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Some remarks on the convergence of stochastic processes

by
R. BARTOSZYNSKI (Warszawa)

Introduction. Let R be a separable complete metric space. Denote
by M(R) the space of all normed ¢-measures defined on Borel subsets
of R. The sequence un,eM(R) will be called weakly convergent to pwe M (R)
if for every bounded and continuous function f(2), z¢ R,

(1) 1@ ap, — [fl@)dp).
R R

We shall denote the weak convergence by =. The space M (R) with
the metric L defined by Prokhorov [4] is a separable complete space,
and the L-convergence is equivalent to the weak convergence.

For normed measures on the real line such a metric has been given
by Lévy; the distance between measures u; and u, has been defined ag

(2) inf {for every @: F, (s—h)—h < F,,(#) < F, (s+ h)+h},
n

where F, and F,, are the distribution functions of the measures p, and ps
respectively. This metric may also be interpreted as a metric in the space
of all probability distribution functions. The metric L defined by Prok-
horov is a simple generalization of the metric defined by (2).
The following conditions are equivalent ([1], §9):
1) pn=

(l) F, (2) > F,(z) at every continuity point of F,(z),

(i) L(F,,,F,) —~ 0, where L(F,&) is the distance of probability
distribution functions defined by (2).

Let R* be another separable complete metric space. If peM(R)
and f iz a p-almost everywhere continuous function defined on R with
values from R*, then the condition u/(4) = p{f™(4)} for u-measurable
F(4)C B defines the measure W« M(R*). The following theorem holds
[4]:
‘. The condition pp=> p (ptn, ue M (R)) holds if and only if for every real
u-almost everywhere continuous function f(x), weR: w> .
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Let uy denote by D[0,1] the space of all real functiong &(2),
0<1<1, such that there exist limits £(:—0) and &(t+-0) (may be
unequal) for -each interior point of the interval [0, 13, ]jmits'£(0+)
and £(1—0) for the points ¢ =0 and ¢ =1 respectively and for any
te[0,1] one of the relations £(f) = £(t4-0) or £(1) = &(t—0) holds.

The space .D[0,1] with the metric d defined by Prokhorov [4] is
a separable complete space and for the subspace ([0,1] of D[0,1] the
d-convergence is equivalent to the uniform one.

Let us take a sequence of finite gequences

(3) Enl) fni7 reey ‘Enkn
of random variables independent for each 7y, such that for every ¢ - ¢
(4) im max P{|&y] = &) =0

n=00 1<kl

Write ;r,,, = 0,. z.md Gk = bm-t...+ &y, k=1,2,..., &, Take auy
sequence of partitions {fw), % =0,1,..., %, where 0 = thy < toy
<... <ty =1, such that

(5) Im max (fpp—tpz,) = 0.
Mmoo Ik, ’
Define the random function &,(f) by the formulas
En(o) = 07
(6)

Ea(l) =Lm  for k=1,2,..., k.

) Denote by P, the measure in D[0,1] generated by all finite-dimen-
sional [3] distributions Pj--m of the stochastic process & (1),
Prokhorov [4] has proved the following theorem:

_ TrmorEM. Let {&,(1)}, n =1, 2, ..., be a sequence of random functions
defmed by (8), where the £, satisfy (3) anid (4) and the t,y, satisfy (5), and let
P, be t{be measure in D[0,1] generated by &,(t). The set {Pn} is compact and
evf;ry.hmztmg measure is generated by a comtinuous stochastic process &(f)
with independent increments if and only if for every n
max P{Itzf""' > 1} <@, 8),

nked )

4,l4|<s

o1 <t < lug,

where for every m, max is taken over the intervals A of the form [tn;, t) and
(a) G, 8 =0 for 80 and every fived A > 0,
(b) om;pl()(}., d)—=>0 for J— oo,

<0<

In this paper we give other conditi ‘ >
A \ : ons for the convergence P, =P
and for the compactness of the set {P,) defined as above. %&Ioreovgr?we
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discuss the conditions for the structure of the set of “tops” of random
functions £,(f) necessary for compactness of the set {P,}.

1. We shall use the following notation:

P;,h'""m for the m-dimensional distribution funetion of the sto-
chastic process &,(1);

L(Pf,,,P‘) for the distance defined by (2) between probability distri-
bution functions P} (x) = P{&,(f) < o} and Pi(») = P{&() < ).

