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Gaussian measures on
locally compact Abelian topological groups

by
K. URBANIK (Wroclaw)

I. The aim of the present note is a generalization of the concept
of normal measures for locally compact Abelian topological groups which
for vector groups and toroidal groups would coincide with the usual con-
cept of normal measures. Moreover, we shall examine the connection
between the topological structure of groups and the existence of genera-
lized normal measures.

‘We shall first quote the notions of normal measures on Fuclidean
spaces and on finitely dimensional toroidal groups which will be needed
in the sequel.

R™ will denote the n-dimensional Euclidean space with inmer pro-
n

duect (w,y) = Y #y; and norm |[jof = I/(m, @), where @ = (&, ..., &),
=]

Yo=Yy eny yi}. Let A be a symmetric square matrix of order ». If the
quadratic form (4, z) (#<R") induced by A is positive for  # 0 in the
ordinary sense of taking only positive values, then A will be called a po-
sitive matriz. Obviously, every positive matrix is invertible.

A meagure yu defined on R™ is called normal if there are a vector
yeR" and a positive matrix A of order » such that

u(B) = [ exp{~4(4™ @—1), 0—p)}do

1
V(@r)"det4 3

for every Borel subset E C R™
It is well known that a measure x on R" is normal if and only if its
characteristic function

pult) = [¢¢u(@n) (1B
R®
is of the form

(1) Pu(t) = exp i@, y)—%(4t, 1)},
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where yeR" and 4 is a positive matrix of order n.
T will denote the cirele {¢™: 0 < » < 2z} with ordinary topology.
For every subset FC T we sefb

arg B = {u: 6™ ell, 0 < u < 27},

A meagure g defined on 7' is called mormal if there exists a pair of
numbers 1y, b(0 < Uy < 2m, b > 0) such that

! 1 = (1~ 1+ 2m7)? }
B) = —=— EXP | — e du
w0 =5 2, o { 2b

arg® n=--cc

for every Borel subset B C 1.
Introducing the system of Fourier coefficients
(2) mop) = [atu(do) (=0, £1, £2,..)
Ly
we have the following assertion:
A measure u defined on T is normal if and only if there exist an clement
yeT and o positive number & such that

3) arlu) = ye (k =0, £1, £2,...).

Now let us consider the n-dimensional toroidal group I™. Every
measure » defined on the o-field of all Borel subsets of 7™ can be characte-
rized by its system of Fourier coefficients for all laftice points m =

= Mgy ey MY,

a’ml,m,mﬂ(/‘) = f«’*’lnl‘wr”ﬂ(dw)y
n

where @; denotes the j-coordinate of xeI™. In the sequel we shall denote
by A™ the set of all lattice poins m = (Mg, ..., My).

Let B be a symmetric matrix of order n. If the quadratic form (Bm,m)
(meA™) is positive for m 5= <0, 0, ..., 0, then the matrix B will be called
positive with respect to A™. We remark that matrices positive with respect
to A" can be not invertible.

We say that a measure u defined on 7™ is normal if ity Fourier eoctfi-
cients are of the form
(4) Oy, ... My, () = '!/71%1 Tt @/’l’”e—(ﬂm’ m)’
where (¥, ..., y,> <™ and the matrix B is positive with respect to 4™
(For. a detailed treatment of normal and more general measures on 1™
gsee [1], p. 74).
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We remark that a normal measure on 7™ is absolutely continuous
with respect to the Lebesgue measure on T™ if and only if the matrix B
is invertible.

I. Let & be a locally compact Abelian topological group, In the
present note regular completely additive measures u defined on the elass
of all Borel subsets of @, with u(@) =1, will be called briefly measures.

