Some classes of Banach spaces depending on a parameter

by

J. MUSIELAK and Z. SEMADENI (Poznań)

In this paper we shall consider the following classes of Banach spaces:

H_p — functions satisfying Hölder condition with an exponent p,

C^v_p — continuous functions with finite p-th variation,

L_p — absolutely continuous functions of order p, S_p and B_p — almost periodic functions in the sense of Stepanoff and Besicovitch, respectively,

M_p — strongly p-summable sequences.

These classes may be treated as families of Banach spaces X_p depending on a parameter p. In each of these classes there are known inclusions between spaces X_p, $X_{p'}$ and inequalities between norms $\|\cdot\|_p$, $\|\cdot\|_{p'}$ for $p < p'$. We shall consider the following problem: given a sequence p_n convergent to p_0, establish connections between the corresponding spaces X_{p_n} and X_{p_0}. This problem is closely related to the problem of the continuity (suitably defined) of the spaces X_p with respect to the parameter p.

These problems are considered from a general point of view in paper [8], where, in the following definition, the limit $\overline{\langle X_n \rangle}$ of a sequence X_n of linear metric spaces is introduced. $\langle X_n, \|\cdot\|_n \rangle$ is termed $\overline{\langle X_n, \|\cdot\|_n \rangle}$ (written $\langle X_n, \|\cdot\|_n \rangle = \overline{\langle X_n, \|\cdot\|_n \rangle}$) if the following conditions are satisfied:

1° X_n and almost all X_n are subspaces of a linear space,

2° X_n converges to X_0 in the sense of the theory of sets (i.e. $X_0 = \cap_{n=1}^{\infty} X_n = \cap_{n=1}^{\infty} \cap_{k=1}^{\infty} X_n$, $X_0 = \cap_{n=1}^{\infty} \cap_{k=1}^{\infty} X_n$),

3° $\|x\|_n = \lim_{n \to \infty} \|x\|_n$ for all $x \in X_n$.

Next, we write $\langle X_n, \|\cdot\|_n \rangle = \overline{\langle X_n, \|\cdot\|_n \rangle}$ if $\overline{\langle X_n \rangle}$ is dense in $\langle X_n, \|\cdot\|_n \rangle$.

Let $\{X_p\}_{p \in \mathbb{P}}$ be a family of Banach spaces $\langle X_p, \|\cdot\|_p \rangle$ such that
$X_p \subset X_{p'}$, and $[x]_p \gg [x]_{p'}$ for $p > p'$. We say that this family is continuous with respect to p, if the following conditions are satisfied (1):

1° If $x \in X_{p_1}$ and if $p_n \searrow p$, then $[x]_p = \lim_{n \to \infty} [x]_{p_n}$,

2° if $x \in \bigcap_{p_1} X_{p}$ and if $p_n \searrow p$, then $[x]_p = \lim_{n \to \infty} [x]_{p_n}$,

3° $\bigcap_{p_1} X_{p}$ is dense in $\langle X_p, \| \cdot \|_p \rangle$,

4° X_p is dense in $\bigcap_{p_1} X_{p}$ with respect to the F-norm

$$\| x \|_p^* = \sum_{n=1}^{\infty} 2^{-\kappa} \| x \|_{p_n}$$

where $\kappa(u) = u(1+u)^{-1}$ and p_n is a fixed sequence such that $a < p_1 < p_2 < \cdots$ and $p_a \searrow p$,

5° $[x]_p = \sup_{n \to \infty} [x]_{p_n} < \infty$ implies X_p for all p ($a < p < \beta$).

Moreover, we consider two definitions of semicontinuity. If conditions 1°, 2°, 3° are satisfied, then the family $\langle X_p, \| \cdot \|_p \rangle$ is said to be semicontinuous from above; if 1°, 2°, 3° are satisfied, $\langle X_p, \| \cdot \|_p \rangle$ is said to be semicontinuous from below.

Conditions 1° and 3° mean that $\langle X_p, \| \cdot \|_p \rangle = \langle X_{p_1}, \| \cdot \|_{p_1} \rangle$. At the same time, the space $\langle \bigcap_{p_1} X_{p} \rangle$ is a B_r-space and conditions 2° and 4° mean that

$$\langle \bigcap_{p_1} X_{p} \rangle = \langle X_{p_1}, \| \cdot \|_{p_1} \rangle$$

where $\| x \|_{p_1} = \sum_{n=1}^{\infty} 2^{-\kappa(1)} \| x \|_{p_n}$,

$$\langle X_p, \| \cdot \|_p \rangle = \langle X_{p_1}, \| \cdot \|_{p_1} \rangle \cap \langle \bigcap_{p_1} X_{p} \rangle$$

Auxiliaries. The following well-known lemmas are very useful in further considerations.

