

Literaturnachweis

- A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur,
 Fund. Math. 25 (1935), S. 273-326.
- [2] S. Lojasiewicz, Sur la valeur et la limite d'une distribution en un point, Studia Mathematica 16 (1957), S. 1-36.
- [3] J. Wloka und Z. Zieleźny, Über eine Definition des Wertes einer Distribution. Bull. Acad. Polon. des Sc., Cl. III. 3 (1955), S. 479-481.
- [4] J. Mikusiński and R. Sikorski, The elementary theory of distributions (I), Rozprawy Matematyczne XII (1957).
 - [5] F. Riesz et B. Sz.-Nagy, Lecons d'analyse fonctionnelle, Budapest 1953.
 - [6] L. Schwarz, Théorie des distributions I, II, Paris 1950/1951.
- [7] Z. Zahorski, О множестве точек недиференцируемости непрерывной функции, Матем. сб. 9 (51): 3 (1941), S. 487-510.
- [8] Sur les ensembles des points de divergence de certaines intégrales singulières, Ann. Soc. Pol. Math. 19 (1946), S. 66-105.
- [9] Z. Zieleźny, Sur la définition de Lojasiewicz de la valeur d'une distribution dans un point, Bull. Acad. Polon. des Sc., Cl. III. 3 (1955), S. 519-520.

Recu par la Rédaction le 31, 12, 1958

Spaces of continuous functions (IV) (On isomorphical classification of spaces of continuous functions)

by

C. BESSAGA and A. PEŁCZYŃSKI (Warszawa)

In this paper (Theorem 1) we give a complete isomorphical and dimensional (1) classifications of the spaces of (all) continuous functions defined on countable intervals of ordinal numbers.

Applying Theorem 1 we obtain: a) the complete isomorphical classification of the spaces C(Q) (i. e. of the spaces of all continuous real functions defined on Q), Q being zero-dimensional metrisable compact spaces (Theorem 3) (2) and b) the complete dimensional classification of all the spaces C(Q) for arbitrary metrisable compact spaces Q (Collorary 1).

In the last part of this paper we formulate several problems concerning the spaces of continuous functions.

1. Preliminaries. Two Banach spaces X and Y are called *isomorphic* (written $X \sim Y$), if and only if there exists a linear homeomorphic mapping of X onto Y.

It is known that $X \sim Y$ if and only if there are a linear mapping U of X onto Y and a constant K such that

$$||x|| \le ||U(x)|| \le K||x||.$$

If condition (1) is satisfied for some U we shall write $X \stackrel{K}{\sim} Y$. In particular, $X \stackrel{1}{\sim} Y$ means that X and Y are isometric.

The spaces X and Y are said to have an equal linear dimension (written X = Y) if each of the spaces X and Y is isomorphic to some subspace of the other. We say that X has a smaller linear dimension than Y (written X < Y) if there is a subspace of Y isomorphic to X and no subspace of X is isomorphic to Y.

⁽¹⁾ i. e. classification with respect to linear dimension.

⁽²⁾ Hence, in particular we obtain a solution of the problem 48 in the Scottish Book posed by Banach and Mazur.

C. Bessaga and A. Pełczyński

In the sequel we shall denote by $t, s, \alpha, \beta, \gamma, \ldots$ arbitrary ordinal numbers (3), by m, n, N, \ldots finite ordinal numbers; the symbols ω and ω_1 will denote the first infinite ordinal number and the first uncountable ordinal number, respectively. If $\alpha < \beta$, then $\langle \alpha, \beta \rangle = \{t \colon \alpha < t \leqslant \beta\}$, and $(\alpha, \beta) = \{t \colon \alpha < t \leqslant \beta\}$, $(\alpha, \beta) = \{t \colon \alpha \leqslant t \leqslant \beta\}$.

Sets of ordinal numbers will be always assumed to be topological spaces with the order topology.

The symbols Q, Q_1, \dots will denote metrisable compact topological spaces.

The symbols X, Y will be used for denoting arbitrary Banach spaces. C will denote the one-dimensional Banach space (we do not use the standard notation, in which C denotes the space of continuous functions on the unit interval).