A sequence of measures wu;, us, ... is said to be weakly convergent to a
meagure g if

lim [ (@) ua(do) = [f(@)u(do)
N 00 (¥ G

for any complex-valued continuous function f defined on G which vanishes
outside a compact set. 'We define the convolution of x4 and », denoted by
wiv, by the formula

weo(B) = [ (B2 (da),
3
where B-o™' = {yz "1y <E}. A measure x on G is called symmetric if for
every Borel subset BC G we have the equality u(F) = u(H™') where
Bl= {m“:meE}.
Let G be the character group of . The complex-valued funection

L) = [z@)u(de) (1@
G

ig called the characteristic function of the measure u. It is well known that
every measure is uniquely determined by it§ characteristie function.
Moreover, the weak convergence to p of a sequence uy, fi, ... i8 equi-
valent to the convergence to L,(x) of the sequence L, (%), Ly, (x),... for
each ye@. The characteristic function of the convolution of two measures
is given by the formula :

Ly () = L (2) L (%)

Further, a measure is symmetric if and only if its characteristic fun-
ction is real.

Let @, @, be two topological groups and let h be a homomorphism
of @, onto G,. For every measure x on Gy by u; we denote a measure in
@, induced by u as follows:

un(B) = w(h™ (1)

for Borel subsets B C &,. If y is a character belonging to @,, then the
superposition yk belongs to &,. Hence and from the definition of characte-
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rigtic functions directly follows the equality
(5) Ly () = Lu(xh) (1@

A measure y on G will be called an infinitely subdivisible moasure
if there exists a family {4’} (£ > 0) of measures on G such that we have
wt =, pheu® = for every pair ¢, s of positive numbers and, for ¢ — 0,
u' is weakly convergent to the identity measure which is wholly concen-
trated at the unit element of @.

For example, normal measures on R™ or I™ are infinitely subdi-
vigible. (For a characterization of all infinitely subdivigible measures
on R™ and T™ see [1], Chapt. 3).

It is easy to verify that if x is an infinitely subdivisible measure on
@, and % is a homomorphism of @, onto @,, then s, is also an infini-
tely subdivisible measure on @,.

Our next object iz a definition of generalized normal measures on
locally compact Abelian groups, which will be called Gaussian measures.

An infinitely subdivisible measure x on a locally compact Abelian
group @ is called Gaussian if for every non-trivial character y (ye@) Py
is & normal measure on 7.

At first sight it seems that the assumption of infinite subdivisibility
in this definition can be omnitted. But, as shown by the following example,
such modified definition of Gaussian measures does not coincide with the
definition of normal measures on the two-dimensional toroidal group
T2 Put

[=<]
gy, us) = € AT (0 Qo uy < 2m),
n,M=—00
where
- .
(6) Com = 10 - %f m=n, S
1070+ if o ok, o

Obviously, ¢(us, %,) i8 a continuous real-valued function and

g2y, ug) =1~ O > 1 —4 ilo-"’~4(§10‘”’)2

{n,m»3£<0,0> Nl Nemd
] o 0o Y _ %}.
>1-4ﬂ;1‘10 4(”;:10 ‘") =T

Consequently, g(u, u,) can be regarded as a dengity function with respect
to the Lebesgue measure on 72 Denoting by x the measure determined
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by g(us, u,) and taking into account equalities (2) and (5) we infer that

(@) = MR (yeim =0, £1, £9,...),
where
i) = n2logl0 if y =<n,n),
(n2+m2)logld if y = (m,n), m # n.

Thus, for every non-trivial character ye1®, u, is & normal measure on I.
Now we shall prove that x4 is not normal on T2 Let us suppose that it is
normal. There is then, according to (4), a triplet of real numbers a, B, ¥
such that

Cn, = G, () = g amimn ynd) (m,n =0, +1, +2,...)

Hence and from (6) we get the equalities

(m?+-n?)log10 for m = n,
am?-+ fmn--yn? = n2log10 for m = n,
and, consequently,
a =y =1logl0, B=0, oatpB+y=1oglo,

which are impossible. Thus x is not normal on T2

From (3) and (5) directly follows the assertion
(%) An infinitely subdivisible measure u on @ is Gaussian if and only if
there is a function ¢(y), with le(y)| = 1, such that

(M LM = FOILF  (re@, k=0, +1, +2,..)
and
®) 0 < [Lipl<1

for all non~trivial characters 1@

Hence, in particular, it follows that the convolution of Gaussian
measures is the same one.

