

STUDIA MATHEMATICA, T. XIX. (1960)

176

- [5] R. Godement, Théorèmes tauberiens et théorie spectrale, Ann. Sci. Ecole Norm. Sup. (3) 64 (1947), p. 119-138.
 - [6] A. Zygmund, Trigonometrical series, Warsaw 1935.
 - [7] L. Schwartz. Théorie des distributions, II, Paris 1951.
- [8] I. Kaplansky, Primary ideals in group algebras, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), p. 133-6.
 - [9] L. Loomis, Abstract Harmonic Analysis, New York 1953.
- [10] A. Weil, L'Integration dans les groupes topologiques et ses applications, Paris 1953.

Reçu par la Rédaction le 1. 8. 1959

Ergodische Funktionale und individueller ergodischer Satz

von

S. GŁADYSZ (Wrocław)

 $(S,\mathfrak{B},m),m(S)=1$, sei ein festgesetzter Maßraum und T eine meßbare nichtsinguläre Transformation von S in S (es ist also $T^{-1}B \,\epsilon \, \mathfrak{B}$, wenn $B \,\epsilon \, \mathfrak{B}$, und $m(T^{-1}B)=0$, wenn m(B)=0). Der Körper von meßbaren und T-invarianten Mengen soll mit \mathfrak{B}_T oder genauer mit $\mathfrak{B}_T(m)$ bezeichnet sein $(B \,\epsilon \, \mathfrak{B}_T \text{ wenn } B \,\epsilon \, \mathfrak{B} \text{ und } m(T^{-1}B \,\dot{-}\, B)=0$), und der Raum von linearen Kombinationen der charakteristischen Funktionen der Mengen aus \mathfrak{B} mit $X(\mathfrak{B})$.

Es ist bekannt, daß man die Voraussetzung der Invarianz des Maßes in dem individuellen ergodischen Satze weit schwächen kann [2], [3]. Für die individuelle Konvergenz m-fast überall (weiter auch m-f. ü. oder [m] bezeichnet) genügt es z. B., wenn es ein solches K gibt, daß

$$\lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} m(T^{-k}B) \leqslant Km(B), \quad B \in \mathfrak{B}.$$

Ebenso, kann man solche Voraussetzungen durch andere ersetzen, z. B. durch starke Konvergenz der ergodischen Mitteln

$$f_n(s) = \frac{1}{n} \sum_{k=0}^{n-1} f(T^k s)$$

in $L^r(m)$, $r \geqslant 1$ [2].

In dieser Arbeit ist die Bedeutung aufgeklärt, welche bei solchen Sätzen die hier ergodisch genannten Funktionale, besitzen. Die Existenz eines solchen Funktionals auf $L^1(m)$ ist mit der f. ü.-Konvergenz von $f_n \to f^* \in L^1(m)$ gleichbedeutend. Daraus folgt sofort, daß die individuelle f. ü.-Konvergenz nicht nur eine Konsequenz der starken, sondern auch der schwachen und dabei nach einem einzigen Funktionale $\int dm$ ist. Wie bekannt [2], umgekehrt verursacht die f. ü.-Konvergenz noch nicht die starke. Es entsteht die Frage ob dann wenigstens die Konvergenz der Integrale $\int f_n dm$ folgt. Dann wäre $\lim \int f_n dm$ ein natürliches ergodisches Funktional. Beispiel 3 (in 3) zeigt, daß im allgemeinen dies auch nicht stattfindet.

Anstatt der Maße $m(T^{-k}B)$, $k=0,1,\ldots$, ist es hier bequemer entsprechende ergodische Funktionale auf $X(\mathfrak{B})$ zu betrachten. Dem eben zittierten Falle entspricht das ergodische Funktional

$$\overline{\lim} f_n dm, f \in X(\mathfrak{V}).$$

Es ergibt sich, daß die individuelle Konvergenz der ergodischen Mitteln gleichbedeutend mit der Existenz und Stetigkeit irgendeines ergodischen Funktionals auf $X(\mathfrak{B})$ ist.

1. Jetzt gehen wir zur exakten Formulierung der Resultate über.

X sei ein linearer Raum von meßbaren Funktionen, die modm identifiziert sind. Es wird immer vorausgesetzt, daß $X(\mathfrak{V}) \subset X$, wo $X(\mathfrak{V})$ der Raum von linearen Kombinationen der meßbaren charakteristischen Funktionen ist. Mit X^+ wird der positive Kegel von nichtnegativen Funktionen aus X bezeichnet.