C(Q) will denote the Banach space of all continuous real functions x = x(q) defined on Q(4) with the norm $||x|| = \sup_{q} |x(q)|$; in particular, by $C(\mathcal{G})$ and $C(\mathcal{C})$ we shall denote the spaces of all continuous real functions defined on the unit interval \mathcal{G} of real numbers and on the Cantor discontinuum \mathcal{C} respectively.

 X^a will denote the space of all continuous functions x = x(t) defined on $\langle 1, a \rangle$ having values in the Banach space X with the norm $||x|| = \sup ||x(t)||$; we set

$$X^{a} = \{x \in X^{a} \colon x(a) = 0\}.$$

(Observe that the symbols $C(\langle 1, a \rangle)$ and C^a denote the same.)

The symbol $X \times Y$ will denote the Cartesian product of the spaces X and Y, i. e the space of all pairs (x, y), $x \in X$, $y \in Y$ — with the norm $\|(x, y)\| = \max(\|x\|, \|y\|)$.

The following properties are obvious:

I. If $X \stackrel{k}{\sim} Y$, and $l \ge k$, then $Y \stackrel{l}{\sim} X$; if $X \stackrel{k}{\sim} Y$, $Y \stackrel{l}{\sim} Z$, then $X \stackrel{k \cdot l}{\sim} Z$.

II. $X^{\alpha} \times X^{\beta} \stackrel{1}{\sim} X^{\beta} \times X^{\alpha} \stackrel{1}{\sim} X^{\alpha+\beta} \stackrel{1}{\sim} X^{\beta+\alpha}$.

III. $X^1 \stackrel{1}{\sim} X$; $(X^a)^{\beta} \stackrel{1}{\sim} X^{a \cdot \beta}$.

IV. If $X \sim Y$, $X_1 \sim Y_1$, then $X^a \sim Y^a$ and $X \times X_1 \sim Y \times Y_1$ (moreover if $X \stackrel{k}{\sim} Y$, $X_1 \stackrel{k}{\sim} Y_1$, then $X^a \stackrel{k}{\sim} Y^a$ and $X \times X_1 \stackrel{k}{\sim} Y \times Y_1$).

2. LEMMA 1. If $\omega \leqslant a < \omega_1$ and $a \leqslant \beta < a^{\omega}$, then for arbitrary X we have $X^a \sim X^{\beta}$.

The proof will be given in several stages:

2.1. If $\alpha \geqslant \omega$, then $X^{\alpha} \stackrel{?}{\sim} X_0^{\alpha}$.

Indeed, the required isomomorphism is realized by the mapping $U(x) = x' (x \in X^a, x' \in X^a_0)$, where x'(1) = x(a), x'(1+t) = x(t) - x(a).

2.2. Let $\omega \leqslant \alpha < \omega_1$. Then for arbitrary n and X we have: $1^{\circ} X^{an} \sim X^{\alpha} (2^{\circ} X^{aw} \sim X^{\alpha})$.

For any ordinal number α let the symbol α' denote the greatest prime component $\leqslant \alpha$ (5). Proposition 2.2 is an immediate consequence of the properties $(\alpha n)' = \alpha', (\alpha \omega)' = \alpha' \cdot \omega$ (for $\alpha \geqslant \omega$) and of the following two propositions:

2.21. If a with $\omega \leqslant a < \omega_1$ is a prime component, then for arbitrary n and X we have 1^o $X^{an} \sim X^a$ $(2^o$ $X^{aw} \sim X^a)$.

2.22. If $\omega \leqslant \alpha \leqslant \omega_1$, then $X^a \sim X^{a'}$.

Proof of 2.21. The set $\langle 1, \alpha \rangle$ can be decomposed into n disjoint parts $\Delta_1, \ldots, \Delta_n$ (\aleph_0 parts $\Delta_1, \Delta_2, \ldots$) in such a way that each of the sets Δ_t is ordered according to the type α and that each two of these sets have unique common limit-point α (and, moreover, in case 2° if $t_n \in \Delta_n$ $(n < \omega)$, then $t_n \to \alpha$) (§). Thus we obtain $X_0^{\alpha} \sim (X_0^{\alpha})^n$ ($X_0^{\alpha} \sim (X_0^{\alpha})^{\alpha}$). This, according to 2.1 and IV, gives our assertion.