Now +we shall prove that the notion of Gaussian measures coincides
with the notion of normal measures on vector groups and on toroidal
groups. .

THEOREM 1. A measure on R is Gaussian if and only if 4t is
normal.

Proof. The sufficiency of our condition is evident. It follows di-
rectly from (*), (1), (5) and from the infinite subdivisibility of mormal

studia Mathematica XIX 6
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measures. To prove the nccessity let us suppose that p is a Gaussian
measure on R™. Set

ot) = [ 64 u(dn)
R"

(teR™).
Since " = R", i. e. every character of R® is of the form y(w) — ¢0®
(teR™), we have, according to (7) and (8), the relations

(9) lp (kt)] = | (1)
(10) 0<lp@l <1

(teR & = 0, &1, &2, ...),
for ¢t s <0,0,..., 0>,

From the infinite subdivisibility of u it follows that there are a matrix
A of order m, a vector y «R™ and a measure A (not necessarily normalized)
defined on R™ such that

1i 1 B =it y)— (AL, ¢ i)y i(t, @)
(A1) logg(t) — i(t,y)—4( )+R[{e L= M),
(12) A(0,0,...,05) =0
and
- e
13 - AMd oo
e T <

(cf. [1], p. 69). From (9) and (11) we get the equality

f(cosk(t,m)&)z(dm) = 2 f(cos(t,m)—l)l(dw),
RM RrR"

which implies, according to (13),

f(.cos(.t, 2)—1)ide) =lim [ RGO Lo
k—s00 k? )
Rn B ‘
Hence, in virtue of (12), we obtain the equality A(R") = 0. Thus, accor-

ding to (11),

(1) = expli(t, y) —§(4L,1)}.
Furtl-ler, taking into account inequality (10), we infer that A is a positive
matrix. Consequently, 4 is a normal measure on R™ '

THEOREM 2. A measure in T" is Gaussian if and only if it is normal.

Proof. As before the suffieiency of our condition is evident. Let
@ be a Gaussian measure on 7™ Since ™ — 4% i.e. every character of

icm°®

Gaussian measures 83

T™ is of the form x({&y,..., %)) = #7-... - z,*, Wwe have, according to
(7) and (8), the following relations for Fourier coefficients

T mn>€An7
k=0, +1, £2,...)
for {my, ..., m,» #<0,0,...,0>.

(14) |Gy, .ty ()] = 1y, g ()P

(18) 0 < l|am,.. m, ()} <1

Taking into account the infinite subdivisibility of x we get the decom-
position

(16) b= gk,

where u, i8 a weak limit of symmetric normal measures on 7" and, wri-
ting 4 = {&y, ...y Bud,y

(A7) amy, ... ,m, () = eip {ij:cjmj—i— f(m{"l-.‘..-m,‘m"—l—i me Ima;,-)l(dw)}
=1

i=1 ™
(18) A, 1,..,10) =0,
(19) [ D Imay)2a(ds) < oo
m =1

(ef. [1], p. 74). From (14), (15) and (16) we get the equality

.....

i, )] = Ly, e D (g, ooy mgyed® k=0, £1, 2, ..,)

which implies, in virtue of (17) and (19),
10g |ty . m, (#)] = f{cos(meargw,-) —1}A(¢lm)
o =1

n
cosk( 3 myargm;)—1
=1 f =1
oo Z
zﬂ" .
Hence and from (18) follows the equality A(T™) = 0. Consequently, in
virtue of (16) and (17), there is an element <y,,...,¥,>eT™ such that

({myy ooy mpd e A™),

A(dz) = 0.

