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STUDIA MATHEMATICA, T. XVII. (1959)

On the Fredholm alternative in locally convex linear spaces

by
H. H. SCHAEFER (Pullman)

The present paper is concerned with the Fredholm alternative for
linear equations in locally convex spaces and a number of neighboring
topics. Such problems have received much attention (!) when the under-
lying space, or spaces, are Banach. Yet the natural background of the
theory are locally convex spaces and this is not only because there are
important spaces in applications which are not normable, but also the
use of locally convex spaces does allow of a more adequate discussion of
adjoints which are closely related to the Fredholm alternative by its
very definition. The reader who is familiar with the basic properties of
locally convex spaces will find the unifying concept to be that of weak
homomorphism or, in other words, that if emphasis is laid on the weak
rather than other topologies this will provide & better insight into much
of the theory. Thus part of the paper is expository in the sense that it
proves, using a uniform approach, results which had been obtained pre-
viously for Banach spaces by various methods. We shall not give a detailed
account of our results here but refer to the preliminary discussion within
the next section and to the four theorems which preferentially may
deserve attention.

0. Definitions and notation. By a linear space we shall understand
a vector space over the real, or complex, scalar field. A linear space is
locally convey if it carries a locally convex topology (2) which is Hausdorff.
If H is a linear subspace of some linear space ¥, then the codimension
of H (in E) is the dimension of the quotient space E/H which is clearly
the same as the dimension of any complementary subspace &, i.e. any
subspace & such that F = ¢++H while ¢ ~ H = 0. In this case E is called
the algebraical direct sum of G and H. A topological linear space E is

(*) See the literature quoted at the end of the paper. In the case of locally convex
spaces, recent progress is mainly due to Altman [1]-[3], and Grothendieck [1], [2].

(3) For the theory of locally convex spaces we refer to Bourbaki [1], [2], and
Kothe [2].
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called the topological direct sum (or simply, direct swm) of G and H if B
is the algebraical direct sum of @ and H while the linear isomorphism
of B onto @ X H is also a homeomorphism (3). We ghall denote direct
sums by writing B = G@H.

Let H be any locally convex space, B’ its dual space i. e. the (linear)
set of all continuous linear forms (*) on H. By w (¥, E) (or m(E', B),
or s(¥, B)) we understand the weak, or Mackey, or strong topologies
respectively on Z’, and similarly for B. It is well known that the topology
of B is somewhere in between w (¥, B') and m(E, E'). If B, F are locally
convex spaces (or, more generally, topological linear spaces), 7' a con-
tinuous linear mapping on F into F, then we shall say that T is a homo-
morphism if the image under T' of any open set in # is open in 7'(H) C F.
An isomorphism of F onto itself is an automorphism of #. Hence not
every continuous linear mapping is a homomorphism, and not every
one-to-one homomorphism is an automorphism of E.

DerinrtioN 1. Let B, F be locally convex spaces. A homomorphism
T on E into F will be called a o-transformation if the null space N (T)
of T is finite dimensional while T'(E) is a closed subspace of F having
finite codimension.

If n and m are the dimensions of N (T) and F/T(E) respectively,
then the integer »(7T) = n—m is said to be the indew of T. Moreover,
we shall denote by Z(E, F) the totality of o-transformations on # into 7,
while by Z,,(B, F), Z,(B, F), and Z,(B, F) we will understand the sets
of linear mappings which are o-transformations under the weak, Mackey,
and strong topologies respectively put on both ¥ and F. Further X, (¥, B')
will mean the set of o-transformations with respect to w(F’, F) and
w(E, H) (and siwilarly for %, (¥, '), Z,(F', E')) while X,(F', B') will
refer to w(¥F’, ") and w(H', B"), ete.

Definition 1 and & number of properties shared by o-transformations
may be found in Schaefer [1]. A somewhat more restricted class of linear
mappings is characterized by the following definition:

DEFINITION 2. Let B, F be locally convex spaces, B', F' their res-
pective duals, T' a weakly continuous linear mapping on ¥ into F, T" its

adjoint. Then T is said to be a Fredholm transformation if either of the
equations

Te =y, Ty =4

® A subspace of a topological linear space will be understood to carry the
topology induced by E unless the contrary is expressly stated.
(*) We prefer this term to the more common “linear functional’.
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is solvable if and only if yeN(T'), o' eN(T)® respectively(®), while the
null spaces N (7T) and N(7"') have the same finite dimension.

More symmetrically, the dual systems (¥, B> and <{F,F’) may
be replaced in this definition by any two dual systems but we shall not
insist on doing so. It can be seen easily (sec. 2) that T' is a Fredholm trans-
formation if and only if it is a weak o-transformation of index zero. We
shall denote the set of all Fredbolm transformations on E into F by
@(E, F), whereas by &' (¥, B'), O(F', ') respectively we shall under-
stand the sets of mappings which are Fredholm when the weak (or
Mackey), respectively strong topologies are put on both F' and B’ (©).