Das Funktional p, definiert auf X^+ , soll ergodisch heißen, wenn es konvex:

$$p(t\cdot f) = t\cdot p(f), \quad t \geqslant 0,$$

 $p(f+g) \leqslant p(f) + p(g),$

monoton:

$$0 \leqslant p(f) \leqslant p(f+g),$$

invariant:

$$p(Tf) = p(f), \quad Tf(.) = f(T.),$$

und konservativ:

$$p(f) = \int f dm \quad \text{für} \quad f \in X^+(\mathfrak{V}_T),$$

ist.

Es gibt eine strenge Beziehung zwischen der Existenz eines solchen Funktionals in manchen Funktionalräumen und der Existenz eines T-invarianten Maßes. Für die in der Ergodentheorie wichtigsten Räume $L^{r}(m)$ gilt nämlich

SATZ 1. Ist $1 < r < \infty$, so sind I, II und IV äquivalent und ziehen III nach sich, dagegen sind für r = 1 alle vier folgenden Thesen äquivalent:

I. Es existiert auf $L^{r+}(m)$ ein ergodisches Funktional.

II. Es existiert auf $X^+(\mathfrak{B})$ ein ergodisches Funktional p und ein solches K, da β

$$p(f) \leqslant K. \|f\|_{r}.$$

III. Es existiert auf \mathfrak{B} ein invariantes σ -Ma β μ konservativ auf \mathfrak{B}_T (1) und ein solches K, da β

(2)
$$\mu(B) \leqslant K. [m(B)]^{1/r}, \quad B \in \mathfrak{B}.$$

IV. Für jede $f \in L^s(m)$, $s \ge r$, existiert m-f. ü. $\lim f_n = f^* \in L^{s,r}(m)$ (2). Beweis dieses Satzes, wie auch anderer Sätze, ist in 2 gegeben.

Wir machen noch die Bemerkung, daß man in IV im allgemeinen nicht erwarten kann, daß $f^* \in L^s(m)$ anstatt in $L^{s,r}(m)$, wie es Beispiel 1 zeigt. Ebenso, für r > 1, ist III nicht mit anderen Thesen äquivalent (Beispiel 2).

Für den Raum der beschränkten Funktionen $L^{\infty}(m)$ ist Satz 1 schon falsch, da dort immer ein ergodisches Funktional existiert (z. B. $\overline{\lim} \int T^n f dm$), dagegen ist im allgemeinen IV nicht wahr. Und so in L^{∞} folgt IV nicht aus I. Aber diese Folgerung besteht, wenn das ergodische Funktional im gewissen Sinne stetig, oder auf einem mehr als L^{∞} umfangreichem Raume erklärt ist.

Das ergodische Funktional p ist m-stetig, wenn

$$p(f_n) \to 0$$
, für $f_n \downarrow 0 [m]$, $f_n \in X^+(\mathfrak{B})$.

Offenbar, wenn das Funktional p die Bedingung (1) erfüllt, so ist es m-stetig.

Ein Z(m) Raum ist ein linearer F-Raum mit der im allgemeinen nicht homogenen Norm $\|.\|$, dessen Elemente \mathfrak{B} -meßbare Funktionen identifiziert mod m sind. Es wird vorausgesetzt, daß $X(\mathfrak{B}) \subset Z(m)$, daß $|f| \in \mathbb{Z}$, wenn $f \in \mathbb{Z}$ und $\||f|\| = \|f\|$, daß der Kegel X^+ von nichtnegativen Funktionen abgeschlossen ist und daß

(3)
$$||f_n|| \to 0, \quad \text{wenn} \quad 1 \geqslant f_n \downarrow 0 \ [m].$$

Eine Operation φ , die $Z^+(m)$ in den Raum von meßbaren Funktionen abbildet, heißt *ergodisch*, wenn sie konvex, monoton, invariant und konservativ ist. Dies letzte bezeichnet, daß $\varphi(f) \in L^1(m)$, wenn $f \in X^+(\mathfrak{V}_T)$ und daß $\varphi(f) = f \lceil m \rceil$, wenn $f \in X^+(\mathfrak{V}_T)$.

SATZ 2. Die Thesen II', III' und IV' sind äquivalent (3) und folgen aus I'.

