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Remarks on Lezanski’s determinants

by
ROMAN STKORSKI (Warszawa)

This paper is a supplement to my paper [6].
In [6] T have given some formulas for solutions of a linear equation

(1) (I+T)r =1,
in a Banach space X, and the adjoint equation in a conjugate space =

@) §I+T) =

Ire

=3

’

by means of the Lezanski [3, 4] determinants and subdeterminants. These
formulas are abstract analogues of the known formulas from classical
Algebra for solutions of a system of linear algebraie equations. In the case
where X is the space of all continunous funetions on an interval, and 7T
is an integral operator with a continuous kernel, the formulas given in
[6] do not coincide with the formulas for solutions from Fredholm’s
determinant theory of integral equations. Also the Lezanski subdeter-
minants do not coineide, in this case, with the original Fredholm subdeter-
minants. In §3 I give the definition of some notions which are abstract
analogues of the classical Fredholm subdeterminants in any Banach space.
I quote also formulas for solutions of (1) and (2) which are abstract analo-
gues of the original Fredholm formmulas. Such notions and formulas have
been investigated by Grothendieck [1] under more restrictive hypotheses
on T. The method applied in this paper is, I think, simpler.

To explain the difference between Lezanski’s subdeterminants and
Fredholm’s subdeterminants, I examine in § 4 an integral model of the
theory of determinants in Banach spaccs, and I quote some integral for-
mulas for the subdeterminants. To write formulas for Lezanski’s subdeter-
minants in an integral form, it is necessary to introduce a substitute of
the Dirac delta distribution, which enables to write the identity operator
I in an integral form. Consequently all formulas in § 4 should be inter-
preted only formally, as another kind of writing the exact formulas for
subdeterminants from §§ 2, 3. Also the convergence of some function series
and function-like series should be understood as convergence in norm of
corresponding multilinear functionals represented formally by considered
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146 R. Sikorski

kernels. However, in the formulas for Fredholm's subdeterminants the
substitute of Dirac delta distribution does not appear, and sometimes the
convergence of the function series defining formally the subdeterminants
can be also interpreted as a convergence of functions in a suitably defined
space of functions. This is e. g. in the case where X is the space of all eon-
tinuous functions on an interval, and 7' is an integral operator with a con-
tinuous kernel. In this case we get the original formulas of Fredholm.

In my paper [6] 1 have proved a theorem on the multiplication of
determinants in Banach spaces. This theorem was proved under a hypoth-
esis of a commutative character. In § 5 1 shall show that this hypothesis
is superflous if the definition of multiplication is suitably modified. The
result is based on a theorem on trace proved by Grothendieck [2].

§ 6 contains a differential definition of Lezanski’s determinant.

§ 1. Fundamental notions and formulas We recall the following

definitions from [6].

X and = are two fixed (real or complex) Banach spaces whose ele-
ments are denoted respectively by «, vy, 2, ... and &, 9, {, ... (with indices
if necessary). We suppose that there is defined a scalar multiplication &z
of elements of & and X such that &z is a bilinear funectional on Zx X and

|&] = sup |éx]  and

J2f<t

] = sup |&n|.
1411

Thus & ean be identified with a closed subspaee of the space X* of all
linear bounded functionals on X, and analogously X e¢an be identified
with a closed subspace of Z*. '

If 4 is a bilinear functional on Ex X, then its value at a point
(&, 2)e Zx X is denoted by &Auw.

By © we shall denote the set of all bilinear functionals 4 on Zx X
such that:

(o) for every fixed z <X there exists a yeX such that £dx = &y for
every £e¢ 2 (this unique y will be denoted by Ax);

(o) for every fixed &< there exists an ne S such that £4x = n
for every zeX (this unique » will be denoted by é4).