‘We prove the following theorem:

THEOREM 1. If P, is defined as above for sequence (3) with condition (4),
and P 18 a measure in D[0,1] generated by a continuous stochastic process
&(t) with independent increments, then for the condition P, => P it is necessary
and sufficient that the convergence

) L(Pr, P') 0

hold uniformly with respect to ¢ (0 <t < 1).

Proof. It suffices to -prove that the uniform econvergence of (7)
is necessary and sufficient for the conditions (a) and (b) of the theorem
of Prokhorov, and for the weak convergence of all finite dimensional
distributions Pfm o Phetm, .

Necessity. Note first that for a continuous stochastic process its
probability distribution function P!(x) = P{£(t) <} i3 a continuous
function of #. In fact, the continuity of the process means that, for every i,
P{limé&(t+ 1) = &£(¢)} = 1. Hence for every fixed ¢ and for exery point

=0

of continuity of the function P*(z) we may write

Plo) = P{&(t) < o} = P{E(t) < w}P{h}nE(t—)— 7) = E(8)}

=l

= P{E(1) < &3 linsf(t—{— 7) = E(1)} = P{]ijlf(t—!—-r) < w}

= limP(£(t+7) < o) = lincouP“”(m)-

=0

According to the equivalence of conditions (ii) and (iii) the function
L(P', P%) is a continuous function of ¢ and 7.

To prove the necessity note that the convergence L(Ph,P')—0
for every fixed ¢ follows from the finite-dimensional one. Suppose that
the convergence of (7) is not uniform. Then there exists a number & > 0,
a sequence m; — oo and a sequence of points z;, such that

® , (P, P > <.
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Without loss of generality we ean suppose that =;— 7, and +
<.12 < ... < 7. From the continuity of the prooess if follows that theré
~ exists sueh a number ¢ > 0 that for every ' for which |z—17'| < ¢

(9) L(P", P") < g,/4.
Let us take such an N that, for =; > N, we have T—1T; << § and
L(P;;, P7) < ot

For n; > N conditions (9) and (10
be rewritten in the form:

(10)

); according to definition (2), may

®) P{H ><%~§_—°}—%<P{5<r><w}gf{ E(r) < ot ° }+,~

(10 P{f,%.m <o- 4}— % <Ple) <a) <

{En1 (7) < w4 }+ -
for every a.

If (8) is satisfied, then there exists such @ sequence {w;} that
Pléy(n) < mi—ea)—a > P{E(r,) < )
or

P{EM(T,;) < @t g} + & < PlE(m) < ;).

(8")

For example let the first inequalit ! hen |
. ality (8') hold. Then for x = z,—
we obtain from (10), (9') and (8) o el

& &

<P{£ﬂi(7i) < 931;—‘80} e %’: .

The left side of the last inequality may be estimated as follows:

rlem <=3} = 2> <o)

Ing k<‘

"‘P{Z Ent Z Engte < Wy o}

Inik<z; bygued;
. -'1 8
>P{ 2 Eﬂik < Ty~ £p; 2/ E‘n,tk < —"1}
tngte<ri tngkeds 2
Plén, (1) < m;—g) - “ 2 Ent }
’L
by hedy 2
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where /A, denotes the interval [z;, 7). Hence we have

P{ PETE:

tngedy

&
50_} <-P{§nl(71,) < Wy gy} — ;0

Pléy, () < m—e}

Pagsing to the limit with ¢+ oo we see that condition (a) of the
theorem of Prokhorov is not satisfied, which proves the necessity of the
uniform convergence of (7).

To prove the sufficiency note first that from convergence (7) follows
the finite-dimensional one. In fuct, let us take any m points &,%, ..., tn
[0,1). For example let 0 =1, <h <...<h, <1. If convergence (7)
bolds, and if (a;, ..., @) I8 2 continuity pomt of the distfibution function
of the m-dimensional random variable {&(t)—&(tiy), i =1,2,...,m},
then we may write

P& —Etir) < o] = []7{et— &t < o
- Jlm n P{ea(t)— Enltics) < i}
- ﬁml’{o En () — Enltiy) < i} -

Now suppose that condition (2) of the theorem of Prokhorov is not
gatisfied. Then there exist numbers g > 0 and 1, > 0, a sequence 7; — <
and a sequence of infervals 4; = [t,1;) such that |4; — 0 and