(20)  @my, . m, () = YT YT B, my ()

Further, from (13) it follows that the measure u,, being a weak limit
of symrmuetric normal measures, is the same one. Hence and from (20)
we get the normality of 7.
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Remark. In a similar way we can prove the following statement:

(x%) A measure w on the direct sum R"X1° is Goussion if and only if
there are an element {Yy,y - .., Y"**> cR* X T™ and o matriz A of order n-t-s

satisfying the inequality (An, u) > 0 for any ueR"XA* and u =
{0,...,0,1,...,1> such that
f 6““m”""””‘”"’“’fl"ﬂf - 'mm'kqs/‘(dw)
ROxTS
= vt ) gl s g kY
where {byy ooy tyge) = 1eR"X A" and @y, ..., By = @R X TP,

Hence we obtain by a simple reasoning the following property:
(#4%) Gaussian measures on R*xT° are positive on open non-empty sets.

ITI. Before proving the Theorem describing the structure of groups
with Gaussian measures we shall prove two Lemmas.

As a direct consequence of formula (5) and condition (%) we obtain
the following Lemma: )

Lemma 1. Let @, be a closed subgroup of a locally compact Abelian
group G and Tet  be the. projection of G onto the quotient group G[Go. If
a measure u is Gaussian on @, then u, is the same one on G[G,.

Lemwa 2. Let {Gelyo= be @ family of locally compact Abelian groups
which are compact evcept a finite number. If u®) are Gaussian measures
on @, (é¢ 8), then the product measure P u® is the same one on the product
group PG,. te=

&8
Proof. It is well known that every character of the product group
G =P G, depends on finitely many &-coordinates only, i.e. for every
£e8

L
xe@ there exist a finite set of indices ¢, .oy ¢ 5 and characters
K&y ---s Xz, belonging to @, ..., @ respectively, such that

(21) 2@ = [[ 1l @) (wed),
f=1

where 7, denotes the projection of ¢ onto @, (£¢5) (see [3], p. 260). Let
¢ be the function determined by formula (7) for 4®. Setbing u = @ u®,

r 14T
e(x) :;H og, (xey) (xe@® and taking into account (5), (x) and (21) we

=1
infer that

r r
L) = B[ [ i) = [ 109

F=

=L (e, k=0, £1, £2,...)
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and
0 < Lu(x) < 1

for all non-trivial characters ye@. The infinite subdivigibility of u is evi-
dent. Thus, aceording to (*), x is a Gaussian measure on G.

THEOREM 3. There exists o Qaussian measure on a locally compact
Abelian group G if and only if G is conmected.

Proof. Necessity. Let u be a Gaussian measure on §. If the group
@ is not connected, then thereis a subgroup @, of ¢ such that the quotient
group G(@, is discrete and contains at least two. elements (see [3], p. 137
and Theorem 16 p. 139). By Lemma 1 the measure u induces a Gaussian
measure » on G/G,. Every regular measure on » diserete space is purely
atomic. Consequently, » iy purely atomic and, moreover, for every non-
trivial character ye@/G,, u, is the same one. But this contradicts the
absolute continuity of u, with respect to the Lebesgue measure on 7.
Thus the group @ is connected.

Sufficiency. Let ¢ be a connected locally compact Abelian group.
Then ¢ decoraposes into the direct sum ¢ = R x G, where G, is & compact
connected Abelian group (see [4], § 29, [3] § 39). By Lemma 2, to prove
our assertion it is sufficient to show that there exists a Gaussian measure
on the group G,.

In the sequel § will denote the solenoid, i. e. the character group of
the discrete additive group of all rational numbers. The group @, has
no elements of finite order (see [3], p. 262). Therefore @, is a subgroup of
a direct sum of the diserete additive groups of rational numbers (see [2],
p- 191). Hence it follows that there are a product group H of solenoids
and a subgroup H, of H such that G, = H[H,. Consequently, by Lemmas
1 and 2, to prove that there exists a Gaussian measure on @, it is sufficient
to show this for the solenoid only. .