For the rest of this paper we shall be concerned with linear mappings
on a locally convex space into itself. Then the classes of transformations
g0 far considered will become subsets (and, in fact, semi-groups) of the
algebra of linear transformations on H. We next introduce a still simpler
class of mappings.

DEFINITION 3. A weak homomorphism 7 on a locally convex space
E will be called a Riesz transformation if it satisfies the following condi-
tions:

1. N(T" is a fixed finite dimensional subspace of B if n = #n,;

9. T™(%) is closed and of finite deficiency in E for m = 1, and is
fixed if m > m,.

If K is & compact linear transformation on % (7), then I —XK is a Riesz
transformation and it was in fact for this type of mapping that Riesz
developed his powerful theory which was carried over to general locally
convex spaces by J. Leray [1] and others. Williamson [1] observed that
most of the theory holds in any topological linear space.

It turns out that if =, m, are the smallest non-negative integers
such that conditions 1 and 2 of definition 3 are fulfilled, then m, = n,.
Moreover, T is & Riesz transformation if and only if it is a Fredholm
trangformation such that condition 1 is satisfied or, equivalently, that the

o .
union of null spaces | JN(T") is finite dimensional.
n=1

If A is the algebra of continuous linear transformations on some
locally convex space E, then the spectrum o(T) of T'ed is defined to be
the set of all A in the scalar field such that T, = AI—T has no inverse

(*) As a rule, polar sets will be denoted by an upper index zero. Hence N (T
means the subspace of E’ orthogonal to N (T).

(®) Notice that in general &’(F’, B') # ®(F', B’). When necessary we shall
denote by @s(E,F) the set of Fredholm mappings under s(H, E') and &(F , F).

() A linear transformation is compact if the image under K of some non-empty
open set is relatively compact (hence bounded).
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while its complement o(7) is usually called the resolvent set. If B is
a Banach space, then it is well known that o(T') is a closed bounded set,
hence o(T) is open and contains the region outside some large enough
cirele. Now if F is any locally convex space it is by no means clear even
whether the regolvent sebt is still open. However, if K is compact o(K)
is known to hehave as nicely as it does when E is a Banach space (cf.
Leray [1], Altman [1]). To make some further steps in this direction, we
introduce the following definition (cf. Schaefer [2]):

DErFINITION 4. Let E be any locally convex space. A linear mapping T
on F is said to be bounded if there exists some non-empty open set of
which the image under 7' is bounded.

This definition implies that if # is not normable T cannot be a homeo-
morphism, hence that T cannot have a continuous inverse. It iy clear
that the set B of all bounded mappings is a two-sided ideal in A4 which
is proper if ¥ is not normable (). If F is normable then B = A while
if B is a Montel space then every bounded transformation is compact
since bounded sets are relatively compact in such a space. Thus B ranges
from the class of all compact linear mappings to the full algebra A
according to the type of space considered.

DermNiTION 5. Let T be a continuous linear mapping on H. Then i
is called a Fredholm (Riesz) point of T it T; = AI —T is a Fredholm (Riesz)
transformation on E. The set of all Fredholm (Riesz) points of 7 will
be called the Fredholm (Riesz) domain of T.

It was shown by the author [2] that for bounded mappings on 2 com-
plete space o(T) is a closed bounded subset of the complex plane. Using
results by Kragkovsky-Goldman [1] valid for Banach spaces we shall
show that the Fredholm domain ¢(7) is open for bounded transforma-
tions on complete spaces and, moreover, that ¢(7') splits into two disjoint
classes @, (T), @.(T) of components (i.e., maximal connected subsets)
such that @,(T) is the Riesz domain of T, hence p,(T) C o(T).

1. o-transformations. Let B, F be locally convex linear spaces.

PrROPOSITION 1. In order that a continuous linear mapping T on B
into F be a o-transformation it is necessary and sufficient that there ewist
two continuous linear mappings on F into E such thet
) RT =I—-L;, T8 =1I1—L,,

where Ly, L, ave finite dimensional endomorphisms on B, F respectively (°).
Moreover B, 8 may be chosen so that B = 8 und L, L, are (continuous)
projections.

() It would be interesting to know whether B is maximal under some reasonahle
condition.

() I denoting the identity transformation on each space.
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Proof. See Schaefer [1], Satz 12.

COROLLARY 1. Buery o-transformation keeps this property if the weak,
or Mackey, or strong topologies respectively are put on both H and F.

