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On the function whose Laplace-transform is ¢
by
J. MIKUSINSKI (Warszawa)

1. The function F,(t), whose Laplace-transform iz e~ (0 < a < 1)
can be explicitly written in the form
1 ico
) R =5 fe‘””’"dz (0 <t<oo; 0<a<l).
—1ico

This function plays an important role in applications to partial
equations with constant coefficients. It has been investigated by different
authors, e.g. G. Doetsch [1], J. Mikusinski [2,3,4], H. Pollard [5],
A. Wintner [6] and L. Wiodarski [7].

Such values of 2¢ in (1) are assumed that 2* represents an analytic
function in the region: |z| >0, |arge| < =, and admits real values on the
positive part of the real axis. It is easy to see that the function i’;(_t)
whose values are conjugated to F,(t) is represented by the same formula
(1). This implies that F,(t) is real. However, several real formulas for
F,(t) are known, e.g.

1 [+
() = _f exp (— i — yy7°)8in (0,79 dr
™
0
2 F ) .
F (1) = -f exp ( —y,7°)sin(oy7) sintrdr,
™
0

2 oo
F. (1) = —W—f exp (— y,1%) CO8{y,7") costr dr
0

where
Ta

. Ta
0y = Sin—-.
2 ’

y, = co8Ta, o0; = ginma, yy = CO8 5

But it is difficult to deduce from any of the above formulas how F,(?)
behaves in the interval 0 <1 < o
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The main purpose of this paper is to prove another formula for
F (1) with a positive integrand, namely

T »
@ P == %—fﬂbe—ud¢ (0<i<oo; 0<a<l),
7w l—a {
where )
_ el sinatp)“"l_") sin(1—a)g
(3) = sing sing

Since u >0 for 0 < ¢ < m, it follows trivially that F.(¢) >0 for
t >0 (see [7]). From (2) we shall also deduce the following asymptotic
formulae:

(4) F (1) ~ Et-C-@=2) oxn(—A¢~0=9)  for -0+,
(5) F,(f) ~ Mt7™  for t-» oo.

The values of the constants 4, K and M are:

(6) A = (1—a)at,

1
- K= g2
(M Vor(l—a) '
8) M= smjf I(1+a).

These results were announced without proofs in [4].
In particular, when a = §, we have u = 1/4tcos?4p and hence

F .t ——1 [S 1 dy
wnt) = 47:7:20]‘ P 4tcos*lp | cosilep

After the substitution tgdp = 2Vix; the last integral becomes

T

00

— 1 2
4Vtexp (— E)‘f e da,
[]

and we obtain the known formula

o=t

1
Fl/z(t) = 2]/—7:3
kit

In this case we have 4 =}, K = M = 1/21/; and it is easy to verity
the adequacy of the asymptotic formulae (4) and (5).
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2. Now we are going to give the proof of formula (2). First we seek
the points » at which #z—2* is real. For this purpose we put
# = r(cosp-+ising) and Im(2t—2") = rtsing—r°sinap = 0. Hence

) , sin agp\1(-9)
" \tsing )

In the particular case a = §, ¢ = 1, we have

1
(10) 7 =m.

The diagram of (10) is a parabola represented in the figure 1. In
the general case (9) the diagram is similar. When ¢ ranges over the interval
(—m, =), o is always positive and becomes
infinite at the ends of this interval. Thus,
if ¢ increases, the point 2 traces a curve @
which goes round the origin and leaves
it on the left side.

In the integral (1) we can replace the
path of integration (the imaginary axis)
by the curve . Then we obtain
(11) ) = = [ o, I

2ni

In order to justify this transformation
it suffices to remark that the integral

Fig. 1
fleiz—z"dz]’ g

taken along the semi-circumference y: |2| = 7, |argz| < =/2 tends to 0
as r — 0, and that the same integral taken along each of the arcs

ks
I'y: 2| =R, ?<q9<7r,

ks
Iy: =R, -—-nm<e< —3
tends also to 0 as R — oco. Since the integral along the contour
(represented in figure 2) composed of parts of the imaginary axis and of
@, Iy, Iy, y, vanishes, we obtain the equality of integrals (1) and (11)
on letting B — oo.
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Tt is easy to verify that along the curve @ we have Given any ¢ (0 < ¢ < }) there exists a number @ (0 <@y <m)
aT . u such that
mz
st—2" = —u and Ty 1—a 1 ) (13) t‘“’(1—°)(A+(B—s)<p2) =0, < U< 0 = 17044 (B+e)g?)
where « is given by (3). Thus, we obtain from (11) (0 <o <p).
Hence )
1 = Imz %0 0
Ft) = 3= fe'"(dRez{—ulImz) fvle‘”2dqz =I,<I= f ue dp.
n o ]
o We have
17 s
—_ .l.__a_.__. fg"uud(p’ ’l 0
2n 1—a - ’, m, \ I, >At““/(1““)e“‘_““l_“’f exP(—t_"/(]’")(B—{—e)qﬂ)dq:.
. ! N o
since the imaginary part must vanish. To ! — . )
complete the proof of (2) it is now sufficient \ . 7 Re: Putting for brevity
to remark that « is an even function of ¢. ‘\\z B(t) = IC-exp (— Ao/
o fozr.mfllia,ﬂ(]f) paragraph we give the proof 2 e and substituting
The initial terms of the power series ol YB g =y,
for the function we get
sinagp Fig. 2 4 7 —
(12) w(p) = pr= I, > o) fe"”zdtp (Q = o0 VB s).
¢ B¢
are b
Hence
= — —a)p?+... —
w(p) = a+ — (1—adp?+ I A Vr
(14) liminf —— > i
Hence we find s ()T VYBfe 2
1 -
[w ()]0~ = o¥0—94 E(l+a)a1/(l—u)¢2+"' Similarly, starting from the inequality
Similarl "
11 y I<Ig=f‘vge1’ld<p
sin(l—a)g a . 0
sng (1—a)+ E(l—a)(2-a)<p A we find
. , . I _ A+ (B+e)g Vx
From the last two formulae it follows that the expansion of (3) has the Hmsup - S—F 5
form o D(1) VB—¢ 2
u = 790" (A L Bgr-..), For given &, we can fix g, so small as to have (B-+ &)gs < &; then
where 4 is given by (6); and I 4 .
‘ ' (15) imsup —— < _j—il/l
B = }(1—q)a¥/t-9, e O YB—¢ 2
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Putiting