I'. Es existiert auf $Z^+(m)$ ein ergodisches Funktional oder eine ergodische Operation.

II'. Es existiert auf $X^+(\mathfrak{B})$ ein m-stetiges ergodisches Funktional. III'. Es existiert auf \mathfrak{B} ein invariantes und konservatives auf \mathfrak{B}_T σ -Ma β $\mu < m$.

IV'. Für jede $f \in L^{\infty}(m)$ existiert m-f. ü. $\lim f_n$.

⁽¹⁾ d. h. $\mu = m$ auf $\mathfrak{B}_T(m)$.

^(*) Aus I oder II folgt IV für jedes $s\geqslant r,$ dagegen umgokehrt, wenn man andere Thesen aus IV bekommen will, genügt es in IV nur s=r zu setzen.

⁽⁸⁾ Daß III' aus IV' folgt, hat C. Ryll-Nardzewski bemerkt.

2. Beweise. Hilfssatz 1. Gibt es auf X^+ ein ergodisches Funktional p, so gibt es auf dem ganzen X ein lineares ergodisches (also positives) Funktional F mit

$$(4) F(f) \leqslant p(f) f \ddot{u}r f \geqslant 0.$$

Beweis. Das auf dem ganzen X definierte Funktional $q(f) = p(f^+)$ (*) ist offenbar invariant und konvex, was leicht aus der Konvexität und Monotonität von p folgt. Da, wegen der Konservativität,

$$F(f) = \int f dm \leqslant q(f)$$
 auf $X(\mathfrak{V}_T(m))$,

so kann man das lineare Funktional F aus $X(\mathfrak{S}_T(m))$ zum ganzen X linear fortsetzen, wobei die Invarianz und die Bedingung

$$F(f) \leqslant q(f)$$

gültig bleiben ([5], Satz 15).

Es bleibt nur zu zeigen, daß $F(f) \ge 0$, wenn $f \ge 0$, was aus der Monotonität von g folgt: für $f \ge 0$ ist

$$-F(f) = F(-f) \leqslant q(-f) = p(0) = 0.$$

Hilfssatz 2. Ist p, im Hilfssatz 1, ein m-stetiges ergodisches Funktional, so ist $\mu(B) = F(\chi_B)$ (5) ein invariantes, konservatives (6) σ -Ma β mit

Beweis. Aus dem Hilfssatz 1 folgt unmittelbar, daß μ ein endlich additives Maß ist, das außerdem alle verlangte Eigenschaften besitzt. Es genügt also zu zeigen, daß μ ein σ -additives, also stetiges Maß ist, was sofort aus (4) und aus der Stetigkeit von p folgt.

HILFSSATZ 3. X sei ein abstrakter linearer F-Raum ([1], S.35), $X^+ \subset X$ ein abgeschlossener positiver Kegel und p ein Funktional auf X^+ . Gilt für p (auf X^+)

$$(6) p(x/n) \to 0,$$

$$(7) p(x+y) \geqslant p(x) \geqslant 0,$$

so gilt auch

(8)
$$p(x_n) \underset{n}{\Rightarrow} 0$$
, wenn $||x_n|| \underset{n}{\Rightarrow} 0$, $x_n \in X^+$.

Beweis. Wäre (8) nicht wahr, so gäbe es eine solche Folge $x_k \in X^+$, daß

(9)
$$||x_k|| \to 0$$
, wobei $p(x_k) \geqslant a > 0$.

Da $\|nx_k\| \stackrel{2}{\to} 0$, $n=1,2,\ldots$, könnte man eine Teilfolge (weiter auch mit x_k bezeichnet) mit $\sum\limits_{n=1}^{\infty}\|nx_n\|<\infty$ finden. Das zieht nach sich die Konvergenz jeder der Reihen $y_N=\sum\limits_{n=N}^{\infty}nx_n,\ N=1,2,\ldots$, wobei $y_N\epsilon X^+$, da X^+ abgeschlossen ist.

 $p(y_1)$ hat also einen Sinn und dabei ergibt sich, aus (6), $p(y_1/N) \underset{N}{\to} 0$. Nach (7) und (9) wäre aber

$$p\left(y_{1}/N\right) = p\left(\frac{1}{N}\sum_{n=1}^{N-1}nx_{n} + x_{N} + y_{N+1}/N\right) \geqslant p\left(x_{N}\right) \geqslant a > 0.$$

Dieser Widerspruch bestätigt (8).