Since every continuous mapping on one locally convex space info
another remains continuous when each corresponding pair of the topo-
logies mentioned is used, it follows that equations (+) continue to hold
for these (pairs of) topologies which by prop. 1 implies the assertion.

As another corollary to prop.1 we state a result which is supple-
mentary to Satz 14 in the author’s paper [1] (cf. see. 3, prop. 9):

COROLLARY 2. Let A,B denote continuous linear mappings on E
into F, and on F into E respectively. Then if both AB and BA are
o-transformations so are A, B.

Proof. Let AB = (C,eX(F) and B4 == (,¢X(E). Then by prop. 1
there are continuous linear mappings R, S on F, F respectively such
that RC, = I—L,, 0,8 =I—L,, where L, L, are finite dimensional
projections on F, H respectively. Hence we obtain equations

(RAYB =I—IL,, B(AS)=I—1I,

which by prop. 1 guarantee that BeX(F, E).
AZ(B, I).

Proposition 1 makes it easy to state some properties of the adjoint
T’ of a o-transformation 7.

PROPOSITION 2. If TeZ,(E,F), then T'eX, (¥, B') = X, (F', B')
CZ,(F,E).

In other words, if T is a o-transformation then so is its adjoint T”
if either the weak, or strong, or Mackey topologies are put on both F’
and E'.

. Proof. By prop. 1, cor. 1 it is sufficient to show that T" <X,/ (¥, B').
Now from (x) we obtain the dual set of equations
(%) 8T =1-L,, TR =I-IL,
and it is clear from Bourbaki [2], p.103, prop. 6 (corollaire) that all
mappings occurring in these equations are continuous for the weak to-
pologies on F' and E'. Again by prop.1 this proves our agsertion.

If again T’ denotes the adjoint of 7', then an immediate consequence
of the preceding proposition is

PROPOSITION 3. T e, (B, F) if and only if T' 2, (F', E').

Tt is also obvious that this proposition continues to hold if E', F”
are replaced by any two linear spaces in duality with ¥, F' respectively.
We conclude the present section by a theorem which is supplementary
to prop. 2.

Now by symmetry
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THEOREM 1. Consider the following properties, 1" denoting the adjoint
of T:

(8) TeZ,(H, F), (b) TeZ,(B, F), (c) T'<Z,)(F', B'), (d) 1’ (F, ).

Then the following implications are true: :

1. (b) & (e) = (d) for any locally convex spaces H, F.

2. (a) &> (b) for any disk spaces () B, F.

3. (A)=>> (a) if B, F are disk spaces such that F is closed in E' for
s(B”, ') (%)

Proof. 1. This follows from prop.2 since by prop. 3, (b) and (c)
are equivalent.

2. Clear from prop. 1, cor.1 by the definition of disk spaces.

3. From prop. 2 it follows that 7" X, (B, ') and we have to prove
TeX(E, F) since E, F are disk spaces. Now as N(T)C N(I") we know
that N(T) is finite dimensional, and since so is NV (1") the deficiency of
the closure T'(F) is finite as well. Thus there remains to show that 7'
is a homomorphism onto a closed subspace of F. Define B = 4N (1")
which is a closed subspace of B’ since B is. We also have B = B@D
where D is finite dimensional and such that D C N(T"). Now because
T"eZ(B", F") we obtain B = N(I')@H,, T" being an isomorphism
of B, onto a closed subspace of F''. Further we may write & = N(T")® L,
and choose H, C Hyje. g., B, = B ~ P~ (0), where P denotes the projection
of B onto N (T") vanishing on ¥,. If follows that T/ (H,) is a closed
subspace of 7"'(H,), hence closed in F"” and this implies that T is
& homomorphism of % onto a closed subspace of F”. But B = E@D
and T"'(D) = 0 whence it follows that 7'/, hence 7, is a homomorphism
on B onto a closed subspace of F” which, being a subset of F, is closed
in F sinee F iy a disk space and this completes the proof.

It is well known (*?) that the abstract theory of o-transformations
has concrete examples in some linear integral transformations involving
Cauchy kernels (i. e., kernels of the principal value type). Since the latiter
are usually handled in Banach spaces it becomes clear from theorem 1
that they still behave reasonably as to their adjoints.

2. Fredholm transformations. Again let B, F be locally convex
spaces.

(1_0)‘ A disk space (French espace tonnellé) is a locally convex space on which
the original and strong topologies coincide. Examples are furnished by reflexive
spaces and by spaces of the second category.