Of course, the transformations ¥ = As and » = £4 are conjugate
bounded endomorphisms in the spaces X and Z respectively. Hence it
follows that every 4O can be simultaneously interpreted as a bilinéar
funectional on 5x X, or as an endomorphism in X, or as an endomorphism
in E. The three possible interpretations of 4 ¢O will be systematically
used in the whole paper. In order to distinguish none of the three inter-
pretations, we shall use the name operators for elements of O. Operators
will be sometimes understood as bilinear functionals on Zx X, or as endo-
morphisms in X or in &

icm®
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The set O of operators is linear with respect to the natural definition
of addition and multiplication by sealars. It is a Banach space with
respect to the ordinary norm

(4] = sup|fdx| = supdx| = sup|EA].

<1 i<t 1511

#<1
It is also a Banach algebra with the following definition of multiplication :
the product 4, 4, of bilinear functionals 4,, 4,9 is the bilinear functional
E(A,d)e = (E4,)(d,2). In other words, the produet 4,4, interpreted
as endomorphism in X (in £) is the superposition of the endomorphisms
4,,4,in X (of the endomorphisms 4,, 4, in ). The unit element of the
algebra O is the fundamental bilinear functional I: &Iz = &z. By defi-
nition, Iz = x and &I = & for every xeX and £e¢.2.

Let x,, & fixed. The operator K, defined by the formula

(K y» = Exy- £y

(i. e. the produet of scalars &x, and &a) is called one-dimensional and
denoted by x,-&. By definition, K,z = #,- &2 and ¢K = &xy- &, (the
dot replaces here parantheses).

For every bounded linear functional F on O the symbol T'» denotes
the bilinear funetional on Fx X:

fTpa = F(x-§).

The space QI of all F such that T»eO is a Banach space under the
ordinary norm of F. Any elements of Q9 is called quasi-nucleus. If,
for an operator 7, there exists a quasi-nucleus F such that T = Ty,
then T is said to be quasi-nuclear and F is said to be a quasi-nucleus
of T. Observe that the canonical transformation which maps any F QO
onto Tre O is linear and bounded. Moreover

|Trl < |F|.

As an example of a functional F in QN we quote here the following
one-dimensional funcetional

F(d) = Az, for AeO

where &, @, are fixed. This functional will be denoted by & ®,. Another
example is given by the finitely dimensional funetional

k2

(3) F=Y4e,
i=1
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i. e. the functional:

m

() ©r4) = Y eds, for  AeO.
1i=1

"m

Observe that if F is defined by (3), then 7' is the opcmtcn Zm .

The class of all finitely dimensional functionals I' (i .e. functlona.ls
(4)) is & linear subspace of Q. Tbs closure in QN will Le denoted by N.
The elements of O are ealled nucleus. 1f, for an operator I', there exists
a nucleus F' such that T = Ty, then 7' ig said to be nuclear and P is said
to be a nudeus of 1.

By the #race of a quasi-nucleus {or: nucleus) F we understand the
number

tr(Fy = F(1).

For instance,
m

(2§1®ZG1) = ’% £L'7"'i'
1

Suppose that B(&;, ..., &y By, -0y By) 18 & multilinear functional
defined on the Cartesian produet 5™ x X™. Suppose also that B, considered
as a function of two variables &, ¢; only (all remaining variables being
constant), belongs to O, i. e. it is an operator & Ax;. The number F(4),
where FeQ9, will be also denoted by

51 @ (517 trey Emy Byyeeey ‘l’m)'

Of course, the last expression is a linear function of each of the variables
Ery ey Eity Eiary vony Emy By ooy i1y Bypy oy By, DUb it does not depend
on & and ;.