0.1. Given sets X and T, let us suppose that to every $p \in (a, \beta)$ there corresponds a family $\{f_{p_1}(\cdot)\}_{p_1}$ of functions defined in X, such that

$$f_{p_1}(x) \leq f_{p_2}(x)$$

for all $x \in X$, $p \leq p'$ and such that

$$p_n \to p \implies f_{p_n}(x) \to f_p(x)$$

(1) if the inclusions for X_p and the inequalities for $\| \cdot \|_p$ are opposite, the definition is analogous.

0.2. Let T be a compact topological space and $f_{p_1}(x)$ are continuous on T for every fixed $p \in (a, \beta)$ and $x \in X$. Then, assuming (1) and (2), the function $\varphi(p)$ defined by (3) is continuous.

Proof. We have to prove that for each $p_n \to p$ the limit $\varphi(p_n)$ exists for every fixed $x \in X$. Since $f_{p_1}(x) \to f_p(x)$ for $p_n \to p$ uniformly on T and $f_{p_1}(x)$ are continuous on T for every fixed $x \in X$, the limit $\varphi(p_n)$ exists for every fixed $x \in X$, and $\varphi(p) = \sup_{x \in X} f_p(x)$.

0.3. Let X be a linear class of bounded functions $u(x)$ defined on an arbitrary set T, containing constant functions and such that if $x \in X$ and $p > 0$, then $[x]_p \in X$. Next, let $\widetilde{X}(x)$ be a functional over X, satisfying the following conditions:

$$\widetilde{X}(x + y) = \widetilde{X}(x) + \widetilde{X}(y), \quad \widetilde{X}(-x) = -\widetilde{X}(x) \quad \text{for} \lambda \geq 0,$$

$$0 \leq x(t) \leq y(t) \implies \widetilde{X}(x) \leq \widetilde{X}(y),$$

$$\widetilde{X}(1) = 1, \quad \text{where 1 denotes the constant function } x(t) = 1.$$

Then, for any fixed $x \in X$, the functions

$$\varphi_1(p) = \widetilde{X}([x]_p) \quad \text{and} \quad \varphi_2(p) = \left[\varphi_1(p) \right]^\alpha$$

are continuous for $p > 0$.

![Image]
Proof. It suffices to show that \(\varphi(t) \) is continuous whenever \(|x(t)| \leq 1 \) and \(p \) runs any interval \((a, \beta)\) with \(\beta > a > 0 \). Let \(u \) be chosen such that \(x(u) = \frac{1}{3} \) and \(p = q \). Then \(|x(u)|^p - |x(u)|^q < \varepsilon \) for all \(t \in T \), whence \(0 < M(|x|^p) - M(|x|^q) \leq M(|x|^p - |x|^q) \leq M(x) = \varepsilon \) for \(a < p < q < p + \delta < \beta \).

1. Spaces of functions satisfying Hölder conditions.

1.1. Let \(H_\rho \) be the class of all real functions \(x(t) \) defined in \((0, 1)\) vanishing at \(t = 0 \) and satisfying the Hölder condition with the exponent \(\rho \), i.e., the condition

\[
|a(t+h) - a(t)| \leq K|h|^\rho
\]

for all \(t, t + h \in (0, 1) \), where \(K \) is a constant depending on \(x \), and \(0 < \rho \leq 1 \).

Next, let \(H_\rho^p \) be the subclass of \(H_\rho \) consisting of all functions \(x(t) \) satisfying the condition \(a(t+h) - a(t) = o(h^\rho) \), i.e., such that

\[
\lim_{h \to 0} h^{-\rho} x(h) = 0 \quad \text{where} \quad x(h) = \sup_{t \in (t+h) - (t)} |a(t+h) - a(t)|.
\]

The following inclusions are well-known:

\[
H_\rho \subset H_\rho^p \subset H_\rho \quad \text{for} \quad p < q.
\]

\(H_\rho \) is a non-separable Banach space with respect to the norm

\[
\|a\|_H^p = \sup_{t \in (t+h) - (t)} \sup_{o \in [c, d]} H \|a(t+h) - a(t)\| - \sup_{t \in (t+h) - (t)} \sup_{o \in [c, d]} H \|a(t+h) - a(t)\|.
\]

and \(H_\rho^p \) is closed in \(H_\rho \) in \(|||H^p||| \).

1.2. The set of all polynomial functions vanishing at 0 is dense in every space \(<H_\rho, |||H^p|||> \) where \(p < 1 \).