(1) This latter condition will be satisfied if, e B i i
o i 5 is fiom > 6 g., H is a complete disk space

(**) See the author’s paper [1] and the literature therein quoted,
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- We recall that the index of a o-transformation T is »(T) =n—m
where 7, m are the dimensions of N(T), F [T (E) respectively.
PROPOSITION 4. 4 linear mapping on E into F is a Fredholm irans-
formation if and only if it is a weak o-iransformation of index zero (%)

Proof. Let T be a linear mapping on ¥ into F satisfying definition 2.
Then since by hypothesis T(B) = N(T') it follows that T'(E) is closed
in F. Clearly N(T) is finite dimensional and so is ¥[T'(¥) which is iso-
morphic to N (T”). It remains to show that T' is a weak homomorphism.
But this follows from Bourbaki [2], p. 101, prop. 4, as T'(F’) is closed
in B’ because T'(F') = N(T) by hypothesis. The converse is clear from
definitions 1,2 and prop. 3.’

Now we give another and less trivial description of @(E, F).

TaEOREM 2. Let T be a linear mapping on E into F. If U, V, V, (in
this order) denote a weak isomorphism of E onto F, a compact, and a finite
dimensional weakly continuous mapping on E into F respectively, then the
following assertions are equivalent:

1. T is a Fredholm transformation,

2. T=U+V,

3. T'=U+V, (™.

Proof. 1= 3. If T<®(E, F) then, by prop. 4, TeX) (B, F) and there
are decompositions

E=NT@FE, F=MoOT®

such that N(7) and M have the same finite dimension. That either
representation is a direct sum follows from the facts that each finite
dimensional subspace of B allows of a topological complement /Bourbaki
[1], p- 78, prop. 4, cor.6), and that any algebraical finite dimensional
complement of a closed subspace of F' is a topological one (Bourbaki [1],
p. 28, prop. 3). Since 7T is a weak homomorphism of F onto T(H), it is
a weak isomorphism from ¥, onto T'(E), and as M is isomorphic to N (r
which by hypothesis has the same dimension as N(T), we obtain
dim ¥ (T) = dim M. Thus if P means the projection from F onto N(T)
vanishing on F,, and if A, is an isomorphism of N(7) onto M then
U = T{I—P)+A4,P is a weak isomorphism of ¥ onto F and, letting
AgP = —V,, we have T = U4V, as was to be proved.

8 = 2. This is obvious since each weakly continmous finite dimen-
sional mapping is compact.

(**) We shall denote this property by writing T' eZ'u? (H, F). Hence prop. 4 shows

that ©(E, F) = Zy (B, F).
(%) Of course U does not necessarily denote the same mapping in 2 and 3.
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2 251.HET="U+V then T = U(I+U"'V) where Iis the identity
transformation on B and U~V = V, is a compact mapping on ¥ into
itself. Now I+ V,e 2% E) by the well known Riesz theory. On the other
hand UeX(H, F) so by Schaefer [1], p.161, Satz 13, we have T
= U(I+7V,)eX°(E, F)and even T« X2 (B, F) since T is wealkly continuous,
Now by prop. 4 the theorem is proved.

Remark. The above conditions on U, V, and V, may be replaced
by the corresponding ones with respect to the Mackey topologies
m(H, E') and m(F,#').

This is because every weak isomorphism of F onto F is also an iso-
mo%‘p.hism for the Mackey topologies and conversely, and similarly
a fm',lte dimensional mapping is weakly continuous if and only if it is
contmpous for m (¥, B'). ¥inally, if V is a compact linear transformation
on B ¥11t0 F for the Mackey topologies, then the 2 =1 argument in the
foregoing proof shows that T<X,’(#, F) which by prop. 1, cor. 1, implies
TeZ (B, F) = OB, F).

‘We now turn to the question for what topologies other than the weak
ones a Fredholm transformation T and its adjoint 7" are homomorphisms.

PROPOSITION B. Every Fredholm transformation T s a homomorphism
f?r the Mackey and sirong topologies and so is its adjoint whence, in par-
ticular, @' (F', B')C O(F', B'). :

Proof. Bince we know (prop. 4) that 7 ¢ X, (B, F) it follows from
prop. 1, cor. 1 that 7' is a strong o-transformation which implies by defi-
nition 1 that T is & strong homomorphism. The corresponding statement
for I* may be inferred in the same way from prop. 2.

) ‘We have just seen that &' (F", ') C O(F', B'). The question arises
q1’ute naturally to what extent the converse assertion holds, i.e., if
_.'l’ «D(F', E') and T' is the adjoint of some T on B into F (*) when ig
it true that T <®(H, F)? We give the following condition which is rather
satisfactory:

P:B.OIII’OSIITION 6. Let B, F be disk spaces such that 7 is closed in B
(foFr Sd(]?l’ E)), T a linear mapping on B with adjoint T'. Then if T' is
a fLreaholm transformation so is T or, more precisely, T' < B(F', B'Y imoli
TEQ(E’ ). ? p Yy «D(F', B') implies

. P'Ioo”f. JIA'S S(F, B') =Z,)(F',E') we know from prop. 2 that
T eZ., (E",F"). But as is easily checked the third part of the proof to
th. 1 is based exactly upon this agsumption, in addition to the require-

(**) This is equivalent to the condition that 7” be conti i
o, ) and w (P By ntinuous for the topologies
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ments on F, F which are here the same. Thus T <X(E, F) which implies
TeX,(B,F) (prop.1, cor.1l) and as clearly =(T) = —x(T’) =0, we
obtain TeX,'(B,F) which by prop. 4 completes the proof.