PH 2 fn.ik; > }»o} > &-
tnkedi

Without loss of generality we may suppose that #— 7 and & — 7.
TLet us take any number & > 0 and denote by 4, the interval [v—34, v+ 8]

For all 4;C A, we may write
PV (4 8) > A} = PllE)— &)l > A},
where Vi, (4) = sup [&(t)—£(&)|. If 2o and —J, are the continuity
points of the d1str1bu‘mon functions of the variables &(t)— &(%),
i=1,2,... (which may always be assumed), and if convergence of (7)
is uniform, then, uniformly with respect to 2 )
P{Vg(l) (4,) > Ao} = %im P{]Enk(t;:')— E‘nk(té)] > 10}1

{11)

and passing to the limit with ¢ — co we obtain using (11):
PV (4s) > X} = > lim lim P{lsﬂk(t") En ()] > Ao

>hmP{|£nJ. )= &n, ()] > Jo} > 2o
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Since & > 0 is arbitrary, the process is not continuous at the point .
Suppose now that condition (b) of the theorem of Prokhorov is not
satisfied. It means that there exist a number g > 0, a sequence #; - ~
and A; — co and a sequence of intervals 4; = [;, ;) such that

Pl ¥ = L e,
P{Ln%difniki B }vz} 2

From condition (a) proved wbove it follows that |4; - 0. Hence
there exists such a number o > 0 that |4;] > a, except at most a finite
number of intervals. Let us take a point 7, which belongy to a infinite
number of intervals 4;; for example let r*eAiy, v=1,2,..., and let 4
be such an interval that 4; C 4, » =1, 2,... Then for any 4 > 0 we
may write

(12)

PV (4) > A} = P{l&(t)— ()] > 4].

If Aand —4 are the continuity points of the distribution functions
of the random variables £(f;)—£(#;), » =1,2,..., and if the conver-
gence of (7) is uniform, then

P{Vey(4) > 4} > Mm Pli,, (1)~ &, (6)] -~ 4]

uniformly with respect to ». Passing to the limit with » > ~o and using
(12) we obtain
P{Vé(t)(A) > A4} = lim klim P[{,snih(t;:‘)——s,,ik(t.}v)[ = A}
00 B

y=00 K=

-;2‘722 P{|§ﬂ%(t§;)~ Eniy_(t;j)l > A) > .

Thus, since 4 > 0 is arbitrary, P{V,y(4) = oo} > s.

Divide the interval 4 into two equal closed intervals, and denote
by AY the part for which P{V,4(4®) = oo} > &. Then divide the
interval A® into two equal closed intervals and denote by A® the part
for which P|{Vy(4%) = co} > . In this way we obtain a sequence
of closed intervals 4® D A® D ..., for which [4®|->0 and

P{Ve(t)(ll(")) = 00} g, Ne=1,2,..

At the point 7= AN~ A% ~ ...
not exist; this proves theorem 1.

Theorems 4,5,7,8,9 and 10 of [2] are simple consequences of
theorem 1 proved above.

the limiting distribution will

2. Now we will show that the convergence P, => P depends upon
the manner in which the partitions 0 = g <oy < ... < lpg, = 1 are
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constructed. Let us take for example the following sequenée of geries
{‘5,,,:}, k=1,2,...,n: :
1
(13) P‘Sﬂkzﬁ =1, k=1,2,...,n.
For the sequence of partitions #,, = k/n, & = 0,1,..., n the limiting
distribution for sequence (13) will be of the form

PlE() =1} =1,

Now let us take another sequence of partitions. Divide for every
n > 1 the interval [0,1] into three parts: I = [0,3—1/2n), I} =[1—1/2n,
3-+1/2n], It = (3}+1,2%, 1], and divide the intervals I7 and I7 into
(#)[logn] équal parts, and I7 into n—(4)[logn] equal parts. Then
for sequence (13) the limiting distribution will be of the form

0<<Ei<T.

PlEt) =0} =1  for  te[0,1),
PlEd) =13} =1,
PlE(t) =1} =1 for ie(},1].

For the functional f(&(t)) = max &(t) we shall have Plf(e@) =0} =1,
4

<i<

and for every n > 1: P{f{&.(1)) ; ;} = 1; thus, according to definition
(1) condition P, = P is not satisfied.

