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Spaces of continuous functions (IV)
(On isomorphical classification of spaces of continuous functions)

by

C. BESSAGA and A. PELCZYNSKI (Warszawd)

In this paper (Theorem 1) we give a complete isomorphical and di-
mensional (*) classifications of the spaces of (all) continuous functions
defined on countable intervals of ordinal numbers.

Applying Theorem 1 we obtain: a) the complete isomorphical classi-
tication of the spaces 0(Q) (i. e. of the spaces of all continuous real func-
tions defined on @), @ being zero-dimensional metrisable compact spaces
(Theorem 3) (2) and b) the complete dimensional classification of all the
spaces 0(Q) for arbitrary metrisable compact spaces @ (Collorary 1).

In the last part of this paper we formulate several problems
concerning the spaces of continuous functions.

1. Preliminaries. Two Banach spaces X and Y are called isomorphic
(written X ~ ), if and only if there exists a linear homeomorphic map-
ping of X onto Y.

It is known that X ~ Y if and only if there are a linear mapping
U of X onto Y and a constant K such that

1 ol < WU (@) < K[l

If condition (1) is satisfied for some U we shall write X X ¥. In
particular, X A ¥ means that X and Y are isometric.
The spaces X and Y are said to have an equal linear dimension (written
X = Y) if each of the spaces X and ¥ is isomorphic to some subspace
dim

of the other. We say that X has a smaller linear dimension than ¥ (written
X < Y) if there is a subspace of ¥ isomorphic to X and no subspace of X
dim

is isomorphic to Y.
(*) i. e. classification with respect to linear dimension.

(?) Hence, in particular we obtain a solution of the problem 48 in the Scottish
Book posed by Banach and Magzur.
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In the sequel we shall denote by ¢, s, a, By ¥, ...~ arbitrary ordinal
numbers (3), by m,n, N, ... — finito mdxnal numbers; the symbols w
and o, will denote the hrst. mfl:znte ordinal number and the first uncoun-
table ordinal number, respoctively. If a < B, then {a, f> —= {t: a <<t < B},
and (a,f) = {tra<t< B}, (af) ={tra<t<pl

Sets of ordinal numbers will be always assumed to be topological
gpaces with the order topology.

The symbols @, @, ... will denote metrisable compact topological
spaces.

The symbols X, ¥ will be used for denoting arbitrary Banach spaces.

¢ will denote the one-dimensional Banach space (we do not use the
gtandard notation, in which ¢ denotes the space of continuous funetions
on the unit interval).

0(Q) will denote the Banach space of all continuous real functions
2 = x(g) defined on @ (*) with the norm |z = suplw( )|; in particular,

by €(9) and C(C) we shall denote the spaces 0[ all continuous real
functions defined on the unit interval 9 of real numbers and on the
Qantor discontinuum € respectively.

X°® will denote the space of all continuous functions # == x(¢) defined
on <1, a) having values in the Banach space X with the norm |z =
= B‘:lp”a?(t)ﬂ; we seb

X = {weX% 2(a) = 0}.

(Observe that the symbols C({1, a)) and O* denote the same.)

The symbol X x Y will denote the Cartesian product of the spaces
X and Y, i. e the space of all pairs (z,y), <X, y¢¥Y — with the norm
(@, ¥ = max(|lz[, lyl).

The following properties are obvious:

L If XY, and 1=k, then YX; if X2Y, ¥4, then X 2.

TL XX XPXPx Xo X X,

I X' X; (X0PAX*,

IV. If X~Y, X,~Y,, then X°~T" and X X X;~Y X Y, (moreover
if XAY, X, 20, then X*ET* and Xx X, 27 x 1)),

2. LevMA 1. If o <a<o, and o < f < d®, then for arbitrary X
we have X°~~X°.

(3) For terminology, notation and basic arithmetical properties eoncerming
ordinal numbers see [11], Chap. XIV.
(4 With the usual definitions of addition and multiplication by secalars.
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The proof will be given in several stages:

2.1. If a = w, then X“NX“

Indeed, the required isomomorphism is realized by the mapping
Uz) =o' (xeX?, 8’ ¢ X3), where #'(1) = 2 (a), #'(1+1) = () —z(a).