Proof. The map (4) generates in the space \(L_\rho \) the norms

\[
|y|_p = \sup_{t \in (t+h) - (t)} \sup_{o \in [c, d]} H \|U(y(t+h) - y(t))\| = \sup_{t \in (t+h) - (t)} \sup_{o \in [c, d]} H \|U(y(t+h) - y(t))\|
\]

for \(0 < p < 1 \). We have to prove that the step functions are dense in \(L_\rho \) in the norm

\[
\|a\|_H^p = \sup_{t \in (t+h) - (t)} \sup_{o \in [c, d]} H \|a(t+h) - a(t)\| - \sup_{t \in (t+h) - (t)} \sup_{o \in [c, d]} H \|a(t+h) - a(t)\|.
\]

holds for every \(y \in L_\rho \) and \(0 < \delta < 1 \). Let us consider the characteristic function \(y(t) \) of a measurable subset of \((0, 1)\). Choose \(\varepsilon \) with \(0 < \varepsilon < 1 \) and an integer \(n > 2/\delta \) where \(\delta = \varepsilon^{1-n} \). Write \(J_n = (t-3/3n, t/n) \) and

\[
z(t) = \begin{cases} 1/h & \text{for} \quad t \in J_n \quad \text{and} \quad h = 1, 2, \ldots, n. \end{cases}
\]

Then \(|z - y|_p \leq \varepsilon \sup |z(t) - y(t)| \leq 1 \). Since

\[
\int_{J_n} |z(t) - y(t)|_p \, dt = 0,
\]

we have

\[
\int_{J_n} |z(t) - y(t)|_p \, dt = \int_{J_n} \frac{1}{h} |z(t) - y(t)|_p \, dt = \left(\frac{1}{h} \right)^{-p} \left(\frac{1}{h} \right)^{1-p} \int_{J_n} |z(t) - y(t)|_p \, dt = \varepsilon^{1-p} \leq \frac{\varepsilon}{n} \leq \delta,
\]

where \(k_1 = E(n) + 1 \), \(k_2 = E(n(t+h)) \). Then

\[
\sup_{t \in (t+h) - (t)} \sup_{o \in [c, d]} H \|U(z(t) - y(t))\| \leq \delta^{1-p}.
\]

Finally, by (5) and (6), \(|z - y|_p \leq \delta^{1-p} = \varepsilon \).
Since linear combinations of characteristic functions are dense in \(\langle \mathcal{L}^1 \rangle \), and \(\| y \|_{p'} \geq \| y \|_p \), the step-functions are dense in \(\langle \mathcal{L}^1 \rangle \) for every \(0 < p' < 1 \).

1.3. The set \(H_p \) is dense in \(\langle H^p, \| \cdot \|_p \rangle \) for every \(0 < p < 1 \).

Proof. Given \(\varphi \in H_p \), let us write

\[
\varphi_n(t) = n \left[\begin{array}{l}
\sum_{i=1}^{n} \text{a}(i) \delta_{i}(t) - n \int_{0}^{t} \text{a}(r) \, dr,
\end{array} \right]
\]

where \(\text{a}(t) = \text{a}(1) \) for \(t \geq 1 \). Obviously, \(\varphi_n \in H_p \), and

\[
\| \varphi_n - \varphi \|_p = n \sup \left[\int_{0}^{t} \right] + \int_{0}^{t} \| \varphi(t+h) - \varphi(t) \|_p \, dr.
\]

Given \(\varepsilon > 0 \), let us choose an \(h_0 > 0 \) such that \(\| \varphi(t+h) - \varphi(t) \|_p < \varepsilon/2 \) for \(0 < h \leq h_0 \) and \(t \geq 1 \). Then

\[
\| \varphi_n - \varphi \|_p \leq n \sup \left[\int_{0}^{t} \right] + \int_{0}^{t} \| \varphi(t+h) - \varphi(t) \|_p \, dr \leq \varepsilon
\]

for \(n = 1, 2, \ldots \). Now, let us consider the case \(h_0 \leq h \leq 1 \). Then

\[
\| \varphi_n - \varphi \|_p \leq n \sup \left[\int_{0}^{t} \right] + \int_{0}^{t} \| \varphi(t+h) - \varphi(t) \|_p \, dr \leq \varepsilon
\]

for \(n \) sufficiently large. Hence \(\| \varphi_n - \varphi \|_p \to 0 \) for \(0 < p < 1 \).

1.4. The set \(\bigcup_{p \in \mathcal{L}^1} \) is dense in \(\langle H^p, \| \cdot \|_p \rangle \).

1.5. The spaces \(\langle H^p, \| \cdot \|_p \rangle \) and \(\langle H^{p'}, \| \cdot \|_p \rangle \) are separable for \(0 < p' < p \).

More precisely, the set of all rational polynomial functions(*) is dense in every space \(\langle H^p, \| \cdot \|_p \rangle \) and in every space \(\langle H^p, \| \cdot \|_p \rangle \) for \(0 < p' < p \).

Proof. By 1.2 and 1.3 the polynomial functions are dense in the space \(\langle H^p, \| \cdot \|_p \rangle \) for every \(0 < p < 1 \). Thus, we have to prove that any polynomial function may be approximated (in the norm \(\| \cdot \|_p \), \(p < 1 \)) by rational polynomial functions; this follows trivially by the following lemma.