Two theorems which we shall now: prove will concern the question
of the possible types of partitions for which the weak convergence P, = P
holds.

Denote by K the class of those sequences of partitions 0 —
Ll < oov < lag, =1 for which condition (5) holds, and

tm;

. lgklikxn (et 1)
RS T
1<k,
Denote by I' a sequence of partitions satisfying condition (5), by &
# sequence of series (3) satisfying condition (4), and by P,(5,T) the
measure generated in D[0,1] by all finite-dimensional distributions of
the stochastic process £,(t) defined by formulas (6) for the sequence &
and partitions 7. -

The following theorem holds:

THEOREM 2. If for o certain sequence 5 and for some T'<K the set
of measures {Py (5, T°)} is compact and every limiting measure carresponds
lo a continuous stochastic process with independent increments, then for any
TeK the same property holds for the set of measures (P,(S, T)}.

(14)
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Proof. Let us take any sequence of series & = {Enk}, E=1,...k
and any two sequences of vpartitions T = {tnk}, and T = {t;m}, k
=0,1, ..., k,, from the clags K. Then there exists a number 4 < oo such
that

max (tnk - tn,k«l)
h?nii‘olp Ix;l:in(tnk‘_tn,k—1)

max (tnk‘ bt t%,k—l )

. I
limgup — -

15 <4 . e < AL
(O) ’ N=00 n:;?n(tnk'“tn,k—l)

Suppose that for the sequence 7' the set {P, (&, T)} is not compact.
Then the conditions of the theorem of Prokhorov are not satisfied. Since
condition (b) is independent of the sequence of partitions, we may assume,
that condition (a) is not satisfied. It means that there exist nvmbers
g >0 and 1, >0, a sequence of numbers n; — co and a sequence of
intervals A; of the form [tny, tn;) Such that [4;] -~ 0 and

\ P tag| > 4} > a0

tnjeds

Denote by 4; the least interval containing those t;ﬂ- for which
tnged;. Then obviously

P{]Z bng | > AD} > &,

t’ﬂif”;
and it suffices to prove that [4;] — 0.
From condition (15) it follows that, for sufficiently large n,

m:‘;x(tnk"‘ k1) < Amkin(tnk—tn,k_l);
using the obvious relation
mi}:“ (ae—tngen) < 1< m,?X(tnk—' tnk-1)
we obtain
1/Ak, < (1/-A~)'n}ca‘x(tnk" taje—1) < min(tnk“‘tn,k—d) < 1/ky,
< Iecax(tnk— tap-1) < An}:in(tnk“tn,k—l) < Ak,

and the same relation holds for the sequence {t,.}. Let @; be the number
of those intervals of the form [t,4, %, x—1] Which are C 4. Then

143 < Qimgx(t;zik‘—tl 1) QiAn;in(t;lik‘“ g jo-1)
< Qi flin, = A°Qs[ Ao, < APTOD (b tngpor) < AP | Al
3 * ’ .
and if |4;] - 0 then |4;] — 0 as asserted.

©
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Now we prove :
THEOREM 3. For every sequence of partitions T = {tu}, b =0, 1, ... 5 b
the following conditions are equivalent: K
(A) for every sequence of series B = {&u), b =1,2,..., %y, the set
|Pu(E, T)} is compact and every Umiting distribution corresponds to
a continuous stochastic process with independent increments if and only f
() for every fimed 1> 0

J
nme“Z §n,k+,-{ Z} - )
A = :

undformly with respect to w when Lk, — 0,

1
(8) maxngaxP”Z’gn’kHi > k-0
F=0

k
uniformly with respect to n when A - co.

(B) For the sequence of series 5° = {&ul, b =
by formula

(186) Pl&y =1k} =1, ooy Ky

the set {P, (8, T)} is compact and cvery limiting distribution is of the form
Ple(t) = @()} =1, where (i) is o continuous function for 0 <T<<1
(it is evident that p(0) = 0, (1) = 1 and ¢(t) 18 a non-decreasing function).

Proof. It is evident thut (A) — (B), since if (B) is not satisfied, then
(16) represents a sequence for which the equivalence (A) is not satisfied.
To prove (B) — (A) suppose for simplicity that for series (16) the limiting
distribution exists and is of the form P{£(f) = ¢(t)} =1, where ¢(?)
is a continuous function. Then the limit

1,2, ..., ky, defined

k=1,2,

. "Pn(t)_"‘
lim Tl

where ,(t) denotes the numben of those in; from the partition 7' which
are less then f, exists wnd equals = p(f).