§ 2. Determinant and subdeterminants. Let

|
Xyy ove €y |
0 (51, ey E"L) §1, y 1ty
m ==

Tyy vevy Ty

For every quasi-nucleus F, let
Ao,o(F ) = 1,

Mis o9 M
:l/]-, "'7y"7‘

1
¥ s U, Om (

1 .
Ao,m(F) = -”T r

! IR

) (m=1,2,...)

and, for n =1,2,...,and m =0,1,2,...
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1 ey &
'ln I:L(F) = — Au,m (f;l’ ! Sn)

m! 1y eeey Ty
=7 Ely"'iEuJ’]l’""77211)

F 0,
LT WU nim
i s L iy eovy Buy Y1y oooy Ym

Lezanski's determinant of F is the number
Dy(F) = s um(F)~
m=0
Lezaiski’s subdete; minant of F of order n is the 2n-linear funetional

DI!(F) = (517.”15“) :Z*'i-u,m(F)

I'17 E T =0
= £ £
_ v.x.i 511 ++*y on
= 7 n,m .
L Lyy ooy Ly

The determinant D(F) and subdeterminants D, (F) are determinant and
subdeterminants for the linear equations

(5) (I+Tp)a = &,
(6) §I+TF) = &.

Viz. there exists an integer r such that D,.(F) = 0 but all D;(F) with j < r
vanish identically. Let &, ..., &, #y,..., & be fixed points such that

o {sl,. . 5,) £ 0.
Lyy eeoy Ty

Let B be the operator
-Dr... (sy "511 “ery Sr)

By &yyoery By

(51, Er)

iy enny By

and let z;, & (i =1,...,7) be defined by the idenfities
D, (51, ........... , 5,)

Byy vony i1y By Dpyyy o0y D
L& = ’
(51" .y E")

Dyy veey P

EBy =

D (‘51: (RS Ei—u 51 §i+13 LR fr)
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Then the equation (5) has & solution @ iff fimy = 0 for ¢ =1, ..., r, The
general form of the solution of (1) is given by the formula

(8) & = BBy ¢18;+ ... Cp2,.

Similarly, the equation (6) has a solution & iff &z = 0 for i=1, ...,
Then the general form of the solution of (6) is given by the formula
(9) =Bt .tk

The numbers ¢y, ..., ¢, are here arbitrary.

§ 3. The Fredholm determinant and subdeterminants. We Precode
the definition by the proof of the following identity where, for brev-

lt?y, T —.TFI
T,... T
Dn(§1 ’ ! §nl) = .D?L(

Wiy oeey Wy

(10) €1y ovns b )

Tm
Tay, ..., Ta,

The proof is based on the following known equality (sce c.g. Sikor-
ski [8])
(11) Dy, (F) = Do(F)-D,,(F)

where Dy(F') = 1 and, for n >0,

(n=0,1,2,..)

LA g, oy ST+ 1)y,

(12) D (F) = D, (61’ ] ‘511‘) —

Byyoeny by

En{I+T) 2y, oy G +T) e,
D, (F) is defined for all FeQN such that (I-+7p)! exists, i.e. for all
FeQN such that Dy(F) # 0. Observe that the set of all ' such that

Dy(F) = 0 is nowhere dense in QN since D,(F) is an analytic function
of F.

It immediately follows from (2) that
(Dn (Elj PARR] fﬂ,-T) - (Dn(”f“ A 57:. )
Byyoney By T2y, ..., Tz,

I:’Fenee it follows that (10) holds for all F'eQN with Dy(F) + 0. By con-
tinuity, (10) holds everywhere.
Observe algo that

Am,m (ElT’ o EnT) = An,/:b(nfu U Eu )

Byyeeey &y L1y ..y T2,

(13)

‘I‘o_obtain it, it suffices to develop the left and the right side of (10) into
series of .homogenous polynomia.lgz of 7. Sinee the expansion is umique,
the left side of (13) is the polynomial of the degree n-m in the expansion

icm
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of the left of (10), and the right side of (13) is the polynomial of the degree

n—m in the expansion of the right side of (10), we get the equality (13).
The both sides of (13) will be denoted by

- e
- 4 Sty ecer Sn
= Au,m

Doy oeny iy

- &
; (glr,‘..,g,,z)_ . ( £y & )
,m = L\, m .

Lyyoeey il 21y ..oy Ty,

=4
? 3 Wn

*"1ﬁ,m(-F)

The Fredholn determinant Dy (F) of a quasi-nucleus F coincides with
the determinant of F:

Dy (F) = Dy(F).