Let \(y(t) \) be a continuous function defined in \((0, 1) \), being linear in either interval \((a, b) \) and \((b, c) \), where \(0 \leq a < b < c \leq 1 \); next, let \(a < w \leq b \) and let

\[
y(t) = \begin{cases}
y(t) & \text{for } 0 \leq t \leq w \text{ and for } c \leq t \leq 1,
\text{linear in } (w, c).
\end{cases}
\]

Then \(\lim_{w \to a} y(t) = 0 \).

Indeed, we have

\[
y(t) = \begin{cases}
y(t) & \text{for } 0 \leq t \leq w \text{ and for } c \leq t \leq 1,
\text{linear in } (w, b) \text{ and in } (b, c).
\end{cases}
\]

Obviously,

\[
|A| \leq 2(b-w) \max \left(\frac{|y(b)-y(a)|}{b-a}, \frac{|y(c)-y(b)|}{c-b} \right) = B(b-w).
\]

Next, we have \(y(a, h) \leq |A| \leq B(b-w) \), whence

\[
\sup_{0 < h < c} h^{-p} |y(a, h)| = B(b-w)^{1-p}.
\]

Finally

\[
\sup_{0 < h < c} h^{-p} |y(a, h)| \leq \sup_{0 < h < c} \| y \|_{H^1} \leq \| y \|_{H^1}(b-w)^{-p}
\]

\[
\leq \max \left(\frac{|A|}{b-w}, \frac{|A|}{c-b} \right)(b-w)^{-p} \leq \max \left(B(b-w)^{1-p}, B(b-w)^{-p} \right).
\]

Thus, \(|y|_{H^p} = |z - y|_{H^p} \leq B(b-w)^{-p} \) for sufficiently small \(b-w \).

\[
\text{Now, let } 0 < p' < p \leq 1 \text{. Then } H^p \subseteq H_p \text{ and every subset of } H_p \text{ dense in } \langle H^p, \| \cdot \|_p \rangle \text{ is dense in } \langle H^p, \| \cdot \|_p \rangle \text{, too.}
\]

1.6. Let \(0 \leq p < 1 \) and let \(\varphi \in \bigcup_{p \in \mathcal{L}^1} \). Then

\[
\| \varphi \|_{H^p} = \lim_{p \to 0} \| \varphi \|_{H^p}.
\]

In particular, for \(p = 0 \),

\[
\lim_{p \to 0} \| \varphi \|_p = \sup_{0 \leq h \leq 1} |\varphi(t+h) - \varphi(t)|: 0 \leq t + h \leq 1.
\]

(*) By rational polynomial functions we understand polynomial functions with both coordinates of single-points rational.
At the same time,
\[\|x\|_p^p = \lim_{t\to+} \|x\|_{p,1}^p \quad \text{for } x \in H_{p,1}, \quad 0 < p \leq 1. \]

Proof. First, we give the proof for \(p > 0 \). Writing
\[f_{\delta, b}(x) = \frac{\|x(t+h) - x(t)\|^p}{h^p} \quad \text{for } 0 < h \leq 1 \text{ and } 0 \leq t \leq 1 - h, \]
and \(T = [(t, h): 0 \leq h \leq 1, \quad 0 \leq t \leq 1 - h] \) we observe that \(f_{\delta, b}(x) \) are continuous on \(T \) for fixed \(q \) and \(x \in H_{p,1}, \quad q > q \). It suffices to prove this at the points \((t, 0) \) for \(0 \leq t \leq 1 \). Since
\[f_{\delta, b}(x) = \frac{\|x(t+h) - x(t)\|^p}{h^p} \leq \|x\|_{p,1}^p \quad (0 < h \leq 1), \]
so, for any \(x \in \bigcup H_{p,1} \), there exists a \(b_0 > 0 \) (dependent on \(x \)) such that
\[f_{\delta, b}(x) \text{ are continuous on } T \text{ for } 0 \leq \delta \leq b_0. \]
Thus, 0.2 may be applied to obtain (T). Similarly, (9) follows from 0.1. Now, we proceed to the case \(p = 0 \). Let \(x = 0 \) be a fixed element of \(\bigcup H_{p,1} \); then there exists a \(b_0 \) such that \(x \in H_{p,1}^{b_0} \). Now, choose \(\delta > 0 \) so that
\[\|x(t+h) - x(t)\| \leq \delta \|x\|^p \quad \text{for all } 0 < h \leq \delta \text{ and for all } t. \]
Then
\[\|x(t+h) - x(t)\| \leq \delta \|x\|_{p,1}^p \quad \text{for } 0 < h \leq \delta, \quad 0 < p \leq p_0 \text{ and for all } t. \]
Consequently, for \(0 < p < p_0 \),
\[\|x\|_{p,1}^p \leq \sup_{h \leq \delta} \|x(t+h) - x(t)\| \leq \sup_{s < t} \|x(t+h) - x(t)\| \delta^p = \|x\|_{p,1}^p \delta^p, \]
where \(p_0 \) and \(\delta \) depend only on \(x \). Thus we have proved
\[\|x\|_{p,1}^p \leq \|x\|_{p,1}^p \leq \|x\|_{p,1}^p \delta^p \]
which implies (8).