T

fue‘“clq: =I+d,

we have
T
J = f ue " dp
®0
We are going to show that
J
16 lim — =90
ae) 10

The derivative of the function (12) is

asin g cos ap— cos psin ap

wip) = sin?g

Hence we find
d (. dw .
— [sin2p——| = (L—a?)singsinag > 0.
dop dp 4
Since
dw
lim sin?p oo =0,
P04 do
this implies that dw/dp >0 in 0 < ¢ < 7. Thus w is increasing in 0 < ¢
< 7. Hence u, given by (3), is also increasing. Therefore, in view of (13),

>0, =1"M0"NAL(B—e)gf) for g <p <.

For small values of ¢t we have.v, > 1. Since the function ze™® is
decreasing in 1 < # < oo, this implies

J < fvoe"’“dgu = Ot~ Dexp (—Ct 40D (r— @),
0
where ¢ = A+ (B—e¢)gf. Since ¢ > 4, (16) follows.

Since & can be chosen arbitrarily, formulae (14), (15), (16) together
imply that

r A =
ue dp ~ — — Dt for ¢—0-+.
Juetdp -2 200 +

This is equivalent to (4); to see this, it suffices to take in account the
form of the constants 4, B, K and of the function ®(¢).

On the function whose Laplace-transform is e—5*
4. It remains to prove (5).
By (12), we have
m(rz—g)w(p) = sinarx.

P>

Hence by (3)

lim (rr — )=y = (sin ) - ¢-all-a),
P )

Given any two numbers a,b such that
0 < o < (sinex)/-9 < b,
there is a number ¢, (0 < ¢, < =) such that
at= ) < (p— OV < pp=) - for g <@ < 7r;v

the number ¢, of course does not depend on .
Hence

]
at—/0-a) f (m— (p)—l/(l—a) exp [ __pt—all—a) (TE _ (p)—ll(l—u]]
Fo

Substituting "
bt—u/(l—u)(w_qo)A—l/(l—u) =,
we find
o0
Jy = ab~*(1—a)t™ fm"“e*”‘dw,
.‘Eﬂ )
where
By = b0 (3 — )~ TI=2),

Hence

a7 liminft*J > (1—a)eb™I"(a).
tso0
Similarly

‘n
J < Jy = bt~/ f(R_(p)—ml—a)exp[_a,t—u/(l—a)(_n:_(P)—l/(l—a)]
?0

and just as before

(18) limsup#J < (1— a)a*bI(a).
{00 -

197
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Putting
fue"“dcp =I+J
0
we have
%o
I= f ue “dp

We are going to prove that

(19) lim#*I = 0.
ts0
Since the function w(p) is continuous in (0, =) and bounded at ¢ = 0,
there is a number N >0 such that w(p) <N for 0 < ¢ < ¢,. Thus
I < Nt—40~9g, and this implies (21).
Since @ and b can be chosen arbitrarily close to (simam)C—9, it
follows from (17), (18), (19) that

lim® f ue " dp = (1— a)sinral'(a).
tao
This is equivalerit to (5).
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Consistency theorems for Banach space analogues of Toeplitzian
methods of summability

by
A. ALEXIEWICZ and W. ORLICZ (Poznaf)

We deal in this paper with the generalized Toeplitz sequence-to-
-sequence transformations from one Banach space X into another Y;
these transformations will be called in conformity with the case of numer-
ical sequences methods of summability. One instance of such methods,
namely those involving the strong limifs, has recently been introduced
by Robinson [6] and Melvin-Melvin [4], who derived the Toeplitzian
conditions for permanency.

One of the non-trivial results in the theory of summability of numer-
ical sequences is the bounded consistency theorem, stating, roughly
speaking, that if two Toeplitzian methods are consistent for convergent
sequences and if every bounded sequence summable by the first method
is summable by the second, both methods are consistent for bounded
sequences [3].

It is the purpose of this paper to prove the bounded consistency
theorem in the case of sequence-to-sequence transformations in Banach
spaces. Our method consists in considering the spaces of bounded summable
sequences as two-norm spaces; in these spaces a notion y of limit arises
in a natural way, leading to the class of continuous distributive functionals
called the y-linear functionals. Essential for the success of our method
is the fact that the spaces we are dealing with are such that the limit
of any pointwise convergent sequence of y-linear functionals is y-linear,
which is not the case in all the two-norm spaces.

The authors are indebted to Mr. Bogdanowicz for valuable simpli-
fications and corrections.

1. Preliminaries. We shall deal in this paper with the following
methods of summability of sequences of Banach spaces. We are given
two Banach spaces X and ¥ and a system A = {4,} of linear operators
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