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A generalization of results of R. C. James concerning
absolute bases in Banach spaces

by
(. BESSAGA and A. PEECZYNSKI (Warszawa)

The main results obtained by R.C. James in his paper [14]') can
be presented as follows:

Let X be a Banach space with an absolute basis.

(a) X is weakly complete if and only if no subspace of X is isomorphie
to ¢,.

(b) Every bounded set in X is weakly conditionally compact?®) if
and only if no subspace of X is isomorphic to I

The purpose of this paper is to show that the propositions (a) and (b)
hold true also in the case where the space X can be 1mbedded in a space
with an absolute basis.

The last part of this paper contains several questions which are
connected with the present paper and with the one entitled On bases
and unconditional convergence of series in Banach spaces (this fasec.,
p. 151-164) which is subsequently denoted by [0].

Terminology and notation used in this paper are the same as in {0].

1. In the following we shall need several lemmas.

1.1. In order that an absolute basic sequence (i) with sup ||z, << + oo

be equivalent to the unit-vector-basis of the space 1 it is necessary and suffi-
cient that there exist a linear fumctional f such that inf|f(w,)| > 0.
n

Sufficiency. 1° I Y|f,| < +oo, then }i,, is convergent.
=1 =1

1) The numbers in brackets [ ] refer to the ““References’” of the paper
On bases and unconditional eonvergence of series in Bamach spaces; in this fasc.,
p.163.

5) A set ZC ¥ is said to be weakly conditionally compact if every boun-
ded sequence composed of elements of Z contains a weakly convergent sub-
sequence.
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oo
2° If the series ) 't;a; is convergent, then, according to the criterion
=1

o0
1.4 of [0], the series D sgnf(t;2;)-t;@; is convergent too. Thus
=
Dl (@) < oo
o

Since inf|f(sy,) > 0, this is true only in the case 3 [f;| << +oo.
i=1

Necessity is trivial.

1.2. Let Y be a subspace of a Banach space X with an absolute
basis (@,). If o sequence (2,) CY converges weakly and fi(2,)— 0
(i=1,2,...)%), then 2, 704).

1.21. If no subspace of ¥ is dsomorphic to 1, then the conditions
supllafl < o0, fi(2n) =0 (i =1,2,...) imply B 0.

Suppose that (2,) does not econverge weakly to 0. According to Theo-
rem 3 of [0] and 1.1 a subsequence (z,,) is a basic sequence equivalent
to the unit-vector-basis of I. Thus: according to 1.2 of [0] we obtain 1.21;
according to the fact that the sequence of unit vectors of I does not con-
verge weakly, we obtain 1.2.

In a similar way we can obtain the following theorem ([2], IX, § 2):
1.3. In the space 1 every weakly comvergent sequence s convergent.

Let (@,,) C1 be a weakly convergent sequence. It is enough to prove
that for every two increasing sequences of indices (p,) and (g,) the sequence
(24) = (@, —m,,) converges to 0.

Suppose a contrario that [z, — 0. Since z,, = 0, according o Theorem 3
of [0] there is a subsequence (2,) which is a basic sequence equivalent
to a block basis with respect to the unit-veetor-basis of 1. Since (z)) is
bounded it must be equivalent to the unit-vector-basis of I, This gives
& contradiction, because the sequence of unit vectors of I is not weakly
convergent.

The proposition 1.3 can be formulated in an equivalent form:

1.31 (Theorem of Schur). In order that every Dbounded numerical
sequence be summable by the method corresponding o a matrin (@n,) it s
necessary and sufficient that:

) By (fn) are denoted the linear functionals which are biorthogonal with
respect to the basis (xn) (see [0], 1.1). .

) The symbol zy, =0 denotes that the sequence (x4) converges weakly to 0.
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1° there exist limits lima,, (m =1,2,...),
n

20 sup 3 l@pml = 0 for k- oco.
n m=k . .
1.4. Suppose that the series Y ln@y, is w. u. c. If the sequence (uge) is of
N=1

the form 0

'
Uy = 2 %5,

i=Np
where Ny < My < Ny < My < ..., [t 20| for Ny <i< My (=1,

2,...), then the series ,g'l“’“ 8 w. U. C.

Indeed, .
© © My oo My o
3 i) | <0 Ftm)] <20 Y |f(tsmg) < +oe.

L
1.5. If the series )y is not convergent but is w. . ¢. and & sequence (Yr)
k=1

fulfills the condition

2 llyi— il < +o0,
b}

o0
then the series D yy is also mot convergent and w. U. C.
k=1 .
A trivial proof is omitted.

2. THEOREM 1. If Y is a subspace of & Banach space X w@th an a,bsolut.e
basis (), @] =1 (n =1,2,...), then the following conditions are equt-
valent:

(a) every bounded set in Y s conditionally weakly compact,

(b) no subspace of ¥ 4s isomorphic to the space 1,

(e) no subspace of Y* is isomorphic to the space Co,

(d) every element g' X" is representable in the form

o0
g = Ztifi;
=

where fi(w) = fi{x) for weX.

Proof. We divide the proof into four parts.

2.1. (a) implies (d). Let g'e ¥". Let us extend 4 to the linear functional
geX* in such a way that [jgf] = llgll. Since for every yeY,:

y = f Lo = D) L)

i=1 =1
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we obtain
g =gy = Dy@f @) =Dt/ @), where t=g(,).
1=1 g=1

Let ¢ = (&,) be an arbitrary bounded real sequence. According

to 1.4 of [0], the series ) 'd;f;(y)a; is convergent. Thus
. fe=1

(1)  the series ) '9%fi(y) is convergent.
i=1

The sum of the series (1) defines over the space ¥ a linear func-
tional g,(y).
Suppose that

| 3jui=] 0.