The Fredholm subdeterminant DX (F) of F of an order » > 0 is the 2n-linear

functional
1) =p,,{,,5“ veer B )

* 51' AR gn .
Dy ) =D,
Lyy oy Ty

(14)
Lyyeeey &y

\'W 1* 517 T En
= 0 “Aum ., .
Lyy ooy &y

Here Dj is expressed by D,. However it is possible also to express
D, by means of D). For this purpose we assume the following no-

tation: 6, A D}, will denote the following 2(k- m)-linear functional on
mk+m k=
By X

Epyeeny & En ceey &
) P SUE, py* [ S Phr? 7 Ve
HI

Py

Xw sgnp-sgxlq-ok(

D,q

Byys «ens Bgy) ey g

where the sum E is extended over all the permutations p = (P, ...y Prrm)s
EX]
q=1(q1y -y Qrn) Of Dumbers 1,..., k-4+m such that

DI e < Py P < -

< p}r,-m!

4 <o < G, _qk+1<"‘<qk-;»m7

and sgnp, sgng denote the numbers +1 or —1 iff the permutations p,
q are even or odd, respectively. Similarly we define 0, AD,,.
THEOREM 1. The following identities hold:
D, = 0, Df —0, ;A DI+ 4+ (=1)""10, A Dj_,+ (—1)" D},
D;: = Bn'Dn_en—l A Dy -+(_1)1L7101 ADy 1+ (’_l)n‘D’n
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Let
HETU+T) 0y oy S T(TT) ",

Di(F) = ('D,*[,(
EIL1'(1+“’ZY)*1‘I;17 LRES} f,,,,T(I "}"1,)—-1"1"%

517 ey 511,) _

Tyyeeny By,

Sinee (141! = I-T(I 1), the square matrix defining 0, (sce (12))
is the difference of the matrix defining 0, (see § 2) and the matrix de-
fining D;. By a known theorem on the determinant of the difference of
two matrices, ‘D, = 0, Df — 0, ADT ..o (—1)710, ADy_y H(—1)'DE,
By (11) and (14), Dy = Dy D}, Hence, multiplying the obtained identity
by Do(F) we get the first identity mentioned in Theorem 1 for all I such
that Dy(F) # 0. By continuity, this identity holds for cvery FeQO,
In the same way we prove the second identity.

The determinant and subdeterminants of F satisty the identitics
(see Sikorski [81):

kL

EOA)EI"' 7EIL - K 5
) _ e (e V&
Dn-}l( o » = E(—l) §UJ’/',; -Dn( ) ) n ,
09 W1y rey Wy ey Jigy ooy Biyy igay ooey By
£ ' 3
D ‘:()751;-“,5/5 _ Al 1 ik D 509 "7511—1751},17'--’511,
w41 A " ) = ( h ) '51"1’0 3
Ay, 2y, ..oy By, e Dy oo v e 5 Wy,

-where, for Lrevity, 4 = [-+1 = [+1%. Hence it follows that

(15)
"W
D, (E""l’ B ‘5) = N1y ¢ T, D (f“ """"" o),
Ty Byy vovy Dy, !4_:0/ Loy «vvy Bigy Bip1y veey By
(16)
D* 50?617'--75)1‘ 507"')5;’-17‘5"—#11"'!511

n
\ '
4 = M (—=1)'§Twy- D
i (Amm Lyy oony mn) ‘:J ( Ve O'D"'
=0

)

THEOREM 2. The smallest integer v such that D} (F) is not identically
equal to zero coincides with the smallest integer v such that D, (') = 0. Then

)

Let &4y o0y &y, .

