Un théorème sur les séries orthogonales
par
A. ZYGMUND (Varsovie).

Soit \(q_0, q_1, \ldots, q_n \ldots \) un système de fonctions orthogonales et normales dans un intervalle \((a, b)\). Désignons par \(s_n \) et \(a_n \) \((n = 0, 1, 2, \ldots)\) respectivement les sommes partielles et les moyennes arithmétiques des sommes partielles d'une série

\[
\sum_{k=0}^{\infty} a_k q_k(x),
\]

\(a_k \) étant des constantes telles que \(\sum a_k^2 < \infty \). Nous allons prouver le théorème suivant:

*Si une série \((S)\) est sommable \((C, 1)\) dans un ensemble \(E \subset (a, b) \) vers une somme \(s(x) \), alors on a, presque partout dans \(E \),

\[
\frac{(s-s_n)^2 + (s-s_1)^2 + \ldots + (s-s_{n-1})^2}{n+1} \to 0
\]

et, par conséquent,

\[
\frac{|s-s_0| + |s-s_1| + \ldots + |s-s_{n-1}|}{n+1} \to 0.
\]

Ce théorème n'est pas nouveau \(1)\), mais la démonstration, que nous donnons ici, paraît être la plus simple. Comme \(o_n(x) \to s(x) \) \((x \in E)\), il suffit de prouver que l'on a

\[
\frac{(a_0-s_0)^2 + (a_1-s_1)^2 + \ldots + (a_n-s_{n-1})^2}{n+1} \to 0
\]

presque partout dans \((a, b)\). Pour démontrer cette dernière relation,

il suffit de prouver la convergence presque partout de la série

\[\sum_{n=0}^{\infty} \frac{(s_n - a_n)^2}{n+1}, \]

car, de la convergence d'une série \(\sum c_n \), il résulte, comme on le sait que \((c_1 + 2c_2 + \ldots + nc_n)/n + 1 \rightarrow 0 \), cette dernière expression étant égale à la différence entre la somme partielle et la moyenne arithmétique des sommes partielles de \(\sum c_n \).

Intégrons la série \((T) \) terme à terme dans \((a, b)\). Nous obtenons

\[\sum_{n=0}^{\infty} \frac{1}{n+1} \int_{a}^{b} (s_n - a_n)^2 \, dx = \sum_{n=0}^{\infty} \frac{1}{(n+1)^2} \sum_{k=0}^{n} k^2 a_k^2. \]

Si la série \(T \) à termes non négatifs était divergente dans un ensemble de mesure positive, la série intégrée serait divergente, ce qui n’est pas le cas. Le théorème est donc démontré.

Pour les applications de la relation \((A)\) aux questions de sommabilité des séries \((S)\), nous envoyons le lecteur au premier des travaux cités.

(Reçu par la Rédaclion le 18. 7. 1930).

Über lineare, vollstetige Funktionaloperationen

von J. SCHAUDER (Lwów).

Im Anhang werden diese Sätze auf Integralgleichungen der Potentialtheorie im Raume angewendet.

Wir betrachten einen Raum \(R \) vom Typus \(B \). Sei \(X(x) \) irgendein lineares und stetiges Funktional, welches im Raume \(R \)