Proof of 2.22. The number α is of the form $\alpha = \alpha' n + \gamma$, where $\gamma < \alpha'$; therefore by 2.21 and by II, $X^{\alpha} \sim X^{\gamma + \alpha' n} \sim X^{\alpha' n} \sim X^{\alpha'}$ (because $\gamma + \alpha' n = \alpha' n$).

2.3. If $\omega \leqslant \alpha < \omega_1$ and $\beta < \alpha$, then $X^{\alpha+\beta} \sim X^{\beta+\alpha} \sim X^{\alpha}$.

This follows from 2.22 and from the property: $(a+\beta)' = (\beta+a)' = a'$. 2.4. If $\omega \leq a < \omega_1$, $0 < \beta \leq a$, then for arbitrary X we have $X^{a\beta} \sim X^a$.

Proof. It can easily be verified that the space $X_0^{\alpha\beta}$ is a direct sum

$$(2) X_0^{a\beta} = Y \oplus Z,$$

where Y consists of those functions y(t) $(1 \le t \le a\beta)$ belonging to $X_0^{a\beta}$ which are constant on each of the intervals

$$T_{\xi} = (a\xi, a(\xi+1))$$
 for $0 \leqslant \xi < \beta$;

$$\varDelta_1 = \bigcup_{k=1}^{\infty} \langle \gamma_{2k-1}, \ \gamma_{2k} \rangle, \qquad \varDelta_2 = \bigcup_{k=1}^{\infty} \langle \alpha_{2k}, \alpha_{2k+1} \rangle \qquad (\gamma_0 = 0).$$

⁽³⁾ For terminology, notation and basic arithmetical properties concerning ordinal numbers see [11], Chap. XIV.

⁽⁴⁾ With the usual definitions of addition and multiplication by scalars.

⁽⁵⁾ α is called a prime component if the condition $\alpha = \gamma + \delta$ implies $\delta = \alpha$.

⁽⁶⁾ Let us prove this fact, for instance, for n=2. The condition that a is a prime component makes it possible to choose a sequence of ordinal numbers (γ_n) in such a way that $\gamma_n \to a$ and the ordinal types of the segments (γ_n, γ_{n+1}) are also convergent to a. Now the required decomposition is

Z is composed of the functions z(t) $(1 \le t \le a\beta)$ vanishing at all the points $a\xi$ $(1 \le \xi \le \beta)$.

It is easily seen that $Y \stackrel{1}{\sim} X_0^{\beta}$, whence, by 2.1,

$$(3) Y \sim X^{\rho}.$$

One can easily establish that if $z \in Z$ then for every $\varepsilon > 0$ the set $\{\xi : \sup_{t \in T_{\xi}} \|z(t)\| \ge \varepsilon\}$ is finite. It follows that $Z \sim (X_0^a)_0^\omega$. Hence, by 2.1, 2.2, III and IV, we obtain

$$Z \sim X^a$$

Thus, using in turn: 2.1, (2), (3), (4), IV, II, and 2.3, we obtain (7) $X^{a\beta} \sim X_0^{a\beta} \sim Y \times Z \sim X^{\beta} \times X^{\alpha} \sim X^{\beta+a} \sim X^{\alpha}$, q. e. d.

2.5. If $\omega \leqslant a < \omega_1$, then for every n and X we have $X^a \sim X^{an}$.

For n=2 this proposition follows from 2.4; for arbitrary n one can give a simply inductive proof by the use of property IV.

- 2.6. Now the proof of Lemma 1 can be completed. If $\omega \leqslant a < \omega_1$ and $a \leqslant \beta < a^{\omega}$, then β is of the form $\beta = a^n \gamma + \delta$, where $\gamma < a \leqslant a^n$, $\delta < a^n$. By 2.3 we have $X^{a^n \gamma + \delta} \sim X^{a^n \gamma}$, and, by 2.5 and 2.4, $X^{a^n \gamma} \sim X^a$. Hence $X^{\beta} \sim X^a$, q. e. d.
- 3. Lemma 2. Let a be an arbitrary ordinal number. If for every $\gamma < a$ the relation $C^{\gamma} < C^a$ holds, then $C^a < C^{a^{\alpha}}$.