(17 DI (F) = (—1) D(F).

oy @y be fimed points such that

D*(flﬁ-'-’ &

&gy onny @,

B

Leiaiski's determinants

Let &y 2 (i =1,...,7) be defined by the identities
&,

D*( ,fr)
M
Ly ooy Bi1y By Ligay oo ey Ir

= ’

D:(El.mﬁr)
ey &y

* Ery ey Sl f, 51'-:—1: ceey by
§2u
\Lyy 5 Ly

T = s

* 'El)“'ibtr
Dit ;
Lyy -ery By

E’ 51} ety ET)
Ty Byyoen
517 AR

t)
Sr
ceny By

L4

&

By,

Vrr
Y

and let B* be the operator

o, (

E ‘r'T

EB*;I? == - -
;|
Then the equation (3) has a solution x iff Swg =0 for i=1,...,7, and the
equation (6) has a solution iff &2; =0 for i=1,...,r. The general fornv of
the solution of (3) is given by the formula

@ = @g—B g+ 12+ Gy,
and the general form of the solution of (6) is given by the formula
&= ED“"EDB*+ cl’:»l et Cr’:r:
where ¢y, ..., ¢, are arbitrary. N
The first remark and the equality (17) follows from Theorem 1. By
(17), the elements &y, ..., &, 21, ...,2 defined in Theorem 2 coineide
with those defined on p.149. Thus, to complete the proof, it suffices to
show that if L, =0, &% =0 for j=1,...,7, then z = x,—B ),
& = £ — & B* are solutions of (5) and (6) respectively. This follows from
identities (15) and (16) which, for n = 7, can be written in the form
r
E(L+T)B e = ETo— ) ETa;-Lia,

i=1

EB*(I4+T)w = ETo— Y 2wl

i=1
or, equivalently, in the form
(I+1)(I—B") =TI+ 3 Tu; &,
i=1

-
Zzl-:niT.

=1

(I—BY)(I+T) = I+


GUEST


154 R. Sikorski

Multiplying the first equation by @, from the right side and the second
equation by & from the left side, we get (I[-+1)(I~B*)@, = 2, and
&I B (I+T) = &, g e d.

§ 4. The integral model. Let 4 be a measure defined on g o-field
of subsets of a set /. The integrals taken over the whole space /" will be
denoted, for brevity, by [f(#)d instead of [f(t)du(t), and similarly for

P
multiple integrals.

Suppose that X and Z are some Banach spaces of measurable fune-
tions on [7, such that all the conditions from § 1 hold. Suppose moreover
that £x is defined Dy the formula

tr = f E()a (£) dt.

An operator K is said to be an éntegral operator provided it is of the
form

(18) ‘ EKw = [[ &(s) K (s, 1) (t) dsdt

where K (s, ?) is a measurable function called the kernel of K. For instance,
n
every finitely dimensional operator K = 3'w;- £ is an integral operator,

d=l
e

the kernel I(s,t) being defined by the formula K(s,t) = > ay(s)-&(1).
i=1

A quasi-nuecléus F is said to be an indegral quasi-nucleus provided
there exists a measurable function 7'(t, ¢) such that

(19) F(I) = [ T(s, s)ds
and
(20) P(E) = [[T(t, s)K (s, t)dsdt

for every integral operator K with a kernel K (s, ). Then the operatior
T =Ty is the integral operator determined by the kernol T'(s,t):

1w = [[&(s)T (s, t)u(t) dsas.

To write some integral formulas for the subdeterminants of an inte-
gral quasi-nueleus F, it is convenient to introduce a formal expression
d(s, t) whieh is a substitute of the Dirac delta distribution. Viz. we define
axiomatically 6(s,t) by the equations

(21) fa(s,t)w(t)dt = (s), f;(s)a(s,f.)dt = &£(1),
(22) [[8ts, 0T (2, s)dsar = F(I).