COROLLARY. Let B, F be Fréchet spaces. Then a linear mapping T
on B into F is Fredholm if and only if its strong adjoint is.

If E, F are Banach spaces, K & linear transformation on # into
then by a well known theorem due to Schauder K is compact if and only
if K'is. Asis shown in a paper by Kéthe [1] the situation is entirely diffe-
rent even if B, F are F-spaces. Now let, e.g., F = F be an F-space,
K a linear mapping on ¥ such that K’ is (strongly) compact on E'. Then
7" = I'+K' is Fredholm and so is 7 = I+ K by the above corollary.
Hence, by th. 2, T = U-+V where U is a strong automorphism of F while
V may even be assumed finite dimensional. Curious as it is, it cannot
be inferred from I+K = U-+V that K is compact.

3. Riesz transformations. From now on we restrict our attention
to linear mappings on a locally convex space F into itself.
’ PROPOSITION 7. A linear mapping T on E is a Riesz transformation
if and only if it is @ Fredholm transformation such that the union of null
o0
spaces | N (I™) is finite dimensional.
n=1
Proof. If T is a Riesz transformation on ¥ then, by definition 3, T
is a weak homomorphism of E onto a closed subspace T'(F) such that
both N(T) and E/T(E) are finite dimensional. Hence T eX,(E) and by
prop. 4 there remains to show that T has index zero. Now T"eZX,(E)
and »(T") = nx(T) by Schaefer [1], Satz 13, and since, by definition 3,
[2(T™)| < ¢ for all n, it follows that x(T) = 0. If on the other hand T is

Fredholm on ¥ and such that | N(T") is of finite dimension, then by
n=1

def. 3 we have only to show that the inclusions 7™+ (E)C T™(E) wil
cease to be proper at some m = m,. But since this is true for the inclu-
gions N (T™) C N(T™) and as »(T™) = ax(T) = 0 by hypothesis, the
two chains will become stationary at exacfly the same integer. The proof
is finished.

COROLLARY. If ng, m, are the smallest non-negative integers satisfying
conditions 1, 2 of definition 3 respectively, then n, = m,.

We now establish another property which th. 3 will show to be cha-
racteristic of Riesz transformations.

PropPOSITION 8. If T is a Riesz transformation on E, there is a de-
composition B = N@F such that T is a weak automorphism on B while N
s finite dimensional and T(N)C N.
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Proof. By prop. 7 we know that T"<Z,’(H), so for each integer
% > 1 there are two decompositions of H, viz.

B =N@E, FE=U0E

such that N, = N (T*) and U, are of the same finite dimension while
B, = TH(B) and T* is a weak isomorphism of H, onto Bj,. Further we
know that for some (smallest) integer n,, N, = N and #; = E‘} are inde-
pendent of & if & > n,. We first prove that E AN = 0. Otherwise there
would be some non-zero x,¢# such that T™g, = 0. Now since T™ is an
isomorphism of E, onto B, = X there were a unique non-zero <,
with T™z, = @,. Hence T™0z, = 0 which implies 2 ey = N, =N
and this is contradictory. On the other hand, dim U, = dim¥ so N
must be a topological complement of # since B is closed in E. Thus
E = N@®F which is the desired representation of H. It remains to prove
that T is a weak automorphism of # and T(¥)C N. Now by definition
N = N(T*¥) for &k >n, and it is clear that TweN if z<N. Further
T(B) = T (B,,) = Buyyr = B and, as we know that B~ N (T) =0,
T is one-to-one on B to itself. Since by hypothesis T is a weak homo-
morphism on F it follows that T is a weak automorphism of £ and the
proof is complete.

The two foregoing propositions make it easy to set up the following
characterization of Riesz mappings on any locally convex space H:

THEOREM 3. Let E be any locally convex space, T a linear mapping
on B into dtself. Then the following propositions are equivalent:

1. T' is o Riesz transformation.

2. T 48 a Fredholm transformation such that the union of null spaces
UDN(T™) is finite dimensional.
n=1

3. There emists a decomposition B = N®E such that N s finite
dimensional with T(N)C N while T is a weak automorphism of K.

