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Nous avons Kp(uy) = 0 pour » <p eb () — % ()| = 2/m. Nous
obtenons, par analogie avec le caleul du travail [13],

Inn

R . 1
[ty — o Ul > - =3 Innuy—ttllge  (Pour 2 < p).

On peut choisir un nombre p tel que 2/Inp < 4,. Done, il en résulte
que pour p > exp2/4, et pour toutes les fonetions K, I'inégalité suivante
est satisfaite: 1/g < 4.

Le domaine d’existence des solutions de Péquation (13) est alors essen-
tiellement plus grand que le domaine d’unicité.
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Holomorphic vector-valued functions and Hartogs’ theorems
by
R. E. EDWARDS (London)

1. The aim ot this note is to show how certain parts of the existing
theory of vector-valued holomorphic functions may be used to obtain
close analogues of theorems of Hartogs (see e.g. [1], pp. 137-142) about
functions of several complex variables. Hartogs’ theorems themselves
are not obtained in as much as we find it necessary to impose & priori
conditions of local boundedness. However, repayment for this initial
expense comes in the form of increaged generality and the weakening
of other hypotheses involved.

Holomorphic functions with values in a Banach space are discussed
in [3], pp. 92 et seq. A briefer, more general, and in some respects more
convenient account is given in §2 of [2].

2. General results. In this section ¢ will denote a Fréchet space,
¢’ its topological dual, and ¢ , > the bilinear form expressing the duality
between. € and ¢'.

ProrosiTioN 1. Let M be a locally compact space, p 6 positive measure
on M, @ a function mapping M into . Assume that the following conditions
are satisfied:

(1) ¢ 28 olmost separably-valued;

(2) there exists a subset A of &' generating & vector subspace [A] which
s sequentially weakly dense in E' and such that, for each Led, the function

t—<p(t), L)

is u-measurable;

3) [™p(@(®)du(t) < +oo jor each continuous seminorm p on €.

Then the weak integral [p(t)du(t), a priori an element of the algebraic
dual E™ of ¢, in fact belongs to €.

Proof. Thanks to (1) we may assume that ¢ itself is separable.
(2) shows at once that ¢— {p(t),L> is measurable for each L
in F', and (3) shows that in addition this same function is u-in-
tegrable. So the weak integral certainly exists as an element of &',
say u. In order to show that « lies in ¢, it suffices to show that the linear
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form L — (u, L) on ¢&'is such that its restriction to each equicontinuous
subset @ of ¢’ is weakly continuous. However, € being separable, the
weak topology induces on @ a metrisable topology. Moreover, there is
a continuous seminorm p on ¢ guch that |(w, LY| < p(x) for » in &
and L in Q. If then a sequence (L,) extracted from the set @ conver-
ges weakly to Le@, we have [(p(t), L>| < p(p()) for all ¢ and all »,
and Lm<{p(t), Ly> = {p(¥), L) for all z. Thus, by Lebesgue’s theorem,
N—00

lim (u, Loy =lim [ <p(t), Ly du(t) = [<p(t), Lyap(t) = <u, L),

and the desired continuity is established. Thus Proposition 1 is proved.
PROPOSITION 2. Let € be a separable Fréchet space, and let ¢ be a
mapping of the polydisk
P = {t = (ti)lsi<meomz S?P [t < 1}
1<igm

into € which satisfies the following conditions:

(a) there ewists a subset A of &' such that [A] is sequentially weakly
dense in € and such that, if t* = 1] <P, numbers v; can be found satisfying
0 <7, <1—|] for which

(2.1) (61 vy Om) —> p(R+711672, o, ty 1 6¥m), L)

is measurable for each LeA, whilst

2m *

27
22) [ ] plp@And, ., Gt ™) dl, ... @0y < oo
0 0

for each continuous seminorm p on C;

(b) there ewists a total subset @ of the space &' such that, for each
TeO,t— {p(t), T> ts holomorphic on P.

The conclusion is that @, is holomorphic on P.

Proof. Let ¢; be the positively oriented circumference with centre
1§ and radius 7;, and let P’ C P be the open polydisk with distinguished

boundary ¢;X...X¢,. By (a) and Proposition 1, if ¢ lies in P’ the weak
integral

p(t) = @ri)™ [ [pls)dsy ... dsmf(si— 1) ... (sn—tm)
€1 ®m

lies in ¢; and it is clear that y is holomorphic on P'. It Te®, then

@, T> = @r)™ [... [(p(s), Todsy...dsp/(51—1)... (Sm—1tm),

a m

icm
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and this is equal to {p(?), T') because of (b). Since O is total, it follows
that ¢ and y agree on P’. Thus ¢ is holomorphic on some neighbourhood
of each point of P, and the proof is complete.