HILFSSATZ 4. p sei ein homogenes Funktional, erklärt auf einem abgeschlossenen positiven Kegel X^+ eines abstrakten Banachschen Raumes X. Ist p auch monoton, gilt also für p auch (7), so gibt es eine solche Konstante K, daß

$$p(x) \leqslant K. ||x||, \quad x \in X^+.$$

Beweis wie üblich bei solchen Sätzen: im Gegenfalle gäbe es eine Folge $x_n \in X^+$ mit $p\left(x_n\right) \geqslant n. \|x_n\|$. Für $y_n = x_n/\|x_n\|$ wäre dann $y_n/n \to 0$ und gleichzeitig

$$p(y_n/n) = p(y_n)/n \geqslant 1,$$

was bereits mit Hilfssatz 3 im Widerspruch steht.

Beweis des Satzes 1. $I \rightarrow II$ nach Hilfssatz 4.

II \rightarrow III. Nach (1) ist das Funktional p m-stetig und darum (Hilfs-satz 2) existiert auf 3 das verlangte Maß μ , das wegen (5) und (1) die Ungleichung (2) erfüllt.

 $H \to IV$. Das Funktional F des Hilfssatzes 1, definiert auf $X = X(\mathfrak{V})$, besitzt folgende Eigenschaften:

1° aus (1) und (4): $F(|f|) \leq p(|f|) \leq K \cdot ||f||_r$;

2° aus der Definition von μ (Hilfssatz 2) folgt $F(f) = \int f d\mu$.

Da aber $X(\mathfrak{V})$ dicht ist, gilt die Ungleichung

$$\int |f| d\mu \leqslant K. ||f||_r, \quad f \in L^r(m),$$

allgemein. Darum, wenn $f \in L^s(m)$, oder, was gleichwertig ist, $f^{s/r} \in L^r(m)$, so $f^{s/r} \in L^1(\mu)$.

⁽⁴⁾ $f^+ = f^+(s) = \max[0, f(s)].$

^(*) χ_B bezeichnet die charakteristische Funktion der Menge B, also $\chi_B(s)=1$ wenn $s \in B$ und 0 sonst.

⁽⁶⁾ Siehe (1).

Die Grenze $\lim f_n = f^*$ existiert also μ -f. ü. und dabei $f^* \in L^{s,r}(\mu)$. Da T eine nichtsinguläre Transformation in bezug auf m ist, so ist $f^*\mathfrak{B}_T(m)$ -meßbar. So existiert $\lim f_n$ auch m-f. ü. und $f^* \in L^{s,r}(m)$, weil $m = \mu$ auf $\mathfrak{B}_T(m)$ ist.

IV \rightarrow I. Wenn $f \in L^r(m)$, so $f^* \in L^1(m)$ und $p(f) = \int f^* dm$ ist trivial ein ergodisches Funktional.

 $III \rightarrow II$. Wie vorher, wobei (1), für r = 1, aus (2) folgt.

Beweis des Satzes 2. I' \rightarrow II'. Es sei p ein ergodisches Funktional auf dem abgeschlossenen Kegel $Z^+(m)$. Aus Hilfssatz 3 folgt

$$p(f_n) \to 0$$
, wenn $||f_n|| \to 0$, $f_n \in \mathbb{Z}^+$.

Jetzt sei $B_1 \supset B_2 \supset \ldots$, $\bigcap B_n = 0$. Dann, wegen (3) ist $\|\chi_{B_n}\| \to 0$, also auch $p(\chi_{B_n}) \to 0$, was die verlangte Stetigkeit von p gibt.

Wenn dagegen auf Z^+ eine ergodische Operation φ erklärt ist, so führt man auf $X^+(\mathfrak{B})$ ein Funktional $p(f)=\int \varphi(f)dm$ ein, das offenbar ergodisch ist. Es genügt zu zeigen, daß p m-stetig ist.

Das Hilfsfunktional $q(f) = \int \arctan \operatorname{tg} \varphi(f) dm$ ist bereits auf dem ganzen Z^+ definiert. Es ist zwar nicht homogen, aber monoton und erfüllt (6). Hilfssatz 3 ist also anwendbar, woraus die Stetigkeit von q folgt; genauer, daß

$$q(f_n) \to 0$$
, wenn $||f_n|| \to 0$ und $f_n \geqslant 0$.