1.7. Let \(C_0 \) be the space of all continuous functions in \((0, 1) \) vanishing at \(0 \). \(C_0 \) may be identified with the space \(H_{p,1} \) which is defined analogously to \(H_{p,1}^2 \), as well as \(H_p \) may be identified with the space of bounded functions in \((0, 1) \), vanishing at \(0 \). The norm \(\|x\|_{p,1}^p = \max \{ |x(t)|: 0 \leq t \leq 1 \} \) is defined in \(C_0 \) and equivalent to the usual norm \(\|x\| = \max \{ |x(t)|: 0 \leq t \leq 1 \} \); indeed, \(\|x\| \leq \|x\|_{p,1} \leq 2|x| \). Thus
\[\langle C_0, p \rangle^p = \langle H_p, p \rangle^p = \langle H_{p,1}, p \rangle^p. \]

Moreover, by the preceding considerations,
\[\langle H_{p,1}, p \rangle^p = \langle H_{p,1}^2, p \rangle^p = \langle H_{p,1}, p \rangle^p \quad \text{for } 0 < p \leq 1. \]

Finally, we conclude that the spaces \(\langle H_{p,1}, p \rangle^p \) form a family of separable Banach spaces, semicontinuous from below with respect to \(p \). At the same time, the spaces \(\langle H_{p,1}, p \rangle^p \) are semicontinuous from above, neither family being continuous (1).

2. Spaces of functions of finite \(p \)-th variation.

2.0. We shall consider the classes \(OV_p \) and \(AC_p \), defined for \(p > 1 \) as follows (1). Given a fixed closed interval \((a, b) \) and a partition \(\pi: a = t_0 < t_1 < \ldots < t_n = b \), we write
\[SV_p(\pi, \pi) = \sum_{i=1}^n \|x(t_i) - x(t_{i-1})\|^p \]
for any function \(x(t) \) defined in \((a, b) \). The value
\[V_p(x) = \sup_{\pi} SV_p(\pi, \pi) \]
is called the \(p \)-th variation of \(x(t) \) in \((a, b) \). Let
\[V_p(x) = [x; V_p(x) = \infty, x(a) = 0] \]
and let \(OV_p \) be the class of all continuous functions belonging to \(V_p \). \(AC_p \) will denote the class of all functions \(x(t) \) vanishing at \(a \) and \(p \)-absolutely continuous, i.e. satisfying the following condition: for every \(\varepsilon > 0 \) a number \(\delta > 0 \) may be chosen so that, for every finite system of non-overlapping subintervals \((a_i, b_i) \) of the interval \((a, b) \), the inequality
\[\sum |x(b_i) - x(a_i)| \leq \delta \text{ implies } \sum |x(b_i) - x(a_i)| \leq \delta \]
All the spaces \(V_p, OV_p \), and \(AC_p \) are Banach spaces with respect to the norm \(\|x\|_{p,1} = V_p(x) (p > 1) \). Moreover, the following inclusions and inequalities hold for all \(x \) and \(1 < p < p' \):
\[AC_p \subset OV_p \subset AC_p, \quad V_p(x) \leq V_{p'}(x). \]

The set of all rational polynomial functions is dense in \(AC_{1,1} \) \(\| \|_{1} \)
(1) recently, Ciesielski (2) proved that every function \(x \in H_{p,1} \) may be developed in a series with respect to the Schauder polynomial functions (consisting of the known basis in \(C(0, 1) \), convergent with respect to the norm \(\| \|_{p} \). So he gave a new proof of 1.2, 1.3 and 1.5.

(1) For the definitions and basic properties, see [9], [5] and [6].
2.1. Let \(\pi : a = u_0 < u_1 < \ldots < u_n = b \) be a partition of \((a, b)\), and let \(\sigma(t) \) be a function defined in \((a, b)\), monotone in each interval \(\langle u_i, u_{i+1} \rangle \) and continuous at each point \(u_i \). Then
\[
V_p(\sigma) = \sup_{\pi \in \Pi_n} S_p(\pi, \sigma) \quad \text{for} \quad p \geq 1. \tag{11}
\]

Proof. It suffices to prove that, for any partition \(\pi' : a = v_0 < v_1 < \ldots < v_m = b \) of the interval \((a, b)\), there exists a subpartition \(\pi : a = u_0 < u_1 < \ldots < u_n = b \) of \(\pi_0 \) such that
\[
S_p(\pi', \sigma) < S_p(\pi, \sigma). \tag{12}
\]

Let \(j \) be the least index such that \(u_j \) does not belong to \(\pi_0 \) \((j \geq 1)\). We distinguish two cases.