©
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If every point in I" has a positive measure, then of course there exists
a function 6(s, t) satisfying this identity. In the general case, the identi-
ties (21) should be interpreted quite formally as an integral notation for
the identity operator I. By (21), we have

U &(s)o(s, ) (t)dsdt = &,
JU 8(8, ) K (L, 1)Ko (r, s)drdtds = jf K, (t, ) Ky(r, t)drdt

for any kernels K, (t,r), K,(r,s), ete.
THEOREM 3. If F is an integral quasi-nucleus satisfying (19) and
(20), then

. Sy eeny 8 .
=[] a,i_,“( e “) Ey(81) .. & (8)iey (1) .o o (B,) dsy.. . ds, dty .. AL,
o 1 s tn

6(8“ 11)7 ey 6("'17 111)3 6(819 "1)5 ey 15(313 rm)

i
1 ~1 6(_8115 tl)! ey é(sﬂ.’ t")’ 6(.811‘! r]),‘ trey rs(8717 rm) dr (]I"

iy iy,
m! : iT('ll’ 1)y ooy Ty, 1), Ty, 71)y ooy (11, ™)

E T(?‘"” tl)’ MR | -T(rm, tu)’ T(rm! rl)) ey T(Vm, 7',“)

= [ [0 (6 s") En(52). e Ea(8,) 8y () o (8,)8y . A8y Tty W,

tyyeeny b
where
o0
s (31,...,3,,)_ ‘1(1 (31,...,3”)
n = T, .
Tiy veey Iy ot [P
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In fact,

(51,~ ~75k)
Byyoory T

ff £,(81)8(s1, 1) Yy (b)) dsydtyy .oy fffl(sl)é(.sl; te) . (1) ds, dty, -
|
‘fffk(sk)ﬁ Slra )ml(.tl) dglrdtl’ ey ffgl\(sﬁ) 6(8;,, th'){lylr(tlr) (J&';‘.(H/‘.
R 8(815t1)y «rey OS2y B)
j ............ 51(61) E]‘(97)w1(t1)...a’k(tl)dﬁl (ZA‘]‘.(H]..
(S(ﬁ'},tj),... S‘kst/c)
Hence, for k = m-n,
miA, n(F)
38y, 1), (84, tn..mn) |
=[]l E(82) e Ea(8,) Ty () 0 (1) X
I‘Ssn—mn;t) ,(3( npny n|‘m)
X T(tnuo 13 Sng1) e (s .y Spym) A8y 'dsw:y-undtl- .
881y ta)y«e ey O(81y Bugm)
_; f f (S(sn,’ tl)i EREE) 5('911,7 t, i m) %
| T(tiwrli tl)! trey T(in‘»} 1 tnwn)
L f
|
l\ T(tn +m?y tl)i H T(tn»g my tn ;M)
X Ey(S1) . En(sn) @y () o vy (Br) sy dsy @yl e

Replacing 2,1, ..., tyom DY

[T

for A, ., (F), and consequently for D, (F).

THEOREM 4. If F dis an dntegral quasi-nucleus satisfying (19) and

(20), then

Eiy ooy €
A;mF — :m 1) ’ Sn
m(F) = 4s, (m )

SERERERL

(s“ ' ’8“\) E(51)..

tl) RS IL

&l

EMENC

.....

71 ( n) dsl

s, dty ...

LA, 7

, T We get the required formulag

dt,

L diy.

icm

where

©
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T(rmst)y oy o TPy 7m) |

Consequently
Di(F) = _nj;(fu o 5,,‘,
BLyy vuny Ty
81y .0y 8
—f fﬂ“(f” ' W) 51( 1)"-5%('%)”’1“1)---mn(tn)dsl---dsndtl--.dt"
by ooey
‘where
81y 0een by =) 81y ey 8
ﬂ*( 13 y n) -\ o ( 1y vy n)
T B A LTI

Theorem 4 follows immediately from Theorem 3 and (13), (14).

§ 5. Multiplication in QN. As we have observed, QN is a Banach
gpace under the ordinary linear operations. We can also introduce in
QN operations of multiplication. ’

Tirst observe that if FeQN and ¢

Fy(4)

(O 9, then the functional

= F(A0) for AeO
is also & quasi-nucleus since {Tp x = F (2 £0) = 0Ty, i. e. Tp,=CTpeD.
The quasi-nucleus 7, will be denoted by CF. Observe that

(C1+-Cy) F +C.F,

=0, F C(Fy+ ) = OF,+CF,,

O (0, F) = (C,0,) F.
Moreover

Top = 0Ty and  |CF| < |C|-|F|.