4. T = U+V, where U is a weak automorphism of B and V, a weakly
continuous finite dimensional mapping such that UV, = V,U.

5. T'=U+V where U is o weak automorphism of B while V is
compact and such that UV = VU.

Proof. 12 and 2=>3 follow immediately from propositions 7 and 8.

3 4. If T denotes the restriction to N of T then since 7,(N)C N
it is well known that T, = U,+4, where U,4, = 4,0, and U, is'an
automorphism of ¥. Now if P is the projection of B onto N vanishing
on B, it is easy to see that U = UyP+T(I—P) is a weak automorphism
of H. Further T = U+A4,P and, since UA P = UydoP = A, U,P
= A,PU, 4 is proved. .
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4 2> 5. Clear, as each weakly continuous finite dimensional mapping
is compact.

521 As T=U4V =UI+U"V) and I+U"'VeI,2(E) by
the Riesz theory, it follows from Schaefer [1], Satz 13, that TeX 0 (E).
Thus by propositions 4 and 7 there remains to show that the munion of

null spaces | J N (I™) is finite dimensional. But since U and V commute
n=1

we obtain T" = U™(I+U~'V)*, so the null spaces of T™ are identical
with those of (I4U~'V)", whose union, again by the Riesz theory, is
finite dimensional.

It is not hard to realize that propositions 5 and 6 of the preceding
section’ apply to Riesz instead of Fredholm ftransformations with only
slight modifications in proof. We now state a result which is, in fact,
a special case of corollary 2 to proposition 1. Yet it is of particular interest
and still & generalization of a theorem which Altman proved in his paper
[3] in case E is an F-gpace.

PROPOSITION 9. Let B be any locally comver space, A, B continuous
linear mappings on H. If AB = BA is Riesz then so are A, B.

Proof. By prop. 1, cor. 2, we know that 4 ¢ X, (H). Let AB = B4 = C.
Then since B"A™ = 0" and ( is a Riesz transformation, the union of null

spaces {_J N (4") must be finite dimensional. Similarly, because of 4™B*
N==1

= (" the codimension of 4™(¥) must be bounded as n — co. Hence, by
definition 3, 4 is a Riesz transformation and, by symmetry, the same
applies to B.

COorROLLARY. If U is a continuous linear mapping on B such that U®
18 compact for some n, then I—U is a Riesz transformation.

It is sufficient to apply prop. 9 to I— U™ = (I—~U)(I+U+...+ T Y.

4. Bounded linear transformations on locally convex spaces ().
Let F be a locally convex linear space.

ProposirioN 10. If T is a bounded Unear transformation on B, then
its adjoint T is strongly bounded. If E is a disk space, the converse is also
true.

Proof. By definition 4 there exists a neighborhood U of zero such
that T'(U) = B is bounded. Now the polar set U° of U is weakly compact,
hence strongly bounded in E', while B° is an s(&', H)-neighborhood of zero
and T'(B") C U° so 1" is bounded for the strong topology on F'.

(%) A general approach to the theory of bounded operators may be found in
Grothendieck [1], chap. V.
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To prove the converse let T be the adjoint of some (necessaﬂfﬂy
conbinuous) linear mapping 7' on F. Then by hypothesls T(U,) =B,
where U, = B° is a strong neighborhood of zero in E’ which we may
agsume to be the polar of some convex, circled, closed bounded subset
of B. Since F is a disk space we have B, C U® for some convex, circled,
closed neighborhood of zere in B. As T'(B°)C U° imples T(U)CB
(Bourbaki [2], p. 101, prop. 2) the proof is complete.

Now for the study of bounded transformations we shall employ
the following device. If T is bounded then there clearly exists a convex,
circled, closed neighborhood of zero such that T(U) = B is bounded.
Let p be the (continuous) semi-norm on E for which U = {w:p(2) <1},
If V denotes the null space of U, i.e, V = {@:p(z) =0}, then the
quotient space B = B[V becoines a normed space by letting |izf = p(@)
for gome (and in faet, any) wereB. Notice that the quotient topology
on B is finer than the norm topology, thus the natural mapping y of B
onto B is continuous though, in general, not » homomorphism. As T is
bounded on U it must vanish on V. Hence 7' gives rise to a linear mapping
I on B by letting y = [p if y =Tw, ¢t =x(®), y = x(y). Further if
{p} is a set of seminorms generating the topology of B, by the bound-
edness of 7' there must be constants ¢, such that

1.(Te) < O,p(2)

for any x<H and, in particular, p(Ts) < Op(z) for some (. This implies
II=2]} < Oizll so that € is a bounded linear mapping on B (*). The dual
space B’ of B is clearly (isomorphic to) the set of linear forms on ¥ that
are bounded on U. Hence B’ may be identified with a subspace of the
space V° C E' orthogonal to V. So if &' = t'«B’ and xer<B we obtain

<Ea §’> = <99, wl>
for the canonical bilinear forms on VBx B’ and ExE’ respectively or,
more precisely, for the restriction to B xB' of {z, ). It should be noted
that the weak topology on B’, w(B’, B), coincides with the one induced
by w(E', H) (Bourbaki [2], p. 54, prop. 6), while the norm topology on B’
is finer, in general, than the topology induced on B’ by s(&', ).