2.2. Let w < a < wy. Then for arbitrary n and X we have: 1° X™~ X°
(20 X ~ X%).

For any ordinal number o let the symbol o’ denote the greatest
prime component < o (°). Proposition 2.2 is an immediate consequence
of the properties (an)’ = o/, (aw)’ = o’ (for a > ) and of the following
two propositions:

2.21. If a with o < a < w, 18 a prime component, then for arbitrary
n and X we have 1° X“"N X® (2° X% ~ X9).

2.22. If o < a < w;, then X® ~ X%,

Proof of 2.21. The set (1, a) can be decomposed into # disjoint
party Ay, ..., 4, (N parts 4,, 4,,...) in such 'a way that each of the
sets d; is ordered according to the type a and that each two of these sets
have unique common limit-point o (and, moreover, in case 2° if f,ed,
(n < o), then t, — a) (¢). Thus we obtain X§~ (X5)* (X5 ~ (X7)7). This,
according to 2.1 and IV, gives our assertion.

Proof of 2.22. The number o is of the form a = a'n-t+y, where
y < a'; therefore by 2.21 and by II, X* ~ X" ~ X" ~ X* (because
y+a'n = da'n).

23. If o << o, and f< a, then X*F ~ X ~ X°.

This follows from 2.22 and from the property: (a+p) = (+a) = o'.

24. If o < a < wy,0 < B < a,then for arbitrary X we have X%~ X°

Proof. It can easily be verified that the space X3 is a direct sum

(2) Xt =YDZ,

where Y consists of those functions y(f) (1 <t <
which are constant on each of the intervals

0<éE< B

af) belonging to X

Te = (a&, a(&+1)) for

(5) @ is called a prime component if the condition a = y+ & implies § = a.

(%) Let us prove this fact, for instance, for n = 2. The condition that a is & prime
component makes it possible to choose a sequence of ordinal numbers (yn) in such
a way that p, — o and the ordinal types of the segments (yn, ¥ni1> are also conver-
gent to a. Now the required decomposition is

oo
4, = LU (Y2l—15 Vakos 4,
21

=]
= kLJI (agk, agkr1> (Yo = 0).


GUEST


56 ¢. Bessaga and A. Polezyfski

Z is composed of the functions #(f) (L <t <5 af) vanishing at all the points
at (1 < £ < B).

It is easily seen that Y~X whence, by 2.1,
(3) Y ~X°.

One can easily establish that if zeZ then for every &> 0 the set
{&: susz ()| = ¢} is finite. It follows that ZA(Xe. Hence, by 2.1, 2.2

III a.nd IV, we obtain
(4) Z ~X°.

Thus, using in turn: 2.1, (2}, (3) (4), IV, II, and 2.3, we obtain (7)
X% o XF ~ yxZNXf’xX“NX oo X, q. e

2.5. If o < a < w,, then for every n and- X we have X~ X,

For n — 2 this proposition follows from 2.4; for arbitrary # one can
give a simply inductive proof by the use of property Iv.

9.6. Now the proof of Lemma 1 can be completed. If o < a < w,
and o < f < o then § is of the form f§ = a"y+d, where 7/<a<a,
§ < o” By 2.3 we have X" ~X7, and, by 2.5 and 2.4, X" o X5
Hence X ~ X%, q.e.d.

3. Lemma 2. Let a be an arbitrary ordinal number. If for every y < a

the relation CY < C° holds, then C’"‘m< o,
m

Proof. Accordmg to 2.1 it is enough to prove that the assumptions.

of Lemma 2 imply that 0F < C*°. Suppose that the last condition is false,
din

i. e. that there exists a subspace X of the space € and a constant K = 0
such that 0°EX. Let N be arbitrary fixed positive integer. Since the
space 0" is isometric with a subspaee of (", there exists a subspace
Xy of the space X such that o NXN, i. e. there exists a lincar
mapping U of the space Xy onto (ol such that

(6) llell < 10 (@)l < K |ja|

We shall show that this is impossible for N > 4K, whence it follows
that our supposition that 05 = C=" leads to a contradiction.

Let y,eC*Y be the function identically equal 1; @y = U~'(y,). Let
1 With ¥, < a be chosen in such a way that @,(t) < L{(NV--1) for ¢ > 9,
(such a number y, exists because ]me(t) = 0), Write

for each welXy.