Similarly, if FeQRN, and O, then the functional
AeD

Fo(4) = F(CA) for
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is a quasi-nucleus. We denote it by FC. Observe that

F(C,+0y) = FC, +FCyy,  (F,+F)0 = P, 04+F,0,

(0, Cy) = (FC,)0,.
Moreover,
and

Tyg = TnC \PC| < |- |0].

For any quasi-nncleus Iy, Fy, the quasi-nueleus 7'y F, will be denoted
by F, ® Fy, and the gquasi-nucleus F,Tp, will be denoted by F, @ F,.
Tt follows immediately from the definition that both F'; & Fy,and F, @ P,
are multiplications in QN, i. e.

P Fy4-Py)=F Q@ Fo+ Py @ Fyy, (Fi-F)O Iy = B & Fy+ 1,0 Fy,
(FLOF)S Fy=F,0 (Fy® Fy), |F,6 Iy <|Fy| Py,
and similarly
Fy @(Fz‘l“-pa) =F, @Fz‘i‘pl @Fy, (Fy-1-T) QF, =1 & Fy+T, @Fay
(F, @F,) @ Fy =T & (F,®Fy), Iy @Fy < |Fy]- Iy,
Moreover
Tﬁ&@lv“g = TFl@l?‘I B Th‘l T]v'g,
and for e

OF,@ Fy) = (OF) @ Fyy, (F1QF,)C = F,© (F,0).

The multiplications © and & have been introduced by Lezanski [4]
(see also Sikorski [6]).
It 7y, F, are finitely dimensional, then, by an easy calculation,

(23) e Fy=TF T,
and
(24) W(F, 0 Fy) =t (F,®F,), w(l, QF,) =tr(l, & N).

By continuity, this equalities hold also for arbitrary nucleus F,, F,.
They do not hold, in general, for quasi-nuclens which are not nucleus
(e.g. f X =L, &= M, there exists a quasi-nuclear operator 7' which
is not compact —see Sikorski [7]; given any distinet numbers a, b, there
exist then quasi-nucleus F,, F, such that T, =7 = Ty, and 7,(T) = a,
Fo(T) = b; the quasi-nucleus F,, F, satisfy neither (23) nor (24)).
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Since the multiplications &, & do not satisfy, in general, the equal-
ities {24) characteristic for the trace, it is convenient to introduce another
multiplication F,0 F, in QN such that
(25) w(F, 0 F,) = tr(F,0F,)

Viz. we define-

for every Fy, F,eQN.

FP.OF, =}(F,0 F;,+F, @ I).

It is easy to verify that the distributive laws hold:
F,OF,0F,) =F,0F,+F,0F;,, (F,+F,)0F; =F,0F;+F,0F,.
The associative law

(F,0F,)0F; = FLO(F,0F,)

also holds but its proof is not elementary. It is based on a theorem of
Grothendieck [2] on nuclear and quasi-nuclear operators. More exactly,
the associativity of O follows from the faet that all the products

(P, @F)@F, F,0(F,0Q Fs),
F:©Fo)© Fyy (F1QF) O Fyy
l F,.@(F,@F), (F.0F)QF,

F, R (F, & Fy),

(26) P (F, Fa)a

are equal. It is easy to verify that the produets written in the same line
are equal (this follows immediately from the definition of © and &).
It follows from a theorem proved by Grothendieck [2] that also products
in different lines are equal.

Consequently all the produets (26) are also equal to F,O0F,0F,,
F,.O(F,QF,) ete. Thus the multiplications &, &, © coineide for products
of at least three factors. They do not coincide, in general, for two fae-
tors.

