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Continuity of semi-norms on topological vector spaces

by

M. R. MEHDI (London)

1. Let B be a vector space over the real (or the complex) field and
denote its zero element by @. A real function p on ¥ is called a semi-norm
if for all @, y<F and every real (or complex) number 2,

p(dr) = |A]p(x)
and

pla+y) <pl@)+ply).

It then follows that p(@) =0, 0<p(z) < +oo and |p(z)—p(y)l
< p(z—y). Also p is a normif and only if p(z) = 0 implies z = @. If E
is @ topological vector space (TVS) and the semi-norm p is continuous
at one point of ¥, it is continuous everywhere. If F is a normed space,
then p is continuous on P if and only if, for some constant M,

ple) < Mzl for all xeE.

A very useful theorem on semi-norms, due (!) independently to
Gelfand ([71, [8]), Orliez [11] and Bosanquet-Kestelman [3], states that
every lower semi-continuous semi-norm on a Banach space is, in faet,
continuous. More precisely, we have

TuorEM A. If

(1) B is a Banach space,

(if) p is a semi-norm on H,

(iii) p is lower semi-continuous,
then p 1is continuous.

Eberlein [6] extended Theorem A by replacing hypothesis (iii) by
the much weaker hypothesis

(i) p has the Baire property.

(*) T am indebted to Professor W. Orlicz for the references [8] and [11].
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Theorem A with (iii)’ in place of (iii) will be referred to in the sequel as
Theorem B (2). It may be recalled that a funetion f on one topological
space B to another has the Baire property if there is a get H in ¥ guch that
CH is of the first category and the partial function f/H is continuous on H.
In this note we show that this theorem is true when F is any second
category TVS and p is a semi-norm such that the set {w: p(x) <1} is
a Baire set. Some simple consequences of this theorem are noted and
applications are given to the convergence of a sequence of linear trans-
formations on a TVS and the weak convergence of linear functionals
on a TVS.

2. Before proceeding to prove the above result, we remark that
a cerbain refinement of Theorem A by Bosanquet and Kestelman and of
Theorem B by Eberlein is more apparent than real. In the formulation
of Theorem A by Bosanguet and Kestelman it is assumed merely that B
is a normed space and that the lower semi-continuous semi-norm p is
defined on F but is finite on a set D C ¥ which is of the second category.
These assumptions, however, imply that D is identical with E. For, in
the first place, D is a veetor subspace of H, and if, for each » > 1,

A, = {weD: p(a) < n}
then 4 is closed and .
D= A4,

n=1
Thus D is a Borel set (in fact an F,) and, being of the second category,
it ig identical with ¥ by a well-known theorem of Banach ([2], p. 36).
Entirely similar remarks apply to the refinement of Theorem B by Eber-
lein: the sets 4, are then Baire sets and hence D is a Baire set and the
same conclusion is obtained.

3. The main theorem is now proved.

TaeoreM 1. If

(i) B is a second category TVS,

til) p is a (finite) semi-norm on E,

(iii) the set B = {@: p(x) <1} is a Baire se,
then p 1is continuous.

Proof. For > 1, let 4, = {x: p(r) <n}. Then 4, = nB, and
being the image of B under the homeomorphism & — ne of H into itself,

4,18 a Baire set. Since p is finite, ¥ = {_J 4,,. Since F is of gecond category,

n=1

(?) Cf. Math. Review 8 (1947), p. 279 where Theorem B is misquoted.
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4, 18 of the second category, for some m > 1. It follows by the Banach-
-Kuratowski-Pettis theorem (3) that (4,,—4,,)° is non-empty and

g (Am_-A-m)os
where 8° is the interior of the set 8. Since p is a semi-norm,
-Am‘“Am c -Azmr
so that
Qe Ao

Hence there is an open set U in A4,, containing @ and such that
p@) <2m for all xeU.
This implies that p is continuous at @: For ¢ > 0, take any z 7)5—— U,
2m

2
then fakid zeU and
&

0 < po) =p(——~-~—w

Hence p is continuous on E.

Remark. It is interesting to enquire if Theorem 1 is true for groups
in place of vector spaces, with the conditions on p suitably modified.
Let us say that a real function p on (an additive) group G is a pseudo-
-norm if

p(@) =0,
p(—=z) = p(a),
p(z+y) <p@)+pH),

for all #, ye@. It is then tempting to ask if the following proposition
is true: ,,If
(1) & is a complete metric group,
(2) p is pseudo-norm on @,
(3) p has the Baire property (or the sets {z: p(x) < r} are Baire
sets for r = 0),
then p is continuous.

(®) Banach [2], p. 21, Kuratowski [10], p. 82, and Pettis [12], p. 295. Cf. also
Hille [9]
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That the proposition is false may be seen by the following
Example. Take G = R, the additive group of real numbers, and let
J 0, o rational,

plx) = | _—
1, o irrational.
All the conditions (1)-(3) are satisfied. But p is discontinuous at every
point. What conditions (1)-(3) imply is that p is bounded on some non-
-empty open set in @. But this implies continuity only in the presence
of secalar multipliers. Clearly the function p in the abeve example is not
lower semi-continuous at every point of R. It is an open question whether
lower semi-continuous pseudo-norms on complete metric groups are
necessarily continuous.

4. Corollaries. Theorem 1 and the corollaries below are true, in
particular, when E is a complete metrizable TVS. These spaces include
the F-spaces of Banach (whose metric is invariant under translation)
and the Fréchet spaces of Bourbaki [5] (which are locally convex).