AL = (e NN EFL)Y  for 0 < E < an

(") Here we make use of the obvious fact that if a Banach space X is a direct
sum of its two subspaces ¥ and Z, then that space is isomorphio to the Cartesian
product ¥XxZ.
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Let
N
Yy = N{yeC:y

(t) is constant on Aj}.
f<a

r

Obviously Y, is a subspace of ¢V ana
) Y, ~C"

To begin with, we shall prove that there exist elements »; in Xy
and ¥, in Y, such that

= U_](le)a loall < lyall = 1,

and

o, ()] <

-1 < ;-
Vi or <y,
For every ze(® let P, (x) denote the ‘“‘restriction” of the funection
@ to the seb <1, y,>, more exactly P, (z) = 2, where zeC** and z(t) = #(¢)
for ¢ <y,. We consider the operation P, U~' of the space ¥, into the
space "1, By (7) and according to the fact that C" < (°, this operation
dim

cannot be apy isomorphic mapping of ¥, into C*1. Hence, for every ¢ > 0,
there exists an element y in ¥, such that [P, U (y)|| < elly]l. In parti-
cular we may choose an element y,¢Y; in such a way that |ly,]| = 1 and
12, U ()l < 1[N +1). Putting @, = U (y,) we obbain

supla (O] = 12, (@) = 1P, T @)l < 577
By (6) we have
llaall S NT @)I=1TT (y)lI=ly: = 1.

Now let & be such an ordinal number that |y, (¢)| > 1/2 for ted},
(such a number must exist because |y,|| = 1). Consider the new family
of intervals

A= (@ e+ T VT (E L)) for

Let ‘

Y, =N 1{y <0 : y(1) is constant on A% and y(f) = 0 for te Ay}
é<ea

I<é<a.

It is easy to establish that ¥,~~C"
Let y, with y, << y, < a be chogen in such a way that

ly ()] < L for

t >y,
NA+1 Ve
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Since no subspace of ("1 is isomorphic to ¥,, we infor in the same
way a8 above that there exist yseY, and w,eXy such that

@y = U (ys), @l < lyall =1

and

|25(t)] < ——  for ¢ < y,.

1
N+41
Now we choose £, such that |y,(t)] = 1/2 for teAj, ote.
Repeating this procedure N times we shall find tho elements

Doy Byy -y B Yo = Ul), ---’_?/N = U(ay),

the ordinal numbers
L=< <y <..<yn<q

and the sets of ordinal numbers (intervals)

=,d"> D4, =48 D4y, =44 D... DAy
such that
1
(8 ol <1, Joe®] < 5 1 for  14<yx, Yes),

(9) y(t) = ay = const for ted,, where |m| =1/2, k=0,1,...,N.
N

Let us put & = sgnag for k= 0,1,..., ¥ and 2= 3.
Joe=0
N
Ay = (4, there iy a point §, belonging to all A, (k=10,1,...,N).
k=1

We have

N N N
1@l =1 Y el > Y ) = ) lal > 2
k=0 k=0 Jo=0

On the other hand, by (8) and. by the fact that the intervals (yx, yr41)
are disjoint for £ =0,1,..., N—1, N, we have

1

1
O] < 5y
for every t << « and for all indices ¢ (¢ = 0,1, ..., N) except at most one.
Thus, according to the fact [afl <1, we obtain

1
el < 14N+ ——re ¥ii <2.
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Hence U]l = U (fell~*2)l| >
tion with (6), q.e. d.
4. TEEOREM 1. Let o <

0°=Cf if and only if f < o®
dim

N /4 and for N > 4K we obtain a contradic-

< B < w;. Then C*~ CP if and only if
This theorem is an immediate consequence of Lemmas 1 and 2 (8).

Remark 1. For two isomorphic Banach spaces. X and ¥ let us define the
funection

(X, ¥] = int{K: XX ¥}
(cf. Banach [1], Remarques, p. 242). Investigating the proofs of Lemmas 1 and 2
we see that if o < a<< eV << < ¥+ < w,, then

N << [08, 00] < 4V +3,
It would be interesting to obtain an estimation of the form

GV < [0°, 0F1 < H (),

where sup (H (N)/G(N)) < +oo, or to compute the exact values of [0%, OF].