Proof. According to 2.1 it is enough to prove that the assumptions of Lemma 2 imply that $C_0^a < C^{a^\omega}$. Suppose that the last condition is false, i. e. that there exists a subspace X of the space C_0^a and a constant K>0 such that $C^{a^\omega} \overset{\kappa}{\sim} X$. Let N be arbitrary fixed positive integer. Since the space C^{a^N} is isometric with a subspace of C^{a^ω} , there exists a subspace X_N of the space X such that $C^{a^N} \overset{\kappa}{\sim} X_N$, i. e. there exists a linear mapping U of the space X_N onto C^{a^N} such that

(6)
$$||x|| \leqslant ||U(x)|| \leqslant K||x|| \quad \text{for each } x \in X_N.$$

We shall show that this is impossible for N > 4K, whence it follows that our supposition that $C_0^a \geqslant C^{a^{\alpha}}$ leads to a contradiction.

Let $y_0 \in C^{aN}$ be the function identically equal 1; $x_0 = U^{-1}(y_0)$. Let γ_1 with $\gamma_1 < \alpha$ be chosen in such a way that $x_0(t) < 1/(N+1)$ for $t > \gamma_1$ (such a number γ_1 exists because $\lim_{t \to \infty} x(t) = 0$). Write

$$\Delta_{\xi}^{\mathbf{I}} = (a^{N-1}\xi, a^{N-1}(\xi+1))$$
 for $0 \leqslant \xi < a$.

Let

$$Y_1 = \bigcap_{\xi < \alpha} \{ y \in C^{\alpha^N} \colon y(t) \text{ is constant on } \Delta^1_{\xi} \}.$$

Obviously Y_1 is a subspace of C^{α^N} and

$$Y_1 \stackrel{1}{\sim} C^a.$$

To begin with, we shall prove that there exist elements x_1 in X_N and y_1 in Y_1 such that

$$x_1 = U^{-1}(y_1), \quad ||x_1|| \leqslant ||y_1|| = 1,$$

and

$$|x_1(t)| < rac{1}{N+1} \quad ext{ for } \quad t \leqslant \gamma_1.$$

For every $x \in C^a$ let $P_n(x)$ denote the "restriction" of the function x to the set $\langle 1, \gamma_1 \rangle$, more exactly $P_n(x) = z$, where $z \in C^{\gamma_1}$ and z(t) = x(t) for $t \leqslant \gamma_1$. We consider the operation $P_n(t)^{-1}$ of the space Y_1 into the space C^{γ_1} . By (7) and according to the fact that $C^{\gamma_1} < C^a$, this operation cannot be any isomorphic mapping of Y_1 into C^{γ_1} . Hence, for every $\varepsilon > 0$, there exists an element y in Y_1 such that $\|P_{\gamma_1}U^{-1}(y)\| < \varepsilon \|y\|$. In particular we may choose an element $y_1 \in Y_1$ in such a way that $\|y_1\| = 1$ and $\|P_{\gamma_1}U^{-1}(y_1)\| < 1/(N+1)$. Putting $x_1 = U^{-1}(y_1)$ we obtain

$$\sup_{t < \gamma_1} |x_1(t)| = \|P_{\gamma_1}(x_1)\| = \|P_{\gamma_1}U^{-1}(y_1)\| < \frac{1}{N+1}.$$

By (6) we have

$$||x_1|| \leq ||U(x_1)|| = ||UU^{-1}(y_1)|| = ||y_1|| = 1.$$

Now let ξ_1 be such an ordinal number that $|y_1(t)| \ge 1/2$ for $t \in A^1_{\xi_1}$ (such a number must exist because $||y_1|| = 1$). Consider the new family of intervals

$$\Delta_{\xi}^{2} = (a^{N-1}\xi_{1} + a^{N-2}\xi, a^{N-1}\xi_{1} + a^{N-2}(\xi+1))$$
 for $0 \le \xi < a$.