In the propositions to follow ¥ will always denote the mapping
on B = E|V generated by some bounded transformation 7 on F through
the device we have just explained.

PROPOSITION 11. If B’ is considered a subset of B’ then the adjoint T’
of T 1is the restriction to B’ of the adjoint T' of T. Moreover T'(B') C B'.

(*") Unless the contrary is expressly stated B will be understood to carry the
norm topology just introduced.
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. Proof. We first prove I'(E') C B’. In fact, for any #’ ¢ & we obtain

sup Kz, I'2')| = sup |{T'r, 2"
U P

< +oo

since T is bounded on U. Now let 2’ = '« B’ and wereB. Then by Tz, 2"
= (@, "2, <‘?x,s> =<5, ), and (Tz,4") =<, 1) we have
(e, T'®'y = (t, T't'> for all z<H. So by the identification indicated
we obtain T'e’ — 'y for any o’ ='B".

We shall now prove two propositions concerning the mutual relation
between Fredholm (Riesz) points of T and & respectively.

PROPOSITION 12. Let B be any locally convex space. Then if A +# 0 is
a Fredholm (Riesz) point of T the same is true of <.

Proof. We go back to definition 2 and will show first that ¥, is
& Fredholm transformation if T, is. Consider the equations

Br=9, Yy =r.

Now let {p,,z'> = 0 for any solution of 1’ = 0. Then if yey,
we have (y,a'> = 0 for any solution of T/’ = 0 since by N (T,)C B’
(which, in turn, is a consequence of T'(E') C B’ (prop. 11) and 1 # 0)
there holds (y,'> =<y, = (9,,t'> =0 for any a’<¥(T,). Thus
as T, is supposed to be Fredholm, T,z =y is solvable if yey,, whlch
implies that S,;r = p, has a solution. On the other hand, in case (g, >
= 0 for any geN(~A) then <z, 2> = 0 for any xeN(T,) if o) =1, .
Consequently T;y" = z; has a solution and as each solution y' belongs
to B’ we know that T,y =1 is solvable.

Further, the pairs of null spaces N(T,), N(I,;) and N(T}), N(Z,)
respectively are each in one-to-one correspondence hence isomorphic.
This applies to N(T,), N(T,) by prop. 11 since N (T,)C B’ as we bave
just observed. For N(T,), N(X,) the assertion is true because, owing
%0 450, N(T;) ~ V =0 so0 that the natural mapping y is an isomorphism
from N (T,) onto N (F,). Clearly ¥, is weakly continuous on B and the
proof is domne, at least as far as Fredholm points are concerned. But as
each Riesz point is a Fredholm point, to prove the remainder of the

proposition it will do by prop. 7 to know that U N (K" iz finite dimen-
sional. Now since to T,” there corresponds &
oo
U N(T") is finite dimensional by hypothems, the desired conclusion is
n=1

easily drawn from the fact that N(T7) AV =0 for all n.

PROPOSITION 13. Let B be any locally convew space. Then if A 0 is
a Fredholm (Riesz) point of T the same applies to T.

Studia Mathematica XVIIL. 16

and for a Riesz point of 7,
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Proof. Since by the preceding proof the null spaces of _Tl, g, and
T;, %, (and even of their consecutive powers) respectw.ely are isomorphie,
we have to show only that T; is a weak homomorphism onto. a closed
subspace of H (cf. propositions 4.7). Now I, is weakly continuous; it
is a weak homomorphism if and only if T, (¥') is closed in B'. Let y'<B'
be such that (m,,y’> = 0 for any s, N(I}). Then let 2" be a solution
of T;# =T'y'|A. (Such a solution exists a8 {m,, Ty’ = 0, T'y's.%’,
and 3 = T'y’[4 is solvable because ¥;(B') is closed in B', T, being
s homomorphism by hypothesis). Letting 2’ = (y'+2')/4, we have
T.a' =y so T, (F) is closed. To show that T;(E) is closed clorfmder the
equation T;2 = ¥,. Then from (y,, =) = 0 for any z' eN(T;) it fo]lo"zvs
that <9y, 1> = 0 if '« N(X,"), o = x(¥,)- This implies, by hypothemg,
that ¢ = 9, has a solution so T,z =y, is solvable and the proof is
complete.