Let @ be countable. Denote by x(Q) the smallest ordinal number y
such that the y-th derivative ¥ is empty, and set

1(Q) = [=(@)T".
It is not difficult to verify that

max(a, f) < [min(a, )" if and only if x(<1, &d) = (L, £>)-
Using this fact we may give a new formulation of Theorem 1:

(*) Let a and B be countable infinite ordinal numbers. C* ~ Cf if and
only if C° = CFif and only if %(<1,ad)=x(<L,p>). C° = C* if and only

dim
if 2({1,0) < xz{(<1L,6)-
According to a well-known theorem of Mazurkiewicz and Sierpinski
[6] and to the fact that (@) is a topological invariant of the space ¢
(because »(Q) is invariant), the proposition (*) gives
THEOREM 2. Let Q and Q, be countable compact metric spaces. Then
0(@Q~0(Q,) if and only if O(Q = C(@y) ¥ and only if %(@)= x(@x)

c@) = 0(Q.) if and only if %(Q) < %(@)-

Also the following is true:

(*) To prove the necessity of this econdition we apply Lemma 2 for the

ordinal number @, = the smalest y for which 07 = 0°.
’ dim
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TuroREM 3. Let @ and @, be zero-dimensional metrisable
spaces. Then C(Q)~C(Q,) if and only if C( () = (' Q)
of the following cond@tb(ms

(1) Q and Q, are finile and have the swne number of elements,

( i) @ and @, arc countable and x(Q) = x (@),

(iii) @ and @, are uncountable
holds.

Proof. Inthe case where ¢ and @, ave finite, this theorem iy obvious;
for countable @ and @, it follows from Theorem 2. Now let us suppose that
@ is zero-dimensional and uncountable. Then, according to the Oantor-
-Bendixon Theorem ([5], Chap. I, p. 141) and according to the fact that
every zero-dimensional perfect compact metric spaco is homeomorphic
to the Cantor discontinuum, @ is the sum of a set € homeomorphic to
the Cantor™ discontinuum and a countable set. To complete the proof
it is enough to apply the following
™ Lowwa 3. Let Q@ be an umcountable compact metric space. If @
and 4 are closed subsets of @ such that Q = @, v A and A is countable, then
(@) ~ 0(Qy).

Proof. Let us denote by 0(Q/4) the subspace of ¢(Q) consisting
of all functions which vanish on the set A. According to Borguk’s theorem
on simultanous extensions [2], one can easily establish that

C@) ~C(Q)x C(4/g, ~ 4).

It may easily be shown that there exists a countable compact B
such that C(B) ~ 0(4/Q, ~ A). Let B’ be a subset of @, homeomorphic
to B (such subsets exist because ¢, is an uncountable metric compact
space and B is a countable one). According to Borsuk’s theorem quoted
above and to the tact that C(B')XC(B’)~ ((B') (this fact follows
from proposition 2.2 and the Mazurkiewicz-Sierpirigki theorem already
cited) we have

O(Ql)xf](A/QmA ) ~ (@)% 0(B)
~ C(Q:/B) % (0(B) x (B

Hence C(Q) ~ 0(Qy), q.e.d.

Banach and Mazur have proved (see [1], p. 186) that for overy sepa-
rable Banach space X there is a subspace X' of the space (' (€) such
that XX

On the other hand, since every uncountable compact metric gpace @
contains a subset €' homeomorphic to €, according to Borsuk’s theorem.

we have C(@)~C(Q/C)xC(€). Thus ((Q) contains a subspace
isomorphic to ¢(@).

compact
if and only if one

~ 0(Qu/B") X0
) ~0Q

(B)xC(B)
UBYXC(B') ~ (@)
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From these two facts it follows that C(Q) = O(C) for arbitrary
dim

uncountable @; and, according to Theorem 2, we obtain

COROLLARY 1. Let Q and @, be metrisable compaot spaces. Then the
spaces C(Q) and C(Q,) have an equal linear dimension if and only if one
of the conditions (i), (ii), (iil) (formulated in Theorem 3) is satisfied.

Since all the intervals (1,«) are dispersed topological compact
spaces, it follows from a result of [8] (see also [7]) and Lemma 2 that
all the spaces conjugate to C* with @ = X, are isometric. Hence

CoROLLARY 2. There are 8., isomorphicallly different (and having
different linear dzmmswns) spaces C* with a = N,, whose first conjugate
spaces are all isometric.

