norm see e. g. Sikorski [2], Theorem V).
(v) For every nuclear operator T,

(42) Dy (Ty = D, (T)-exp—trl (n=0,1,2,...)
If {[|IT]]] < 1, we have (Michel and Martin [1] p. 88; see also Sikorski
[1] (86))
Dy(T) = exptrlog(I+1T).
Hence, by (37) and (41)
(43) Dy(T) = Dy(T) exp—tr T

for [||IT|| < 1. Since the both sides of (43) are analytic functions on the
Banach space of all nuclear operators (with the norm |||7]| [), the identity
(43) holds for all nuclear 7. It follows from (43), (39) and (40) that (42)
holds for all nuclear 7' such that Dy(T) # 0, and consequently, by analy-
ticity, for all nuclear 7.

To formulate the next theorem, it will be more suggestive to denote
the determinant Dy(T) of I+T by D(I-T).

(vi) For oll Hilbert-Schmidt operators Ty, T,,
(44) D(I+T)(I+Ty) = D(I4T1)- D(I+T,) expte T, T,

For nuclear T, T, the identity (44) follows from (43) and the known
identity (Michel and Martin [1], p. 89; see also Sikorski [1], Theorem 2
and [4], Theorem 5)

D((I+T)(I+Ty)) = D(I+T,)-D(I+T,)

where, similarly, D(I+T) = D,(T). By continuity, (44) holds everywhere
in &.

It follows from (44) that, in the case where X is finitely dimensional,
D(I+T) does not coincide, in general, with the algebraic determinant
of IT41T.

§ 6. The Carleman-Fredholm subdeterminants. For every TeS,
let 70" be the 2n-linear funectional €O, defined by the equality

45) . ].
511‘21&71, ceey ElTnfﬂn

T;m(i:::::i:) 3 Sy

i, 1, i i,
&Ly, ..., £, T, ETNmy,y .., &, T,
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where the summation is extended over all sequences 4,, ..., i, of positive
integers whose sum ig equal to m-n. It follows from (45) and (24) that

(46) T*m(éh e §n) :T;;:(élT; ey 'SnT) — T;;z( ’51’ ey En )'

Byy evvy By Byy oy Oy Toyy .oy, T,
Let Dj, ,(T) be the 2n-linear functional O, defined as follows:
e, m, 0, 0, 0, ..., 0, 0
™, 0, m—1, 0, 0, ..., 0,

0
e,  trT% 0, m—2, 0, .., 0, O
@n  DiaM=1¥, wr%, &l 0, m—3, .., 0, 0

=t e ™ e T2, .. ey 0,
e, ™, ™ L ceey T 0
It follows from (47), (46) and (23) that

STRITTE-N (fxT,---a §nT)_D ( STRTRPR - )
" ! = = " .
(48) D”’m(l)(wl,...,a;,,, = D By ey By BTA\T2y v ey Ty,

i)

Clearly D ,.(T) is a homogeneous polynomial of T of the degree n—+m
with values in O,. ) ‘ _
By (48) and (27) we have the following estimation of the norm of

D} in Oyt
e " n4m

(49) IDE (D)) < 2%ntm) = (2V e ™| T|™"

In the case n = 1 the identity (48) can be written in the form
(50) D} u(T) = TDy 3i(T) = Dy u(T)T.
Hence it follows that DY ,(T) is a Hilbert-Schmidt operator and, by (4"),

MmA4-1 .

(31) D% (D) < 20m41) * (2Ve)" YT

The 2n-linear functional «O,:

o 1
(52) DT = Dy Dhn() (n =112,
M=

is called the n-th Carleman-Fredholm subdeterminant of the 9perat0r
A =T4T. It follows from (50) that the series (52) converges 131 norm
in ©,. Moreover, in the case 1 =1, it follows from (50) and (51) that

(33) Di(T) = TDy(T) = Dy(I) T,
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D}(T) is & Hilbert-Schmidt operator, and the series
(34) DHT) = D DY n(T)
m=0
of Hilbert-Schmidt operators converges in the norm || in &.
By (52), (48) and (21)
51? ooy fn)

Lyyseey Tn,

— D,,,(T)(flT’ frn EnT) — Dn(T)( E_[, cvey 61» )

DByyoenyily Ty, T,

(65) DZ(T)(

Let
Di(T) = Dy(T).
The sequence
Di(T), DY(T), D5 (1), ...

is not a determinant system for the operator A = I+7 in the sense
defined by Sikorski [3] since, instead of (31), (82), it satisfies the follow-
ing identities:

) D (h e 5

Doy Bry vony Ty

= §(~l)ifoTwi'DZ(T) (5‘” """"" ’ f)

Boy vevy Bi1y Bigry ooy B

(57) D,’:H(T)(é"’f“'“’én)

Aoy B3y oeny By

N s

= Bry v vovv v y B,

However, it can be used to solve the equations 4x =z, and £4 = &.
By the same method as in Sikorski [4] § 3 we can prove the following
theorem:
. (vil) Let T.be o Hilbert-Schmidt operator. The smallest integer r such that
D (T) 50O, is equal to the smallest integer r such that D, (T)#0€9,. Then
* r ;
DiT) = (=1YD(T). Let 11y ..ey n0, Yo, <.y Yy be such that D} (Z“'"’Z')
. 1rreralYr,
# 0. Then*there ewist elements (Y, ..., Lr,2f, ..., ¢ and o Hilberi-Schmidi
operator B* such that for all & w
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oy T)("“ ........... , n,)

* Y1y oos Yic1y By Yigay ooy Yp
o= ,

’
DT ("717'”7"77‘)
a )y17"'7yr

D:‘(T)("” ey Mic1s €3 Migry ooy Wr)
Ez;; = s
D’:(T)(Yh, ceny 7]r)
Yay«oes Yr
§y N1y eeey "Ir)
By Yiy ooy Y .
N1y evvy 777)
Yy oo Y
The elements ¥, ..., L5 are linearly independent in &, and so are 23, ..., 25
in X.
The equation

D7+1(T)(

EB*p =
oy

x+Tw = 2

has @ solution © if and only if (fm, = 0 for i =1, ...,7. Then the general
form of the solution s

@ = sp—B*my+ o2t + ... o2
The adjoint equation
E+HET = §

has a solution & if and only if &#f = 0 for i =1, ...,v. Then the general
form of the solution s
&= §&— foB*+01Cr+--'+0er-
In the case of » = 0 Theorem (vii) asserts that
Di(T)
Dy (T)
§ 7. An integral model. Let u be a measure defined on a o-field of
subsets of a set I\ The integrals taken over the whole space I' will be
denoted, for brevity, by [f(t)dt instead of [f@® dp (), and similarly for
multiple integrals. T )
Suppose now that X = & = L*([, u). The class S of all Hilbert-
Schmidt operators coincides (see e.g. Smithies [1]) with the class of
all integral operators T
Tu(s) = [v(s, ha(®)dt

(58) I = (I+T).
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where -
(59) 1T =V [[ (s, t)Pdsdt < oo,

ie. tel3(I'xX T, pXp).
Similarly as in Sikorski [4],

€1y eey £n)

Ly ooy Ty

§ 4, we can prove that

(60) —D:,m(—T)(

8
“f fﬁn m(t” ¢ )51(91) 'fn(sn)'ml(tl)"-"mn(tn)dsl-'-dsndtl-"dtny
13 <+

where

819000y 8,
61 ﬁ* ( 1y H n)
( ) n,M t], - 1,

T(s158)s T (515 tn) -[1(31: 1) L(81, 7)1, (34, "3), . T(sp m)
T(sp,11)5 -0 T (sn, tn), T (sn, 71)s T (sn, 7y)s T (80, ”'3): wers T(8y, *m)
=f f T(rysty)y enes Tlry, ),y 0, Tiry, 19)s Tlry, 13)s ovey Tiry, Tm) y
T(rgsty)y evns Tirg, ta), T(ry, 19), 0, T(ry, 7g)y < vy D1y, Tm)
T(”'s’tﬂ:--- (Tsstn) T(rg, ry), T(rg, 73)» 0, sT(Ta, Tm)
T(rm,ty), I (rmstn)s T(rmy 71)s T(rm, 79) T(Tms3) s oo s 0
X dry...drm
Thus formally
(62) D:(T)(Ely'-'y En)
By eens By
8144 8,
~[f ﬂ*( e ) E1(82) - Eul52) 4 80) o 0 (1) sy . S,y . By
1) ¢
where
8 > 1
(63) L()'*( 19 Sn) - 2"—79:; m(sla -.-,67&)'
Piy eyt “~ 2 A A

The problem under which conditions the series (63) converges, in some
sense, to a function 19‘*(51""";”) and relation (62) holds, has not
N,

ey

been investigated in detail. For n =1, it follows from §6 (54) that
B meL2(I'x T, uxp), the series

w5\ = « [8
% (t) —2 ﬁ‘s’”(t)

Mm=0

icm
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converges in LA(I'XI', uXp)
satisfies the identity:

D;“(T)(i) = ffﬁ;(j)é(s)m(t)dsdt.