Now we establish a proposition which, in the proof of our final the-
orem, will overcome the difficulty arising from the fact that the normed
space B is, in general, incomplete.

PROPOSITION 14. Let B be a sequentially complete locally convex space,
T a bounded mapping on B. Then if &£ is the emtension of X to the com-
pletion B of B, the set of non-zero Hredholm (Riesz) points will be the
same for & and =3 .

Proof. If 1 is a Fredholm point of & then, by th. 2, ¥, = 2A--a where
9 is & weak isomorphism of B onto B, o being ﬁnit:a dimensional, Now 2{
clearly extends to a weak isomorphism 9 of B onto B while Ehe ex:tengion
¢ to B of q is still finite dimensional. Hence, by th. 2, X, = UA-+ta is
a Fredholm mapping and this is true for any locally convex space E
instead of B. It is obvious by th. 3 that if T, is a Riesz transformation

then so is &,.
To prove the converse we first observe that, by the sequential com-
pleteness of E, i(és)c%. For letting pe 2B there is a sequence {r,}CB

such that g, —>E. Hence if »,¢r, we have p(x,—a,) -0 as m,n - o0
80 by p,(T») < C,p (@), 2, = T, turns out to be a Cauchy sequence Whl?P

by hypothesis converges to some ze¢H. If 3= y(2) then clearly 5=<z
=1im%y, as was to be shown.
N—00

Now assume that 1 54 0 and il = 2I—% is Fredholm on B. It fo].}ows
from §(§3) C B that if ilg =1eB then reB, so the null space of I, is
a subspace of B, hence coincides with N(S,); since the latter is ﬁnii:e
dimensional we have B = N(F,)@B, which implies B=NEZ)0B,
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i~f %} denotes the completion of B,. As @ is an isomorphism of ‘531 onto
F,(B), so is its restriction to B,, T,, which maps B, onto F,(B). This
implies that €, is a strong and weak homomorphism on B. We next show
that ~%z(%) is closed in B. By the above remark, the equations T, = 9
and ;=1 are equivalent if < B. Hence the former is solvable if and
only if 9¢B ~ N(X,) which shows that () is closed in B (since it is
the intersection with B of a closed subspace of Qé). Finally, the dimension
of B/F,(B) equals that of N(T;) which in turn is equal to Aim N (él) as
T, =<,. But we know that ¥ ($,) = N(S,) and, as the case of Riesz
points needs no further comment, the proof is complete.

We are now in a position to formulate the main theorem of this
section.

THROREM 4. Let T be a bounded linear mapping on a sequentially
complete locally convex space B. Then the spectrum o(T) is & closed bounded
subset of the complex plane while the set ¢(T) of all Fredholm points of T
is an open set which splits into two disjoint classes ¢,(T), ¢.(T) of com-
ponents such that o, (T) consists of all Riesz points of T whence ¢,(T) C o(T).
Moreover, the points of ¢,(T) ~ o(T) are isolated.

Proof. From propositions 12 and 13 it follows that the sets of Fred-
holm and Riesz points of 7', except perhaps for 1 = 0, each coincide with
the corresponding sets of a bounded mapping € on a normed space B
which, by prop. 14, may be supposed complete. It may happen that
0eo(T) while it is regular for ¥, and if ¥ is not normable then certainly
0eo(T), as we have seen (*®).

Now since the resolvent set of T, being a subset of ¢(7T), coincides
with that of € (except possibly for 2 = 0), o(T) is a closed bounded set.
Secondly, by Krafkovsky-Goldman [1] the set of non-zero Fredholm
points of ¥, p(X)—{0}, is known to have the properties stated in th. 4.
Hence the same applies to ¢(T)—{0} and it is easily seen that the state-
ments on @(T)—{0} remain unaltered upon adjunction of A = 0 if neces-
sary (i. e., if 0e@(T)). The proof is finished.

CoROLLARY. If there are points A + 0 such that T, is not a Riesz trans-
formation then there are mon-zero points in o(T) which are not Fredholm
points of T.

Proof. Clearly if 1 # 0 is not Riesz then Aeo(T). Since Adp,(T),
A is either of the type wanted or else Aep,(T), which shows that in this
case @,(T) is not empty. Now the boundary of ¢,(7T) cannot consist of 0

(*¥) We might have avoided the exceptional role of A = 0 by writing I— AT ’
but prefer to follow the common use in spectral theory.
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alone as the spectrum o(T') is bounded. But any boundary point of ¢,(T)
is not in either g;(T) or @,(T) as these are open sets while it must be in
o(T) because @,(T)C o(T) and o(T) is closed. Hence the corollary is
proved.
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