This implies, in particular,

COROLLARY 3. There are at least 8, separable Banach spaces, different
with regard to linear dimension, whose first conjugate spaces are isometric
to the space 1 (composed of all absolutely convergent real series).

5. Remarks and unsolved problems

5.1. Give an isomorphic classification of the spaces C(Q) for arbit-
rary metrisable compact topological spaces @. In particular establish
whether the spaces C(9) and C(@) are isomorphic.

5.2. Let o and B be arbitrary ordinal numbers. Give a necessary
and sufficient condition (concerning ¢ and ) for the spaces C° and 0"
to be isomorphic.

Z. Semadeni [10] has proved that C“! << C°U'!; hence Lemma 1
dim

cannot be generalized to the case of uncountable a.

5.3. We say that the space X has a smaller linear dimension in the
sense of Kolmogoroff [4] than the space Y (briefly X < Y) if X ig a linear
8

image of a subspace of Y and no subspace of X can be linearly mapped
onto Y.
Does Lemma 2 hold true if we replace the symbol “<? by “<%
aim L)

We know that such a modification of Lemma 2 is true for o < we®(?).

5.4. We introduce the following classification of the separable Ba-
nach spaces:

(°) The proof of this fact is based on a certain property of weakly convergent
series in the space 0“”, Series having this property may be constructed in the same
manner a8 that by Schreier in [9] in the case of ([0,1]).
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Let &, be the class of all separable Banach spaces having an uncon-
ditional basis (see [3], Chapt. IV, § 4). Suppose that we have defined the
classes $I, for all § < a (@ < o). We define £, as the class of all separable
Banach spaces X which have the following properties:

(a) Xell; for each f < a;

(b) there exist sequences (X,) of subspaces of X and (f,) of ordinal
numbers < a such that X,eil, (n=1,2,...) and every element weX
may be uniquely represented as a sum of an unconditionally convergent

series # = Y @,, where @, X, for n =1,2,...
n=1

'We say that the separable Banach space belongs to the class &, if
Xell, for no o < w;.

Questions:

1. Are all classes ¥, (for o < w,) non-empty?

2. Does there exist for every 0 < a < w; & compact metric space
Q such that C(Q)<¥,?

We know only that 0%e8ly, 0" <fly, 0(Q)ell, for uncountable Q.

5.5. Let X be a Banach space with the conjugate space X* isomor-
phic to 7. Does there exist an ordinal « such that X ~ 0%
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States of operator algebras

by
R. E. EDWARDS (Reading, England)

§ 0. Introduction & summary. Let < be a fixed Hilbert space and
denote by B = B(YX) the algebra of all bounded endomorphisms of X.
B is a complete normed algebra with an involution whick carries TeB
into its adjoint 7™; this algebra is non-commutative unless X is one-di-
mensional. If o is a self-adjoint (i. e. stable under *) subalgebra of B,
we follow Segal [5] in extending the eustomary language of statistical
quantum mechanies by applying the name “state of «{”’ to any positive-
definite linear form f on «, i. e. a linear form f on «f such that f(T%) = f(T)
and f(T"T) > 0 for arbitrary Tes{. These correspond to the ‘“‘mixed
states” of a quantum mechanical assemblage and are therefore thought
of a8 being compounded in some way from the ‘“pure states”

(0.1) fo: T — (Tw, 2),

where % is an arbitrary element of %. The main aim of this paper is to
discover more precisely how some at least of these mixed states are ob-
tained from the pure ones.

When o = B, von Neumann gives one answer to this problem, at
least for those states which are weakly continuous. On the other hand,
Segal [5] discusses a fairly general type of algebra ¢ and shows that
there exist always sufficiently many pure or minimal states to make
plausible the possibility of expressing a wide class of states in terms of
these. However, Segal does not concern himself with any explicit repre-
sentation of this kind. von Neumann’s approach ([6], Chapter IV) for
A = B is very direct and leads to a representation in terms of the trace.
Unfortunately his approach is not adaptable in any obvious way to states
initially defined only on some subalgebra & of B. This is one reason for
seeking an apparently different representation.

The proposed alternative is a representation in terms of positive
integral combinations of pure states:

(A) 1T) = [(Tw,z)im(a),
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