If every one-point subset of I" has a positive measure, then the series
(63) converges pointwise and the identity (62) holds (n =1,2,...).
To give an integral formula for D, (T) we have to introduce, similarly
as in Sikorski [4], § 4, a substitute of the Dirac delta distribution, i. e.
a formal expression d(s,?) which is a formal kernel of the operator I.
By definition,
e

[ (s, ha(@)ds =

[[[8(s, 0wty M)ralr, s)drdsat = [ [ (¢, 5)v(s, t)dsat,
ete. (for details, see Sikorgki [4], §4). Then we can write formally
Epyeens E)

and the funetion 9feL2(I'XI", uXu)

2(s), (s, t)ds = £(1),

(64) Dy wm(T) (

1y eeey By
317 "'7877,
= G, m . E1(81) - En(Sn) (b)) @ (B) 5y . dS,dEy L o AEy,
1y == n
where
» S17 v Sn
,ﬁ m
(63) O, (tl, ey tn)

8(Sysby)s ey B(Systn), (81, 71)s 8(81, 75)s O(s15 73}y -vus 6(S157m)

8(Sn,ty)s -es 6(8ns tn), 6(8n, 71)s O(8n, 7a)s O(8ns73)s <1vs O (Sns Tm)
=ff T(rysty)s oees T(rps B, 0, TPy Tg)s Ty, Pg)y oons T(Tys Tm) y

T(Pgyty)s eves T(Pgs tn)s T(Tas 7y)s 0, TP, Tg)s o5 T{Tas Tm)

T(rg,ty), oees T(Pgs tn)s T(Pgy 7)) T(r3s7e)s 0, vy T(ry, M)

T(Tm,ty)seees

T(rmatn)s T(Tm, ”'1) s T (rmy 7'2) 5 T(rm, 7'3) 3 ene

Kdry...drm,
and

(66) Dn(T)(f” 5")

D1y evey Ty

8 vaey S,
- f f ﬁn(;’ ’tﬂ)fl(sl) B (80) 0 () B (0) 081 . Ayt ...
- 13 **3 'n
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where ©
81y 400y S 81y .09 8
(67) '0 ( 1 y n) n m( 1 H n).
Biyeeey mZ= m! By eeny ity

If every one-point subset of I’ h a positive measure, then 6(s, ¢) and

815 enes & Sy eer
consequently, also &, ( tl t” ( tl’
n 1 -

series (66) converges pomtvnse n=1,2,

's”) are functions, and the
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Réfractions non-hilbertiennes
d’une transformation symétrique bornée

par

G. L. KRABBE (Lafayette, Ind.)

1. Introduction. Dans tout ce qui suit, x4 est une mesure sur un clan
de parties d'un ensemble w, et L est ’ensemble des fonctions étagées
wp-mesurables sur o. Remarquons que I’ est partout dense dans l’espace
de Banach %, = {z: o] <;<< o0}, o1

lalye = (f loPan)’s

nous supposerons désormais que 0 < » < 1. Soit % I'ensemble des trans-
formations symétriques bornées de lespace hilbertien %,,. Posons
HE et

|H|, = sup{]|Ha|y: weLl’ et o]y, <1}

Roit H® la restriction de H & L°, et désignons par H, le prolongement
linéaire continu de H° & X,; nous dirons gue H, est la ,réfraction” de H.
Précisons: H, est Punique prolongement de H® appartenant & I'ensemble
&, des endomorphismes continus de X,. Il est clair que H possédera une
réfraction si et seulement si |H|, 7= oo.

Rappelons qu'il exist une bijection H — FE de 9¢ sur Vensemble des
familles spectrales (cf. [13], pp. 174-176). Nous noterons “; l'ensemble
des transformations H appartenant & % telles que

(i) co # sup |B¥ (D))

oo<i<oo

lorsque 0 <s <1.

Nous supposerons désormais que HeW;. On verra (au n°. 2.8) que H
posséde une réfraction H,; en outre, H, admet une décomposition spec-
trale (bien que H, ne soit pas nécessairement un ,spectral operator”
dans le sens de N. Dunford: voir n. 3.4 et § 5). La réfraction hérite de H
d’autres propriétés spectrales (1). Par exemple, H, posséde un ,,caleul

(%) I serait intéressant de déterminer quelles antres propriétés spectrales de H
sont heritées par Hy. A ce propos, voir § 5.
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