1° Let \([\sigma(v_j) - \sigma(v_{j-1})][\sigma(v_{j+1}) - \sigma(v_j)] \geq 0 \). Then
\[
|\sigma(v_{j+1}) - \sigma(v_j)|^p + |\sigma(v_j) - \sigma(v_{j-1})|^p \leq |\sigma(v_{j+1}) - \sigma(v_{j-1})|^p
\]
and \(S_p(\pi', \sigma) \leq S_p(\pi, \sigma) \) where \(\pi_1 : a = v_0 < v_1 < \ldots < v_{j-1} < v_{j+1} < v_{j+2} < \ldots < v_m = b \).

2° Let \([\sigma(v_0) - \sigma(v_{j-1})][\sigma(v_{j+1}) - \sigma(v_j)] < 0 \). Then there exists an index \(\delta \) such that \(u_{j-1} < v_\delta < u_j \),
\[
|\sigma(u_\delta) - \sigma(v_{j-1})| > |\sigma(v_j) - \sigma(v_{j-1})|
\]
and
\[
|\sigma(v_{j+1}) - \sigma(u_\delta)| > |\sigma(v_j) - \sigma(u_\delta)|.
\]

Obviously, \(S_p(\pi', \sigma) \leq S_p(\pi, \sigma) \) where
\[
\pi_1 : a = v_0 < v_1 < \ldots < v_{j-1} < v_\delta < v_{j+1} < v_{j+2} < \ldots < v_m = b.
\]

Thus, after a finite number of such steps we obtain a subpartition \(\pi \) of \(\pi_0 \) satisfying (12).

The formula (11) is valid in two important cases: for polynomial functions and for step functions. In the second case we assume \(u_i \) \((i = 1, 2, \ldots, m)\) to be the middle points of the intervals in which \(\sigma(t) \) is constant. So, given two arbitrary partitions \(\pi_1 \) and \(\pi_2 \) with the same number of points, the space \(\langle X, \| \sigma \| \rangle \) of polynomial functions with angle points at points of \(\pi_1 \) is isometric with the space \(\langle X, \| \cdot \|_p \rangle \) of step functions with middle points at points of \(\pi_2 \).

2.2. Given a fixed polynomial function \(\sigma(t) \), the function \(\varphi(p) = V_p(\sigma) \) is continuous for \(p \geq 1 \), \(\varphi(1) = 0 \).
\[
\| \sigma \|_p = \lim_{p \to 0} \| \sigma \|_{p+\epsilon} = \lim_{\epsilon \to 0} \| \sigma \|_{p+\epsilon}.
\]
Moreover,
\[
\lim_{p \to 0} \| \sigma \|_p = \| \sigma \|_\infty = \sup \{ |\sigma(t+h) - \sigma(t)| : 0 < t < t+h \leq 1 \}.
\]

Proof. Denoting by \(T \) the set of all subpartitions of the partition \(\pi_0 \) of \(a \) to \(b \) as \(\pi = \tau, f_{\pi}(\sigma) = \sigma_\tau(\pi, \sigma) \) and applying 0.1 and 0.2 we obtain (13).

Since
\[
\left(\frac{1}{m} \sum_{i=0}^{m} |\sigma(t_i) - \sigma(t_{i-1})|^p \right)^{1/p} \leq \left(\frac{1}{m} \sum_{i=1}^{m} |\sigma(t_i) - \sigma(t_{i-1})|^p \right)^{1/p'}
\]
and since \(\| \sigma \|_{p'} = \sup_{x \in [a, b]} |\sigma(x)| \), so \(S_p(\pi, \sigma) \geq S_{p'}(\pi, \sigma) \) and, by 0.1,
\[
S_p(\pi, \sigma) \geq \sup_{x \in [a, b]} \sup_{t \in [0, 1]} |\sigma(t) - \sigma(t_{i-1})| = \| \sigma \|_{p'}^p.
\]

2.3. Since the convergence of a monotone sequence of norms in a dense set implies convergence everywhere (cf. [3], Th. 9.1), the preceding considerations yield
\[
\langle \sigma_{p}, \| \cdot \| \rangle = \langle \sigma_{p}, \| \cdot \| \rangle = \sup_{x \in [a, b]} \langle \sigma \| \sigma \|_p \rangle \quad \text{for} \quad 1 < p < \infty,
\]
\[
\langle \sigma_{p}, \| \cdot \|_p \rangle = \langle \sigma_{p}, \| \cdot \|_p \rangle = \sup_{x \in [a, b]} \langle \sigma \| \sigma \|_p \rangle.
\]

Similarly as in the case of spaces \(\langle H_p, \| \cdot \|_p \rangle \) and \(\langle H_p, \| \cdot \|_p \rangle \), the family \(\langle \sigma_{p}, \| \cdot \|_p \rangle \) depends on \(p \) semantically from below and the family \(\langle \sigma_{p}, \| \cdot \|_p \rangle \) semantically from above (4).