Let

$$Y_{2} = \bigcap_{\ell < a} \left\{ y \in C^{a^{N}} \colon y\left(t\right) \text{ is constant on } \varDelta_{\ell}^{2} \text{ and } y\left(t\right) = 0 \text{ for } t \notin \varDelta_{\ell_{1}}^{1} \right\}.$$

It is easy to establish that $Y_2 \stackrel{\cdot}{\sim} C^a$.

Let γ_2 with $\gamma_1 < \gamma_2 < \alpha$ be chosen in such a way that

$$|x_1(t)| < rac{1}{N+1} \quad ext{ for } \quad t > \gamma_2.$$

^{(&#}x27;) Here we make use of the obvious fact that if a Banach space X is a direct sum of its two subspaces Y and Z, then that space is isomorphic to the Cartesian product $Y \times Z$.

Since no subspace of C^{p_1} is isomorphic to Y_2 , we infer in the same way as above that there exist $y_2 \in Y_2$ and $x_2 \in X_N$ such that

$$x_2 = U^{-1}(y_2), \quad ||x_2|| \leqslant ||y_2|| = 1$$

and

$$|x_2(t)| < \frac{1}{N+1}$$
 for $t \leqslant \gamma_2$.

Now we choose ξ_2 such that $|y_2(t)| \ge 1/2$ for $t \in \mathcal{A}_{\xi_2}^2$ etc. Repeating this procedure N times we shall find the elements

$$x_0, x_1, \ldots, x_N; \quad y_0 = U(x_0), \ldots, y_N = U(x_N),$$

the ordinal numbers

$$1 = \gamma_0 < \gamma_1 < \gamma_2 < \dots < \gamma_N < \alpha,$$

and the sets of ordinal numbers (intervals)

$$\Delta_0 = \langle 1, \alpha^N \rangle \supset \Delta_1 = \Delta_1^{\xi_1} \supset \Delta_2 = \Delta_{\xi_2}^2 \supset \dots \supset \Delta_N$$

such that

(8)
$$||x_k|| \le 1$$
, $|x_k(t)| < \frac{1}{N+1}$ for $t \notin \langle \gamma_k, \gamma_{k+1} \rangle$,

(9) $y_k(t) = a_k = \text{const for } t \in \Delta_k$, where $|a_k| \ge 1/2$, k = 0, 1, ..., N. Let us put $\varepsilon_k = \text{sgn } a_k$ for k = 0, 1, ..., N and $z = \sum_{k=0}^{N} \varepsilon_k a_k$. Since $\Delta_N = \bigcap_{k=1}^{N} \Delta_k$ there is a point t_0 belonging to all Δ_k (k = 0, 1, ..., N). We have

$$\|U(z)\| = \|\sum_{k=0}^N \varepsilon_k U(x_k)\| \geqslant \sum_{k=0}^N \varepsilon_k y_k(t_0) = \sum_{k=0}^N |a_k| \geqslant \frac{N+1}{2}.$$

On the other hand, by (8) and by the fact that the intervals (γ_k, γ_{k+1}) are disjoint for k = 0, 1, ..., N-1, N, we have

$$|x_i(t)| < \frac{1}{N+1}$$

for every $t \leqslant a$ and for all indices i (i = 0, 1, ..., N) except at most one. Thus, according to the fact $||x_k|| \leqslant 1$, we obtain

$$\|z\|\leqslant 1+N\cdotrac{1}{N+1}<2$$
 .

Hence $||U|| \ge ||U(||z||^{-1}z)|| \ge N/4$ and for N > 4K we obtain a contradiction with (6), q. e. d.

4. Theorem 1. Let $\omega \leqslant \alpha \leqslant \beta < \omega_1$. Then $C^{\alpha} \sim C^{\beta}$ if and only if $C^{\alpha} = C^{\beta}$ if and only if $\beta < \alpha^{\omega}$.

This theorem is an immediate consequence of Lemmas 1 and 2 (8).