COROLLARY 1. On a second category TVS, every semi-norm which has
the Baire property (or, in particular, is Borel measurable) is continuous.

If p has the Baire property, then for every closed set ' in the real
line, p~(F) is & Baire set. This follows from a theorem of Kuratowski
([10], p. 306). (The proof there given for functions on a metric space
holds for functions on any topological space.)

COROLLARY 2. On a second category TVS, every lower (o upper) semi-
-CONLINUOUS SEMI-NOTIL 18 CONTINUOUS.

For, if p is lower semi-continuous then {z: p(z) < 1} is closed and
therefore a Baire set. And if p is upper semi-continuous then the sets
{#: p(#) <141/n} are open and

{e: p(e) <1} = (oi{m p(m)<1+%}

80 that {x: p(x) <1} is a G and hence a Baire set.

CoRrOLLARY 3. Ewvery second category locally convexr space is tunnelled.

Tor, by corollary 2, every lower semi-continuous semi-norm on the
spaces is continuous, ¢f. Bourbaki ([5], p. 1-2).

Remark. We recall that in the Bourbaki terminology [4], a Baire
space is a topological space in which every non-empty open set is of the
second category. It is easily seen that a topological group is of the
second category if and only if it is a Baire space. This follows from
Banach’s first category theorem ([1], [10], p.51) and shows that corol-
lary 3 is equivalent to a theorem of Bourbaki ([5], p.1).

icm®

Continuity of semi-norms 85

COoROLLARY 4. If E is o second category TVS and (p,) is o sequence
of continuous semi-norms on E such that Limp,(x) ewists for every vel,

T—>00

then p, defined by
n—00
18 a continuous semi-norm on K.

Proof. That p is a semi-norm follows readily from the fact that the p,
are semi-norms. Since p is Borel measurable, the result follows from
corollary 1.

TEROREM 2. Let B be a second category TVS and F a Banach space
and let u, (n >1) be continuous linear transformations on B to F such that

sup [luy, (7)) < o0

for each zeB. If limw,(x) ewists on a set S dense (or fundamental) in K,

N—00

then limwu,(x) ewists for every xzeE.

T~300

Proof. Put p(x) = sup fju,(2)|. Since the %, are linear, p is a semi-

-norm and since the w, are continuous, p is lower semi-continuous. By
Theorem 1, p is continuous on E. Hence, to each &> 0, there is an open
neighbourhood U of @ such that

plx) < de zeU.

Choose any ye E. Then U4y is an open neighbourhood of y. Since § is
dense in B, there is 2¢ § such that z¢ U+y, i. e., such that z2—yU. Now

lfotn (5) — e (P == b (Y — 2) - 2 () — U (2) + %, (2 — H)]
< et (Y — 20|l (2 — )1 [ (2) — 2 (2)]]
< 20 (2 —Y)| +|1n(2) — un(2)l]
< &t {[um () — ua (2)]].
Since ze¢ S, this implies that

lim ”um(y)_un(y)“ =0,
m,n—s00

for all

and the result follows from this, since F is a Banach space.

TuEOREM 3. Let E be a second category TVS and let f, (n >=1) be
continuous linear functionals on E. The necessary and sufficient conditions
for lim f, (x) to exist for every zeE are:

N—>cO

(i) sup|fpi2)| < oo, for each weE,

(i) Hmf,(x) exists on a fundamental set in H.
N—»00
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Proof. The necessity of (i) and (ii) is trivial and their sufficiency
follows from the previous theorem.
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Sur le probléme de la division

par

S. LOJTASIEWICZ (Krakéw)

Le but de cet article est de démontrer un théoréme qui confirme une
hypothése de L. Schwartz, selon laquelle la division d'une distribution
par une fonction analytique réelle est toujours possible (cf. [10], p. 116
et [9], p.181): Dégquation

o8 =T

admet toujours une solution S, quelles que soient lo distribution T et la
fonction analytigue réelle @.

Evidemment cette solution n’est pas unique (sauf le cas ol @ = 0) et toutes
les solutions de I’équation homogéne S sont portées par l'ensemble des zéros de .

L. Schwartz a résolu ce probléme (dans [9]) pour une fonction ana-
lytique de n variables complexes (considérés comme une fonction de 2n
variables réelles).

11 résulte du théoréme de L. Schwarbtz que l'on peut diviser par foute fonction
analytique réelle de la forme

@15 Y1o oo Tms Yn) = [f (@25 o os 20

ol f est une fonetion holomorphe des variables #1 = 21411, -+-> 2n = Tp+ 1Y -

Dans la premiére partie nous nous occuperons des distributions et
des fonctions indéfiniment dérivables (sans faire intervenir la mnotion
d’analycité) et nous démontrerons quelques théorémes sur la division
dans certains cas.

La deuxitme partie est consacrée & la décomposition d’un ensemble
analytique réel en sous-variétés. On obtient certaines propriétés de cette
décomposition, qui résultent d’une inégalité de la forme

|f(@)| = o ()

(ol f est analytique réelle, o(z) désigne la distance & 'ensemble des z€ros);
1a. démonstration de cette inégalité est assez difficile, bien que, dans le
cas des variables complexes, elle soit banale. Finalement nous arrivons
au théoréme sur la division par une fonction analytique réelle.

L’idée de la démonstration a ét6 signalée dans une note aux Comptes
Rendus [6].
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