2.4. According to Riesz [7], we may consider another definition of the p-th variation of a function \(\sigma(t) \) defined in \((a, b)\),
\[
\Phi_p(\sigma) = \sup_{x \in [a, b]} \left(\sum_{i=1}^{n} |\sigma(t_i) - \sigma(t_{i-1})|^p \right)^{1/p}.
\]

F. Riesz proved that in order that \(\Phi_p(\sigma) < \infty \) for a function \(\sigma(t) \) and for \(p > 1 \), it is necessary and sufficient that \(\sigma(t) \) be the indefinite integral of a function belonging to \(H_p \), and
\[
\Phi_p(\sigma) = \left(\int_a^b |\sigma'(t)|^p dt \right)^{1/p}.
\]
(cf. [4], p. 224, and [10]). Thus the space
\[
I_{H_p} = \{ \sigma : \Phi_p(\sigma) < \infty, \sigma(a) = 0 \}
\]

(4) Let us note that families \(CT_{H_p} \) and \(CT_{D_p} \), as well as families \(H_p \) and \(H_p \), resemble topologically the lexicographic product of an interval \((a, b)\) of ordered set \(\lambda \) and of a two-point set, provided with the order topology, i.e., the so-called topological (non-metrizable) space obtained by "splitting of the points of an interval into halves".
is identical with
\[\{ x : x(t) = \int_0^t x(u) \, du, \forall u \in I \} \],
both spaces being provided with the norm \(\| x \|_p = \Phi_p(x) \). Obviously, the family \(\{ ll_p \} \) depends on \(p \) continuously. Moreover, \(\langle ll_p, \| \cdot \|_1 \rangle = \langle AG_1, \| \cdot \|_1 \rangle \) and \(\langle ll_p, \| \cdot \|_2 \rangle = \langle H_1, \| \cdot \|_2 \rangle \) (if \(a = 0, b = 1 \)).

Thus, let us assume, for simplicity, that \((a, b) = (0, 1) \). Connections between families considered so far may be presented by the following scheme:

\[\text{C}_0 \quad \text{H}_0^0, \text{H}_p \quad \text{AC}_p, \text{CV}_p \quad \text{AC}_1 \]

2.5. In many considerations (e.g. in the theory of Fourier series) functions satisfying the Hölder condition and being of finite \(p \)-th variation, simultaneously, are very useful. Spaces of such functions \(CV_p \cap H_p \), \(AC_p \cap H_p^1 \), etc. provided with the norms \(\| x \|_p = \| x \|_p^H + \| x \|_p^{CV} \) are Banach spaces, moreover, the space \(\langle AC_p \cap H_p^1, \| \cdot \|_p \rangle \) is separable, rational polygonal functions being dense in it. These spaces may be treated as depending on a double parameter \((p, q) \), where \(p \geq 1, 0 < q < 1 \).

3. Spaces of almost periodic functions. Let \(S_p, W_p \) and \(B_p \) (\(1 \leq p < \infty \)) denote the normed spaces of almost periodic functions in the sense of Stepanoff, Weyl and Besicovitch, respectively (\(^2\)). The means

\[\overline{M}^a_p(x) = \sup_{a < c < b} \int_a^b x(u) \, du, \quad \overline{M}^c_p(x) = \lim_{b \to \infty} \sup_{a < c < b} \int_a^b x(u) \, du, \]
\[\overline{M}^{a,b}_p(x) = \lim_{b \to \infty} \frac{1}{b-a} \int_a^b x(t) \, dt \]
are defined for any bounded measurable function and, by 0.3, the norms
\[\| x \|_{\overline{M}^a_p} = \| \overline{M}^a_p(\| x \|_p) \|^{1/p}, \quad \| x \|_{\overline{M}^c_p} = \| \overline{M}^c_p(\| x \|_p) \|^{1/p}, \quad \| x \|_{\overline{M}^{a,b}_p} = \| \overline{M}^{a,b}_p(\| x \|_p) \|^{1/p} \]
depend on \(p \) continuously for any fixed bounded \(x \). Hence, the class \(\langle S_p, \| \cdot \|_{\overline{M}^a_p} \rangle \) depends on \(p \) semicontinuously from below (\(^3\)).