Remark 1. For two isomorphic Banach spaces X and Y let us define the function

$$[X, Y] = \inf\{K: X \stackrel{K}{\sim} Y\}$$

(cf. Banach [1], Remarques, p. 242). Investigating the proofs of Lemmas 1 and 2 we see that if $\omega \leqslant \alpha \leqslant \alpha^N \leqslant \beta < \alpha^{N+1} < \omega_1$, then

$$N \leqslant [C^{\beta}, C^{\alpha}] \leqslant 4^{N+3}$$
.

It would be interesting to obtain an estimation of the form

$$G(N) \leqslant [C^{\alpha}, C^{\beta}] \leqslant H(N)$$
,

where $\sup (H(N)/G(N)) < +\infty$, or to compute the exact values of $[C^{\alpha}, C^{\beta}]$.

Let Q be countable. Denote by $\varkappa(Q)$ the smallest ordinal number γ such that the γ -th derivative $Q^{(\gamma)}$ is empty, and set

$$\chi(Q) = [\varkappa(Q)]^{\omega}$$
.

It is not difficult to verify that

$$\max(\alpha, \beta) \leqslant [\min(\alpha, \beta)]^{\omega}$$
 if and only if $\chi(\langle 1, \alpha \rangle) = \chi(\langle 1, \beta \rangle)$.

Using this fact we may give a new formulation of Theorem 1:

(*) Let α and β be countable infinite ordinal numbers. $C^{\alpha} \sim C^{\beta}$ if and only if $C^{\alpha} = C^{\beta}$ if and only if $\chi(\langle 1, \alpha \rangle) = \chi(\langle 1, \beta \rangle)$. $C^{\alpha} < C^{\beta}$ if and only if $\chi(\langle 1, \alpha \rangle) < \chi(\langle 1, \beta \rangle)$.

According to a well-known theorem of Mazurkiewicz and Sierpiński [6] and to the fact that $\chi(Q)$ is a topological invariant of the space Q (because $\chi(Q)$ is invariant), the proposition (*) gives

THEOREM 2. Let Q and Q_1 be countable compact metric spaces. Then $C(Q) \sim C(Q_1)$ if and only if $C(Q) = C(Q_1)$ if and only if $\chi(Q) = \chi(Q_1)$. $C(Q) < C(Q_1)$ if and only if $\chi(Q) < \chi(Q_1)$.

Also the following is true:

^(*) To prove the necessity of this condition we apply Lemma 2 for the ordinal number $a_1=$ the smalest γ for which $C^\gamma=C^\alpha$.

THEOREM 3. Let Q and Q_1 be zero-dimensional metrisable compact spaces. Then $C(Q) \sim C(Q_1)$ if and only if $C(Q) = C(Q_1)$ if and only if one of the following conditions:

- (i) Q and Q₁ are finite and have the same number of elements,
- (ii) Q and Q_1 are countable and $\chi(Q) = \chi(Q_1)$,
- (iii) Q and Q_1 are uncountable holds.

Proof. In the case where Q and Q_1 are finite, this theorem is obvious; for countable Q and Q_1 it follows from Theorem 2. Now let us suppose that Q is zero-dimensional and uncountable. Then, according to the Cantor-Bendixon Theorem ([5], Chap. II, p. 141) and according to the fact that every zero-dimensional perfect compact metric space is homeomorphic to the Cantor discontinuum, Q is the sum of a set C homeomorphic to the Cantor discontinuum and a countable set. To complete the proof it is enough to apply the following

LEMMA 3. Let Q be an uncountable compact metric space. If Q_1 and A are closed subsets of Q such that $Q = Q_1 \cup A$ and A is countable, then $C(Q) \sim C(Q_1)$.

Proof. Let us denote by C(Q/A) the subspace of C(Q) consisting of all functions which vanish on the set A. According to Borsuk's theorem on simultaneous extensions [2], one can easily establish that

$$C(Q) \sim C(Q_1) \times C(A/Q_1 \cap A)$$
.