Daraus folgt die asymptotische Konvergenz $\varphi(f_n) \to 0$.

Wenn also $B_1 \supset B_2 \supset \ldots$, $\bigcap B_n = 0$, so ist (nach (3)) $\|\chi_{B_n}\| \to 0$ und daher $q(\chi_{B_n}) \to 0$, was schließlich $\varphi(\chi_{B_n}) \to 0$ gibt. Dies und die Monotonität von φ gibt weiter

$$p(\chi_{B_n}) = \int \varphi(\chi_{B_n}) dm \to 0$$

also die m-Stetigkeit von p.

 $II' \rightarrow III'$ nach Hilfssatz 2.

 $III' \rightarrow IV'$ wie üblich: aus der Konservativität folgt, daß $\lim f_n$, der sicher μ -f. ü., auch m-f. ü. existiert.

 $IV' \rightarrow III'$. Für jedes $B \in \mathfrak{V}$ existiert die Grenze

$$\mu(B) = \lim \mu_n(B),$$

wo

$$\mu_n(B) = \int \frac{1}{n} \sum_{k=0}^{n-1} \chi_B(T^{-k}s) dm$$

ist. Dieses μ , als Grenze von absolut stetigen und σ -additiven Maßen ist auch ein absolut stetiges und σ -additives Maß [4], das offenbar invariant ist.

 $III' \rightarrow II'$ trivial, weil $\int f d\mu$ alle verlangten Eigenschaften besitzt.

3. Beispiele. 1. In IV (Satz 1) ist im allgemeinen nicht $f^* \in L^s(m)$, wenn $f \in L^s(m)$, wie es das folgende Beispiel zeigt.

Es sei $S = \{s_1, s_2, \ldots\}, Ts_{2k-1} = s_{2k}, Ts_{2k} = s_{2k-1}, k = 1, 2, \ldots$ und $m(s_{2k-1}) = 2^{-k} - 2^{-3k/2}, m(s_{2k}) = 2^{-3k/2}$. Hier besteht \mathfrak{V}_T aus Kombinationen von Mengen $\{s_{2k-1}, s_{2k}\}$ und das konservative und invariante Maß ist $\mu(s_{2k-1}) = \mu(s_{2k}) = 2^{-k-1}$. Daher

$$h = \frac{d\mu}{dm} = \begin{cases} 1/2(1 - 2^{-k/2}) < 2, & \text{wenn} \quad s = s_{2k-1}, \\ 2^{k/2-1}, & \text{wenn} \quad s = s_{2k}, \end{cases}$$

und $\int h^2 dm < \infty$.

Ist $f \in L^2(m)$, so gilt

$$\int |f| d\mu = \int |f| \cdot h dm \leqslant ||f||_2 \cdot ||h||_2 < \infty$$

und $f \in L^1(\mu)$. Deshalb ist das Funktional $p(f) = \int f d\mu$, wegen der Konservativität von μ , ein ergodisches Funktional auf $L^2(m)$. Nach Satz 1 sind also I-IV für r=2 erfüllt.

Ist $f \in L^2(m)$, so ist $f^* \in L^1(m)$, s = r = 2, was man auch leicht unmittelbar prüfen kann, aber nicht unbedingt $f^* \in L^2(m)$, wie es die Funktion

$$f(s) = egin{cases} 0, & ext{wenn} & s = s_{2k-1}, \ 2^{k/2}, & ext{wenn} & s = s_{2k}, \end{cases}$$

zeigt. Für diese gilt nämlich offenbar $\int f^2 dm = \sum 2^k \cdot 2^{-3k/2} < \infty$ und gleichzeitig $\int f^{*2} dm \geqslant \sum 2^{k-2} \cdot m(s_{2k-1}) = \infty$.

2. Wir werden zeigen, daß im Satz 1, für r=2, III mit anderen Thesen nicht äquivalent ist.

S und T seien wie im Beispiel 1. Das Maß m wird folgendermaßen definiert: $m(s_{2k-1})=2^{-k}-2^{-2k}$, $m(s_{2k})=2^{-2k}$, so daß wie vorher $\mu(s)=2^{-k-1}$, wenn $s=s_{2k-1}$ oder s_{2k} .