Remark. Condition (a) will certainly be satisfied if ¢ is locally boun-
ded and (2.1) is measurable for each LeA.

3. A theorem of the Hartogs’ type. Throughout this section X
and Y will denote complex manifolds. If D is a relatively compact open
set in ¥, (D) will be the space of functions continuous on D and holo-
morphic on D. This is & Banach space when equipped with the norm,

llgll = Supig(y)l;
yeD

the supremum here could equally well be taken over D or over D* the
frontier of D relative to ¥. &(D) is isomorphic with & vector subspace
of the space ((D*) of continuous functions on D*, likewise equipped with
the sup norm. D* Dbeing metrisable and compact, C(D*) is separable;
hence the same is true of &(D). (For our purposes it is somewhat more
convenient to take ¢£(D) thus defined, rather than the Fréchet space of
functions holomorphic on D with the compact-open topology.)

We shall wish to apply Proposition 2 to spaces of the type &(D)
with D a relatively compact domain. So it is convenient to observe here
that each point 4 of D defines an element ¢, of (D)’ defined by {g, &
= g(y) for gin &(D). Further, if § is a dense subset of the set D*, then
A = {g,: y<8} generates a sequentially weakly dense vector subspace [4]
of &(D). Indeed, in view of the isomorphic imbedding of (D) into
0(D*), any element of &(D) is of the type

9~ [ 9w)du(),

where u is a Radon measure on D*; and any such u is the vague Hmit
of a sequence of measures of the form

Dlenty,  (Uneb).

Again, if B is any somewhere-dense (i. e. not nowhere-dense) sub-
set of D, then 8 = {&,: y <B} is a total subset of £(D)". If ¥ is of (complex)
dimension one, the same is true whenever £ C D admits a limiting point
in D.

Other choices of 8 are possible. For example, one might take @ to
consist of the linear forms

g [9(y)do(y),

where ¢ ranges over any total set of measures on D*.
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With these remarks in mind, we proceed to prove a general theorem
of the Hartogs type. In what follows, measurability of a funection % on
¥ will be understood in this sense: if & is expressed locally as a function
H(2,y ..., %) of local coordinates, then

H(zy+r6%, ., 2+ rpe™™m)

is » measurable function of (6;,...,0n)-

TemorEM 1. Let X and Y be complex manifolds, D a relatively compact
open set in Y, and | a function on X x D which satisfies the following condi-
tions:

(i) f is locally bounded on X xDj;

(ii) for each x <X, the partial function fr:y — f(2,Yy) belongs to E(D);

(ifi) there exists a set AC (D) generating a vecior subspace [A]
which s sequentially weakly dense in E(D) and such that, for each Led,
& — {fy, Ly is measurable on X;

(iv) there emists a total subset © of C(D) such that, for each T<O,
2 > {fo; T> is holomorphic on X.

The conclusion is that the mapping ¢:X — E(D) defined by ¢(z) =
= f,(weX) is holomorphic; in particular, f is holomorphic on XX D.

Proof. By localisation we may assume that X is a polydisk P.
It is clear that ¢:P — &(D) satisties the conditions of Proposition 2,
whence the result.

In view of the remarks preceding Theorem 1 it is clear that, apart
from the additional hypothesis (i), Theorem 1 eontains numerous analogues
and extensions of Hartogs’ results ([1], p. 137, Lemma 2; p. 139, Theorem
2 and Lemma 3; p. 140, Theorem 4; p. 141, Theorem 5). Condition (i)
may be modified somewhat in accordance with (2.2) adapted to the
cases in hand. Tn the most obvious forms of the analogues, D does not
appear explicitly since Theorem 1 is applied to “arbitrarily large” rela-
tively compact domains D.

As another example, we give now an application of Proposition 2
to a theorem of the Hartogs type for mixed real and complex variables.
For simplicity we shall suppose that X is a digk in the complex plane and
Y an interval of the real axis, but generalizations are easily effected.

THEOREM 2. Suppose that f(x, y) is defined for complex » satisfying
l#| < B and real y satisfying a <y <b (0 <R < +o0; —c0o o <b <
+o0). Suppose also that | satisfies the following conditions:

(i) for each m, y — f(z,y) is C° on (a,b), whilst 0°f/0y* ds locally
bounded in the pair (z,y) for each integer k = 0;

(ii) for each y, & — 0*f[0y" is measurable for each integer & = 0;

e ©
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(iii) for each of a total set @ of distributions T with compact supports
in (a, ),
z = {f(z, y), Ty

is holomorphic for |z| < R.
Then f has the form

(3.1) fayy) = D haly)a™,

n=>0

where each h,eC®(a, b) and where, for each integer k = 0, the series

(3.2) 2 (6;;;’) o

>0

converges uniformly on compacls in |z] < R, a <y <b.