It may easily be shown that there exists a countable compact B such that $C(B) \sim C(A/Q_1 \cap A)$. Let B' be a subset of Q_1 homeomorphic to B (such subsets exist because Q_1 is an uncountable metric compact space and B is a countable one). According to Borsuk's theorem quoted above and to the fact that $C(B') \times C(B') \sim C(B')$ (this fact follows from proposition 2.2 and the Mazurkiewicz-Sierpiński theorem already cited) we have

$$C(Q_1) \times C(A/Q_1 \cap A) \sim C(Q_1) \times C(B) \sim C(Q_1/B') \times C(B') \times C(B)$$
$$\sim C(Q_1/B') \times (C(B') \times C(B')) \sim C(Q_1/B') \times C(B') \sim C(Q_1).$$

Hence $C(Q) \sim C(Q_1)$, q. e. d.

Banach and Mazur have proved (see [1], p. 186) that for every separable Banach space X there is a subspace X' of the space $C(\mathcal{C})$ such that $X \stackrel{1}{\sim} X'$.

On the other hand, since every uncountable compact metric space Q contains a subset \mathcal{C}' homeomorphic to \mathcal{C} , according to Borsuk's theorem we have $C(Q) \sim C(Q/\mathcal{C}') \times C(\mathcal{C}')$. Thus C(Q) contains a subspace isomorphic to $C(\mathcal{C})$.

From these two facts it follows that $C(Q) = C(\mathcal{C})$ for arbitrary uncountable Q; and, according to Theorem 2, we obtain

COROLLARY 1. Let Q and Q_1 be metrisable compact spaces. Then the spaces C(Q) and $C(Q_1)$ have an equal linear dimension if and only if one of the conditions (i), (ii), (iii) (formulated in Theorem 3) is satisfied.

Since all the intervals $\langle 1, a \rangle$ are dispersed topological compact spaces, it follows from a result of [8] (see also [7]) and Lemma 2 that all the spaces conjugate to C^a with $a = \aleph_r$ are isometric. Hence

COROLLARY 2. There are $\mathbf{x}_{\tau+1}$ isomorphically different (and having different linear dimensions) spaces C^a with $\bar{a} = \mathbf{x}_{\tau}$, whose first conjugate spaces are all isometric.

This implies, in particular,

COROLLARY 3. There are at least x_1 separable Banach spaces, different with regard to linear dimension, whose first conjugate spaces are isometric to the space l (composed of all absolutely convergent real series).

5. Remarks and unsolved problems

- 5.1. Give an isomorphic classification of the spaces C(Q) for arbitrary metrisable compact topological spaces Q. In particular establish whether the spaces $C(\mathcal{G})$ and $C(\mathcal{C})$ are isomorphic.
- 5.2. Let α and β be arbitrary ordinal numbers. Give a necessary and sufficient condition (concerning α and β) for the spaces C^{α} and C^{β} to be isomorphic.
- Z. Semadeni [10] has proved that $C^{\omega_1} < C^{\omega_1 \cdot 2}$; hence Lemma 1 cannot be generalized to the case of uncountable a.
- 5.3. We say that the space X has a smaller linear dimension in the sense of Kolmogoroff [4] than the space Y (briefly X < Y) if X is a linear image of a subspace of Y and no subspace of X can be linearly mapped onto Y.

Does Lemma 2 hold true if we replace the symbol "<" by "<"? dim δ We know that such a modification of Lemma 2 is true for $\alpha < \omega^{\omega^3}(^{\circ})$.

 ${f 5.4.}$ We introduce the following classification of the separable Banach spaces:

^(*) The proof of this fact is based on a certain property of weakly convergent series in the space $C^{\omega^{\omega}}$. Series having this property may be constructed in the same manner as that by Schreier in [9] in the case of C([0,1]).

Let \mathfrak{U}_0 be the class of all separable Banach spaces having an unconditional basis (see [3], Chapt. IV, § 4). Suppose that we have defined the classes \mathfrak{U}_{β} for all $\beta < \alpha$ ($\alpha < \omega_1$). We define \mathfrak{U}_{α} as the class of all separable Banach spaces X which have the following properties:

- (a) $X \notin \mathfrak{U}_{\beta}$ for each $\beta < \alpha$;
- (b) there exist sequences (X_n) of subspaces of X and (β_n) of ordinal numbers $< \alpha$ such that $X_n \in \mathfrak{U}_{\beta_n}$ $(n=1,2,\ldots)$ and every element $x \in X$ may be uniquely represented as a sum of an unconditionally convergent series $x = \sum_{n=1}^{\infty} x_n$, where $x_n \in X_n$ for $n=1,2,\ldots$

We say that the separable Banach space belongs to the class \mathfrak{U}_{ω_1} if $X \in \mathfrak{U}_a$ for no $a < \omega_1$.