\(^1\) An exposition of these spaces is given in the monograph of Besicovitch and in the paper (1) of Bohr and Fejer.
\(^2\) Professor S. Hartman has remarked that, by some results of Bohr and Fejer (11), condition 5a is not satisfied for the class \(\{ l_p \} \).

\[\langle B_p, \| \cdot \|_p \rangle \]
depend on \(p \) continuously, since they are equivalent to the spaces \(L_p(G, \mu) \), where \(G \) denotes the Bohr compactification of the additive group of real numbers and \(\mu \) denotes the Haar measure on \(G \). At the same time, this equivalence maps the uniformly almost periodic functions of Bohr on the continuous functions on \(G \) and maps the functions \(e^{it} \) onto the characters on \(G \); \(\mu \) being regular, continuous functions are dense in each space \(L_p(G, \mu) \), \(1 \leq p < \infty \) (Fejer [3]) (\(^4\)).

We do not consider the spaces \(W_p \), for they are not complete.

4. Spaces of strongly \(p \)-summable sequences.

\[\langle M_p, \| \cdot \|_{\overline{M}^c_p} \rangle \]
is a non-separable Banach space. Further, let us denote by \(M_p^a \) the closure in \(\langle M_p, \| \cdot \|_{\overline{M}^c_p} \rangle \) of the set of sequences which are constant for almost all \(n \). Obviously, \(M_p^a \) consists exactly of all strongly \(p \)-summable sequences, i.e. of sequences such that

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n |x_k| = 0 \]
for a number \(x \) being a generalized limit of \(\{ x_n \} \).

Finally, let us denote by \(M_p^b \) the closure in \(\langle M_p, \| \cdot \|_{\overline{M}^c_p} \rangle \) of the set of all bounded sequences. Evidently the following inclusion is satisfied

\[M_p^a \subset M_p^b \subset M_p, \quad M_p \subset M_p^b, \quad M_p^c \subset M_p^d \]
for \(p > p' \geq 1 \).

\(^1\) We are indebted to Professors S. Hartman and C. Byl-Nardzewski who have shown us this method.
where a_n is a sequence tending to infinity and $0 = m_0 < m_1 < m_2 < \ldots$ is a sequence of integers such that $m_i/k \to \infty$,

$$\frac{2}{3} < \frac{1}{m_k} \sum_{i=m_k}^{m_{k+1}-1} |a_i|^p < 1$$

and

$$\frac{1}{m_k} \sum_{i=m_k}^{m_{k+1}-1} |a_i|^p < \frac{2}{3}$$

for $k = 1, 2, \ldots$ Then $x = \{a_n\}$ belongs to M_p and does not belong to M^p, although $x \in M^p$ for every p' with $1 \leq p' < p$. Indeed, let us denote $k = m_{i+1} - m_i$, then

$$|x|^p = \sup_n \frac{|a_1|^p + \cdots + |a_n|^p}{l_1 + \cdots + l_n} \leq 1$$

and

$$\lim_{n \to \infty} |a_1|^p + \cdots + |a_n|^p = \lim_{n \to \infty} |a_n|^p = 0$$

for $p' < p$. Hence

$$0 \leq \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} |a_i|^p = \lim_{n \to \infty} \frac{|a_1|^p + \cdots + |a_n|^p}{l_1 + \cdots + l_n} = 0.$$

References

Hors par la Rédaãion le 6. 9. 1960

On very strong Riesz-summability of orthogonal series

by

J. MEDEI (Sánchez)

1. Let $\{a_n\}$ be a positive, strictly increasing, numerical sequence, with $a_0 = 0$ and $a_n \to \infty$.

A series

$$\sum_{n=0}^{\infty} \frac{a_n + a_{n+1} + \cdots + a_{n+m}}{k}$$

with k-th partial sums s_k, is said to be summable $(R, \lambda_0, 1)$ to the sum s, if

$$s_k = \sum_{n=1}^{k-1} (a_{n+1} - a_n) s_{n} \to s, \quad k \to \infty.$$

Obviously, the Riesz-method of summation is a generalization of $(C, 1)$-method, which is obtained by putting $\lambda_0 = n$.

Series (1.1) is said to be very strongly summable $(R, \lambda_0, 1)$ to the sum s, if

$$\sum_{n=1}^{\infty} (\lambda_{n+1} - \lambda_n) s_n = o(\lambda_{n+1}), \quad n \to \infty,$$

for every strictly increasing sequence of indices $\{a_n\}$.

In particular, if $a_n = k$ ($k = 0, 1, 2, \ldots$), we shall say that series (1.1) is strongly summable $(R, \lambda_0, 1)$ to the sum s.

Series (1.1) is said to be strongly (very strongly) summable $(C, 1)$, if it is strongly (very strongly) summable $(R, \lambda_0, 1)$ with $\lambda_0 = n$.

2. Further, we shall consider the strong and the very strong Riesz-summability of orthogonal series.

Let $\{e_n(x)\}$ denote an orthonormal system defined in the interval $(0, 1)$ and $\{e_n\} \in p$, i.e.

$$\sum_{n=1}^{N} e_n^2 < \infty.$$