Proof. By localisation, we may assume that for each % the function
o*/oy"* is bounded in the pair of variables. We apply Proposition 2,
taking ¢ to be the Fréchet space C*(a, b) equipped with the ecompact-
open topology, and taking for A the set of distributions " e, )0y"
(a<<e<b; k=0,1,2,...). It remains only verify that this 4 has the
property required in Proposition 2, (a). For this, note that the dual of
0*(a,b) is the space of distributions with compaet supports in (a, b).
Now if T is such a distribution, there is a measure x with compact support
in (@, b) and an integer % > 0 such that T' = 9% [0y*. Since u is the weak
limit of & sequence of finite linear combinations of measures & (a < ¢ < b),
and since derivation is continuous in the space of distributions, it follows
that T is the weak limit of a sequence of finite linear combinations of
derivatives 9%,/dy", as required.

The conclusion of Proposition 2 states that the mapping z—f,
is holomorphic from |z| << R into C(a, b), and from this (3.1) and (3.2)
follow by virtue of the Taylor expansion for holomorphic vector-valued
functions (see e. g. [2], Théoréme 1).

Remark. There is an analogous theorem in which C*(a, b) is repla-
ced throughout by C?(a, b) where p is an integer > 0. Then % can be re-
stricted to the unique value k = p.

It is perhaps worth observing also that each &, figuring in the ex-
pansion (3.1) depends continuously of f in the sense that, for any conti-
nuous seminorm p on C%(¢, b) and any nwmber r satisfying 0 <7 < R,
one has the inequality

(8.3) plh) <o (f),
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7. being the element of 0*(a,d) defined by y — f(#, y). This is so be-
cause h, is simply @™ (0)/n!, where ¢ denotes the holomorphic vector-
valued function # — f,; thus

by = (2mi) [ gla)a™ e,

@] =r

and (3.3) follows at once, just as for the Cauchy inequalities for a scalar-
valued holomorphic function.

4. Other extensions. Theorems 1 and 2 admit extensions in
which the function f takes its values in a separable Fréchet space F. &(D)
would be replaced by the space ¢(D, F) of funetions from D into F which
are continuous on D and holomorphic on D; and C®(«, b) would be modified
in like manner. (D, F) will be a Fréchet space when equipped with
the topology defined by the seminorms

Supp,(9(¥),
yeD

where the p, (n =1,2,...) are seminorms defining the topology of F.
It is easily seen that &(D, F) will be separable whenever F has this
property (cf. [4], p. B8, Proposition 5). (One might weaken continuity
on ¥ to weak continuity on ¥, together with separability conditions on
the function involved, but this would have little advantage from the point
of view of applications.) Similar remarks apply to the space of vector-
valued 0% functions.
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The two-norm spaces and their conjugate spaces

by
A. ALEXTEWICZ and Z. SEMADENI (Poznan)

In this paper we continue our investigations on the two-norm spaces,
presented in the papers [2], [3], [5].

A two-norm space is a linear space X provided with two norms:
Il | and a coarser (1) one || |*; these two norms lead to the following
notion of limit: the sequence @, is termed y-conwergemt to =, (written

@, B> wp) it sup |m,ll < co and lim|m,—a* = 0. Thus, as regards the
Nn—00

n=12,,..
distributive functionals, thiee classes arise in a natural way: the spaces
CE > and &% || I*> conjugate to the normed spaces (X, | |
and (X, || |[*), respectively, and the space 5, of functionals sequentially
continuous with respect to the convergence y. Obviously 5*C &,C 5.

The triplet <X, || [, || II*> is called the two-norm space. The space
CE*, I, 01 1D () seems to be the natural two-norm space conjugate
to <X, | |, I| *>. We show that, analogously to the Banach space case,
every two-norm space may be canonically embedded into its biconjugate
two-norm space, with the preservation of both norms. The canonical
mapping enables us to embed any two-norm space into a two-norm space
sequentially complete with respect to the convergence y; this process will
be called the y-completion.

The main purpose of this paper is the study of the interrelations of
the two-norm spaces and of the concepts arising in connection with them.
Some pages are devoted to the y-reflewive spaces, i. e. such which are cano-
nically embedded onto the biconjugate two-norm space; a characteri-
zation similar to the Banach space case is derived. We study algo the
y-compact spaces, i. e. such that each y-bounded sequence contains a sub-
sequence which is y-convergent (to an element); a detailed study is devoted

(1) The norm | |* is called coarser than [|]| (or ||| is called finer than | [*) if
llenll = 0 implies |fzg)/* — 0.

(%) In the triplet-notation for a two-norm space the finer norm will always
precede the coarser one; so in this case the norm |[|| is coarser than || [[*.
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