Questions:

- 1. Are all classes \mathfrak{U}_{α} (for $\alpha \leqslant \omega_1$) non-empty?
- 2. Does there exist for every $0 \leqslant a \leqslant \omega_1$ a compact metric space Q such that $C(Q) \in \mathfrak{U}_n$?

We know only that $C^{\omega} \in \mathfrak{U}_0$, $C^{\omega^{\omega}} \in \mathfrak{U}_1$, $C(Q) \in \mathfrak{U}_{\omega_1}$ for uncountable Q.

5.5. Let X be a Banach space with the conjugate space X^* isomorphic to I. Does there exist an ordinal α such that $X \sim C^{\alpha}$?

References

- [1] S. Banach, Théorie des opérations linéaires, Warszawa 1933.
- [2] K. Borsuk, Über Isomorphie der Funktionalräume, Bull. Acad. Pol. (1933), p. 1-10.
 - [3] M. M. Day, Normed linear spaces, Berlin 1958.
- [4] А. Н. Колмогоров, О минейной размерности типологически пространсте, ДАН 120 (1958), р. 239-241.
 - [5] K. Kuratowski, Topologie I, Warszawa 1957.
- [6] S. Mazurkiewicz et W. Sierpiński, Contributions à la topologie des ensembles dénumerables, Fund. Math. 1 (1920), p. 17-27.
- [7] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Mathem. 18 (1959), p. 211-222.
- [8] W. Rudin, Continuous functions on compact space without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), p. 39-42.
- [9] J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), p. 58-62.
- [10] Z. Semadeni, On Banach spaces non-isomorphic with its Cartesian squares, II, Bull. Acad. Pol. Sci. 1960 (in print).
 - [11] W. Sierpiński, Cardinal and ordinal numbers, Warszawa 1958.

Recu par la Rédaction le 10, 2, 1959

States of operator algebras

p2

R. E. EDWARDS (Reading, England)

§ 0. Introduction & summary. Let \mathcal{K} be a fixed Hilbert space and denote by $B = B(\mathcal{K})$ the algebra of all bounded endomorphisms of \mathcal{K} . B is a complete normed algebra with an involution which carries $T \in B$ into its adjoint T^* ; this algebra is non-commutative unless \mathcal{K} is one-dimensional. If \mathcal{A} is a self-adjoint (i. e. stable under *) subalgebra of B, we follow Segal [5] in extending the customary language of statistical quantum mechanics by applying the name "state of \mathcal{A} " to any positive-definite linear form f on \mathcal{A} , i. e. a linear form f on \mathcal{A} such that $f(T^*) = f(T)$ and $f(T^*T) \geq 0$ for arbitrary $T \in \mathcal{A}$. These correspond to the "mixed states" of a quantum mechanical assemblage and are therefore thought of as being compounded in some way from the "pure states"

$$(0.1) f_x: T \to (Tx, x),$$

where x is an arbitrary element of \mathcal{X} . The main aim of this paper is to discover more precisely how some at least of these mixed states are obtained from the pure ones.

When $\mathcal{A} = \hat{B}$, von Neumann gives one answer to this problem, at least for those states which are weakly continuous. On the other hand, Segal [5] discusses a fairly general type of algebra \mathcal{A} and shows that there exist always sufficiently many pure or minimal states to make plausible the possibility of expressing a wide class of states in terms of these. However, Segal does not concern himself with any explicit representation of this kind. von Neumann's approach ([6], Chapter IV) for $\mathcal{A} = B$ is very direct and leads to a representation in terms of the trace. Unfortunately his approach is not adaptable in any obvious way to states initially defined only on some subalgebra \mathcal{A} of B. This is one reason for seeking an apparently different representation.

The proposed alternative is a representation in terms of positive integral combinations of pure states:

(A)
$$f(T) = \int_{\Sigma} (Tx, x) dm(x),$$