Set f;(r) = e for any rational r and ¢ > 0. The functions f, (¢ > 0)
are continuous and positively definite on the diserete group of rational
numbers. By Bochner’s Theorem there are measures 4/ on & such that

Jr@) o) = 1> 0),
-

where y denotes the character of S determined by » (see [4], § 30). Ob-
viously, for ¢ -0, u’ is weakly convergent to the identity measure and
e’ = yt+® for every pair ¢,s of positive numbers. Moreover,

L) = Lyw®  (B=0, 41, £2,..)
and

0<L:(x) <1
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for any non-trivial character ye§. Comsequently, according to (x) u* is

2 Gaussian meagsure on §. The sufficiency of our condition is thus proved.
THEOREM 4. An infinitely subdivisible measure p on G is Gaussion

if and only if there ewists am element x,¢G such that

L") = @) | L)l" (re@ k=0, £1, +2,..)
and

0 < L0l <1

for every non-trivial character y.

Proof. The sufficiency of our condition is obvious. Now let us sup-
pose that p is a Gaussian measure on a group . Aceording to (x), to prove
our Theorem it is sufficient to show that there exists an element <G
for which ¢(y) = x(2,) (ze@). By Theorem 3 the group & is connected. Thus
it is a projective limit of groups R"xI° (see [4], § 29). For every pair
%1s %a Of characters belonging to @ there iy then a subgroup H of @ such
that G/H = R*xT° and, further, there are characters ¥, xaeG[H
such, that

X1 = %x“: X2 = 7?2717

where = denotes the projection of @ onto G/H (see [3], p. 260).
Let » be a Gaussian measure induced by u on G/H. According to
(%) there is an element y,<G[H such that

Lk o) = LG = 2 )2 (o) L (2 23°)|
= P YT G L) (b e = 0, £1, £2, )
Hence we get the equality
o) = M) (1) (b ke = 0, 1, 12,00,

Consequently, the function ¢(x) is a character of the group @ There is
then an element ®,¢G such that e(y) = yx(m,) for ~every ye@ (see [37], p
278). The Theorem ig thus proved.
THEOREM 5. Gaussian measures are positive on open non-empty ses.
Proof. Let u be a Gaussian measure on & group G. Contrary to our
gtatement let us suppose that there is an open non-empty subget BC @
for which the equality
(22) u(B) =0

is true. Further, let B, be an open non-empty subset of H and let V be
a neighbourhood of the unit element of the group @ such that

(23) B,VCH.

icm

Gaussian measures 87

By Theorem 3, ¢ is connected. Consequently, the group @ is a projec-
tive limit of groups R™ X T°. There is then a subgroup H of & contained
in the neighbourhood V such that G/H = R"x7T®. Denoting by = the
projection of & onto G/H we have, in virtue of (22) and (23), the relation

a7 (o)) = (B V) = 0.

Consequently, the Gaussian measure g, vanishes on the open non-empty
set w(H,), which contradicts the statement (#%*). The Theorem is thus
proved.

IV. Let @ be a solenoidal grouyp; i. e. a product group 9” SE of solenoids

S (ée E). For every &e = there is a continuous functmn U.E defmed on S,
such that every character y, of the group S, is of the form

ze(@) = (wele),

where 7 is a rational number. Hence it follows that every character x
of the group @ is of the form .

dag (@)

s

(24) (@) = expli gf-fasj @) (@ = {@e) <),
where 7, ..., 7, are rationals and &, ..., &e 5.

It is well known that the mapping F,: 2 — 11740 of a solenoidal group
@ onfo itself i3 one-to-one and continuous.

Now we shall prove a theorem which can be regarded as a Central
Limit Theorem for solenoidal groups.