Offenbar gilt $\mu(B) \leq [m(B)]^{1/2}$ und so ist die Bedingung III im Satz 1 für r=2 erfüllt. Dagegen ist IV nicht erfüllt, da es eine Funktion $f \in L^2(m)$ gibt, für die $f^* \notin L^1(m)$. Eine solche is z. B.

$$f(s) = egin{cases} 0, & ext{wenn} & s = s_{2k-1}, \ 2^k/k, & ext{wenn} & s = s_{2k}. \end{cases}$$

Dann hat die Grenzfunktion die Gestalt $f^*(s) = 2^{k-1}/k$ für $s = s_{2k-1}, s_{2k}$ und es gilt

$$\int f^* dm \geqslant \sum \frac{2^{k-1}}{k} \cdot m(s_{2k-1}) = \infty.$$

3. Es wird das Beispiel einer Transformation T gezeigt, für welche: 1^o $Tf \in L^1(m)$, wenn $f \in L^1(m)$, 2^o die Grenze $f^* = \lim f_n$ existiert überall für jede endliche Funktion, f und 3^o $f^* \in L^1(m)$, wenn $f \in L^1(m)$ und dabei Beispiel einer Funktion $f \in L^1(m)$ mit $\int T^n f dm \to \infty$.

Es sei S eine abzählbare Menge verteilt auf Untermengen S_n , $n=1,2,\ldots$, jede mit 2^n+n+1 Punkten $s_{n,1},s_{n,2},\ldots$ mit den Maßen

$$m(s_{n,k}) = \begin{cases} 2^{-(n+k+1)}, & \text{wenn} \quad k \leqslant n, \\ 2^{-(2n+1)} & \text{sonst.} \end{cases}$$

Es ist $m(S_n) = \sum_k m(s_{n,k}) = 2^{-n}$, so daß $m(S) = \sum_n m(S_n) = 1$. Die Transformation T werde folgendermaßen definiert:

$$Ts_{n,k} = egin{cases} s_{n,k+1}, & ext{wenn} & 1 \leqslant k \leqslant 2^n + n, \ s_{n,1}, & ext{wenn} & k = 2^n + n + 1. \end{cases}$$

Die invarianten Mengen sind Kombinationen von S_n und das invariante und konservative Maß μ ist leicht zu zeigen, nämlich

$$\mu(s_{n,k}) = m(s_n)/2^n + n + 1 = 2^{-n}/2^n + n + 1.$$

Für jeden Punkt gilt

$$\mu(s_{n,k})/m(s_{n,k}) \leqslant \mu(s_{n,k})/m(s_{n,n}) \leqslant 2$$

und darum auch allgemein $\mu(B) \leq 2m(B)$.

Daraus folgt sofort $f^* \epsilon L^1(m)$, wenn $f \epsilon L^1(m)$. Denn aus der Konservativität folgt $f \epsilon L^1(\mu)$ und daher $\int f^* dm = \int f^* d\mu = \int f d\mu < \infty$. Weiter, da $m(T^{-1}s_{n,k}) \leqslant 2m(s_{n,k})$, so allgemein $m(T^{-1}B) \leqslant 2m(B)$ und $Tf \epsilon L^1(m)$ zusammen mit f.

Die folgende Funktion gibt das verlangte Beispiel:

$$f(s) = \begin{cases} n.2^n & \text{wenn} \quad s = s_{n,n}, \\ 0 & \text{sonst.} \end{cases}$$

Offenbar ist $f \in L^1(m)$, aber gleichzeitig

$$\int T^{n-1} f dm \geqslant n \cdot 2^n \cdot m(s_{n,1}) = n/4,$$

da $T^{n-1}s_{n,1}$ gleich $s_{n,n}$ ist.

Zitatennachweis

- [1] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [2] N. Dunford and D. S. Miller, On the ergodic theorem, Trans. Amer. Math. Soc. 60 (1946), S. 538-549.
- [3] C. Ryll-Nardzewski, On the ergodic theorems (I), Studia Math. 12 (1951), S. 65-73.
- [4] S. Saks, On some functionals, Trans. Amer. Math. Soc. 35 (1933), S. 549-556.
 [5] R. J. Silverman, Means on semigroups and the Hahn-Banach extension property, ibidem 83 (1956), S. 222-237.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATISCHES INSTITUT DER POLNISCHEN AKADEMIE DER WISSENSCHAFTEN

Reçu par la Rédaction le 12. 9. 1959