Note first that condition (8) coincides with condition (b) of Prok-
borov’s theorem. Suppose that condition (a) of the theorem of Prokhorov
is not satisfied; then there exist numbers g > 0 and 4, > 0, a sequence
ng— oo and a sequence of intervals A; such that |4;]—>0 and

) PHZ E"iklk > ol > @

tnked;

(17)

N=00

Denote by tn, m, n and t”i,zn,,; the smallest and the largest point of the

form i, of the interval 4,. From the existence and continuity of limit
(17) it follows that (I, — My, [k, — 0 for 4 — co; hence («) is not satisfied.

Studia Mathematica XVII 21
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Conversely, suppose that condition («) is not satisfied. Then there
exigt numbers g > 0 and 3, > 0, a sequence 7; — co and two sequences
My, and l,, such that I, /k,,,i - 0 for 4 — oo and b,

lﬂ’l: |
P{|f2/: 5’%‘;’%#’ = 10} > 8.

Denote by 4, the least interval containing the points tns,m,, s t"i,”‘ni 1
. . If limit (17) exists and is a continuous function of %, then
3 n1.1n,,1.+1,,1. 3
|4;| - 0, and condition (a) of the theorem of Prokhorov is nof satisfied.
This proves theorem 3.
3. Suppose now that the sequence 5* of random variables
(18)

has for each » u common distribution ¥y (@) = P{éw, < @),k = 1,2, ..., k,.
From the theorem of 8korohod (see for example [4], § 3.2) and from theo-
rems 2 and 3 we immediately obtain:

THEOREM 4. The convergence of the sequence of distribution functions

Fn
By, (@) =P {2’ & < o}
=1

6%15 51127 AR fnk"

Jor m - oo to a (infinitely divisible) limiting distribution G (x) is Necessary
and sufficient for:

(I) the compaciness of the set of measures {P, (5", T)} in the case when

the sequence of partitions T = ), B =0,1,..., k,, belongs to the class K
defined by formula (14);

(IT) the convergence Po(E*\T)> P in the case when for the sequence
of partitions T = (i}, k= 0,1, ..., kny limit (17) ewists.

In cases (I) and (IT) the limiting measures are generated by conttnuous
stochastic processes with independent increments.

"
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A theorem on distributions integrable with even power
by

K. URBANIK (Wroctaw)

L. In this paper we shall consider some spaces of distributio.ns.@tr;)—
duced by Schwartz [2]. By Dy we shall denote the space of all infinitely
differentiable complex-valued functions ¢ = @(@, %5, ..., @n) (—o0 < @
< oo, j=1,2,...,N) with compact supports. Put
max (peDy) .
1,22, - TN

gl = (%1, 2oy - -5 TN)]
The convergence in Dy is defined as follows: ¢y —0 (preDn,s
j=1,2,...) it for every system of integers (&, ks, ..., kw)

Oprgy ey Wl 0
o1 ke ... Baly | ‘

P i i ﬁxed compact.

and the supports of ¢; are contained in a . ; .

Let A be an arbitrary subset of the N -dlmensm'na..l Euclidean sg:a.ceé
By Dy (4) we shall denote the subspace of <Dy consisting of all funection
whose supports are contained in A. )

The space Dy of distributions is the conjugate space of f/)l,,:. B); (1(’] ff q;)1
we shall denote the value of T' at ¢ (T«Dy, peDy)- The conjugate
i i T,¢0) = (T, ) (pDn)-
is defined by the formula (T,¢) = (T, ¢) (¢ _ B

We say that a distribution TeDy is of order <l ... Iy on A4
if there is a continuous function f such that

© © 00 g+ +kn

da,. .. Aoy
(T,(p):f f ff(ml,...,;Z?N)vm<p(m1,-~-,m1v) 1 N

for each pe@y(4). All the distributions belonging to @y are of finite

hapt. III, § 6).
compact (cf. [2], tome I, chapt. III, :

Ol‘del’L;HTT;;fy By |.’Z’pi”’ (p=1, 2’ , ...) we shall denote the d.u:ect produclzﬁ
TxTx x1‘1;<T % x...xT, i e. the distribution belonging to €D,

» times p times
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