THROREM 6. Let G be a solenoidal group and let v be a measure on
G positive on all open non-empty sets. There is then an element y <@ such
that the sequence of Mmeasures vy, vykv,y, vekvgkyg, ..., where

(25) w(B) =v(Fn(@y) (=1,2,..)0),

converges weakly to & symmetric Gaussian measure on G.
Proof. By the continuity of the function «, there is an element

Yz, such that

(26) [ as(me)v (d) = ae(ys).
&

Let us introduce the notation y = {y.},

27) Ay = vV k.. (n=1,2,...),

Ay,

ntimes

(1) [z] denotes the integral part of 2.
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where », are defined by formula (25). Further, let x be a character of @
given by expression (24). From (25) and (27) follows the equality

(28) Ly, (#") = {L, ()" =1 Gf exp (i [Vn ]~ 2 ryg, (2,51 v (o)

Taking into account equality (26), we infer that

[exp (in1Vny 2:’ 1y, (04,51 ) (d)

[ f=1
a
? ~ _n)? 1
=1- 2’)2, f{ 2 Tiaﬁj(mefyffl)} v(dw)+o0 (";;)1
Jr=l .

&
whence, according to (28), we get the convergence
(29) lim Ly (%) = 6740 (ye@),
N— 00

where
atg) = % [{ 3 sy @5 » (@0).
[e3 F=1

I d(y) = 0, then Y7 ag; () is constant for almost all & «@ with respect
J=1

to the meagure ». Since » is positive on open non-empty sets, the last asser-
tion holds for all <@ Hence, in virtue of (24), it follows that the cha-
racter y is trivial. Consequently, d(x) is positive for all non-trivial cha-

racters y<@. In other words, the limit in (29) is the characteristic function-

of o Gausgian measure on G. Thus the sequence Ay, Ay, ... i8 weakly con-
vergent to a Gaussian measure on @, which implies the assertion of the
Theorem.
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Bernsteinsche Potenzreihen

von

W. MEYER-KONIG (Stuttgart) und K. ZELLER (Tdbingen)

Die der Funktion f(z) zugeordneten Bernsteinschen Polynome

n

B, (2) = Bl.(2) =2(’7:) mk(l—w)"—kf(;i) m=1,2,..)

k=0
stehen in einer bekapnten formalen Beziehung zu der durch

n

k) Fl—2"F (n=1,2,..;k=0,...,n)

b= b(@) = (

gegebenen Bernoullischen (oder binomischen) Verteilung der Wahrschein-
lichkeitsrechnung (vgl. [2], 8. 4). Liegt eine unbegrenzte Folge unabhin-
giger Bernoulli-Versuche mit der Erfolgswahrscheinlichkeit # und der
MiBerfolgswahrscheinlichkeit 1— vor, o ist b, die Wahrscheinlichkeit,
in den n ersten Versuchen & Erfolge zu erzielen.

Mit der Bernoullischen Verteilung ist verwandt (vgl. [1] 8. 155)
die Pascalsche Verteilung (negative Binomialverteilung). Wieder liege eine
unbegrenzte Folge unabhingiger Bernoulli-Versuche vor. Aus einem nach-
her einleuchtenden Grund sei diesmal die Erfolgswahrscheinlichkeit mit
1—a, die MiBerfolgswahrscheinlichkeit mit 2 bezeichnet. Dann ist die
Wahrscheinlichkeit, den n-ten Erfolg beim k-ten Wurf zu erzielen, gege-
ben durch

Dpr = Pnre(®) = (L—2)” (Z—i) " n=1,2,..;k=mn,n+l,...).
Es erhebt sich die Frage, ob wir — in Analogie zu den b,; und B, (%) —
mit Hilfe der p,; den B,(x) verwandte und #hnliche REigenschaften
besgitzende Ausdriicke bilden kénnen. Dies ist der Fall. Bs wird sich dabei
nicht um Polynome, sondern um Potenzreihen handeln, die wir als Bern-
" steingche Potenzreihen bezeichnen.
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