Observe else that

[H1 O Fy| << | By |[Fy and Ty == TFITF2~

1083

In the sequel we shall consider QN as a Banach algebra with the
multiplication O. The map F — T is a ring homomorphism of QN into
©. Sometimes it is convenient to add an abstract unit % to the Banach
algebra QN. The map »E-+F — I+ Ty is a ring homomorphism of the
extended algebra Q9 into O. Instead of Dy (F) we shall now write D (E--F)
for any FeQN.

THEOREM 5. For any Fy, F,«QN.
D((BE+F,)O(E+F,)) = D(E+F,) D(E+F,).
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The proof of this theorem is the same as the proof of Theorem 2
in my paper [6]. It is based on the fundamental identity (25). Theorem
5 follows also immediately from (25) and a general theorem proved by
Michel and Martin [5].

§ 6. The differential equation of the determinant. We recall that
by the first differential D (F; ') of Dy(F) (F, F,<QN) we understand
the limit

lim 0 TN

Dy(F | eF') =D (F)
e-s) &

By induction, the n-th differential D{(F; 'y, ..., I,) is the Lmit
g P By P )= D Py )
&0 &

Of course, D{(F; Fy, ..., F,) is analytic in the variable F, and linear
and symmetric in variables Fy, ..., F,.

The following theorem is a slight modification of a general theorem
due to Michel and Martin [5]:

TarorEM 6. The determinant Dy(F) is the only entire funetion on
QN which is a solution of the differential cquation .

(27) Dy(F5 (T+T) o) = Dy(I) -t (1),
satisfying the initial condition

(28) Dy(0) =1.

In fact, it is easy to verify that the first differential Ag,m(F; Fy)
of Ay n(F) is equal to Fy(A;,_;). Hence it follows that

Dé(Fi Fy) = 1 (DI(F))
and consequently

Dy(F; (I+T) Fy) = B (Dy (F)(I+ Tp)) = P, (Dy(F) 1) = Dy(F)tr (Fy).
Since Ay, (F) = 1, we have D,(0) = 1.
To prove the uniqueness, let us observe that for |F| < 1 the differen-
tial equation (27) can be written in the form

(29) Do(F; Fy) = Dy(F) tr((I-+ Tp) 1 1)

since then |Ty| <1 and consequently (I Tx)-* exists. Henece it follows
that, in the set of all ¥ with norm < 1, the equation (27) have at most
one solution satisfying the initial condition (28). By analyticity, we infer
that there exists only one solution in the whole space QN.
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Observe also that the equation (27) can be replaced in Theorem 6
by each of the following equations:

D§(F; Fy(I+T5)) = Dy(F)-tr(F),
Dy(F; (E+F)oF,) = Dy(F)-tr(F,).

The subdeterminants D, (F) can be easily obtained from D (F) by
differentiation. Viz. the following formula holds for n =1,2,... (see
Grothendieck [1]):

D"(El; ceny §n.) — Dg’l)(F; §1®£(¢'1, ey fn@mn)'

Ly ey By

References

[1] A. Grothendieck, La théorie de Fredholm, Bull. Soc. Math. France (1956),
p. 319-384.

[2]1 — The trace of certain operators, Studia Math. 20 (1961), p. 141-143.

[81 T. Lezaiski, The Fredholm theory of lirear equations in Banach spaces,
Studia Math. 13 (1953), p. 244-276.

[41 — Sur les fonctionnelles multiplicatives, ibidem 14 (1953), p. 13-23.

[5] A. D. Michel and R. 8. Martin, Some expansions in vector space, Journ.
Math. Pures et Appl. 13 (1934), p. 69-91.

[6] R.- Sikorski, On Leéariski’s determinants of linear equations in Banach
spaces, Studia Math. 14 (1953), p. 24-48.

[71 — On determinants of Ledaiiski and Ruston, ibidem 16 (1957), p. 99-112.

[8] — Determinant systems, ibidem 18 (1959), p. 161-186.

Regu par la Rédaction le 2. 7. 1960

Studia Mathematica XX 1


GUEST