Then there exist an increasing sequence of indices (p,) and a sequence
(¥2) C Y with |yl =1 (»n =1,2,...) such that

@) “.itifi(yn)”>§>0 (n=1,2,..).
=Dy,

According to (a) it may be additionally supposed that
(3) the sequence (y,) is weakly convergent. )
According to (1) and (3) every bounded numerical sequence is

summable by the method corresponding to the matrix (a,,) = {tfm (¥a))-
Since the conditions 1.31, 2° and (2) are contradictory, the supposition

M
| 2 ttimg] 0
must be false. =l

The following is a simple consequence from (d):
(@Y if Y, 45 a (separable) subspace of ¥, then Yy ds separable.
2.2. non (c) implies non (d'). If (¢) does not hold, then by [0],

'_].‘hgorem 4, ¥ contains a subspace ¥, which is isomorphic to I Since ¥}
is isomorphic to m, it is not separable.

2.3. non (b) implies non (¢). This is a congequence of C.7 of [0].

y 2.4. (b) implies (a). Let (y,) C ¥ be an arbitrary bounded sequence.
ince

SUD[£3(yn)] < sup|Ifs-sup [lga)] <+ oo,
1, @ n

one can choose a subsequence (4x) of the sequence (y;) such that there
exigt the limits

ti=ﬁinfi(yn> (t=1,2,...).

icm
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Let (p,) and (g,) be arbitrary increasing sequences of positive
integers. We have :

SUD [, — Y| < 250D 1]
n
and
hmfi(?/pn_yqn) =h—; =0 (i=1,2,..).
n

It follows from 1.21 that if the condition (b) is satisfied then

(Vv = Yan) =0, 4. e. the sequence (y,) converges weakly, q. e. d.

3. THEOREM 2. Let Y be a subspace of a Banach space X with an
absolute basis (x,). Then Y is weakly complete if and only if Y contains
no subspace which is isomorphic to the space c,.

Proof. Buppose that Y is not weakly complete. We shall prove
that ¥ contains a subspace isomorphic to ¢,. (The converse implication
is trivial). Let (y,) C ¥ be a weakly convergent sequence which weakly
converges to no element.

The idea of the proof: We compose a sequence (v,) of differences of
certain convex linear combinations of elements (y,) in such a way that

0
the series v, does not converge but it is w.u.c. Now we apply

n=1
Theorem 5 of [0].
The proof will be composed of five parts.
Since (y,) weakly converges, there exist limits

(4) 1 =Hmf¢(?/;») (i=1,2,...).

o0
3.1. >'t;x; does not converge but is w. u. e. Suppose thab
i=1

o
Zt,,;.’ﬂi =Y.
=1

The sequence (y,— y) is weakly convergent, because (y,) converges
weakly. According to (4), f;(yh,—vy) -0 (i =1, 2,...). Thus 1.2 implies
(Yn—1y) = 0. This leads to a contradiction, because (¢,) converges to no

. element.
Since (yy) is weakly convergent,

(5) sup [ZA

According to (4), (5) and criterion 1.4 of [0] for every f<¥* we have

D (@)l = sup ' [f(tm)| < Eallf suplyall < +oo.
i=1 - m o 3=1
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3.2. There exists an increasing sequence (r,) of indices and a sub-
sequence (y,) of the sequence (y») which satisfy the following conditions:

L Ml |
(6) inf | 2 Ll =06 >0,
% =T+l !
n 1
(7) D Mhlymm—tall < o (0= 1,2, ).

This is an easy consequence of 3.1 and (4).

3.3. If Iy = ) f,;(’l‘jn)wi, then zn‘-v> 0.
‘ {=rp 41

We have
% filyn)  for o,
'n) = Jilln &ry) =
i (m) _2+f (W) fr (1) A,
whence f(2,) =0 (k=1,2,...).

According to 1.2, it is enough to show that the sequence (z,) conver-
ges weakly. Let feY*. By (7)

=

V A

"y Ty
!f(zq_zp)] = ]f(?/q—?/p) 2 (fﬂ )'I/’H" ) (/1 '/11 - tl Z iM’z‘
i 1&1 T

1 i
< |1 Wa—¥2) : (_]7 )—f M fle) (0 < q).

’17

oo
Since (y,) weakly converges and > tz; is w. u. c.,
=1

im f(zg—2p) =0,
B,¢->00
therefore the sequence (z,) converges weakly.
3.4. For every e >0 and every positive integer N there exists
y(N, e)e[y,] which is of the form

Y(N,e) = u(lV,e)-+o(N,s),

where
M(N ¢
(8) w(N,e)= > iy (M(N,&) > N),
'L|==N
(9} (X, &)l = 6-Ka!,
(10) Wl <2 (6 =N,N+1,..., M(N,e),
(11) o (N, &)l <e
(Y(N, &) is a difference of certain conven linear combinations of elements (,))-
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Let »n' > max (N, 4/e). According to 3.3 and a theorem of Mazur
([18], 2.541) there exists a convex linear combination

»
w = W' (2, IS TR n'+p Zl Bpryiy A =0, 2}1 =
=0 =1
such that
(12) o'l < &/4.

Let n'’ = n'-+p-+1. Congider the second convex linear combination

1t (2
W' = W' (@, 8prrg1y -+ s Bursg) ZZM%"JA;

. a4
w20, 2/«6»;:1,
=

such that
(13) flol] < ef4.
According to (7) the elements (y,) are of the form
(7) Yn = j‘ L%+ 2+ W where lwall < l/n-
=1
Let us set

y(N,e) = W' (Yo Ynpreg1y +ony :’/n“+q)—Wl (Ynry Ynrg1y ooy Yneap)s

n” n 41 ' +q

u(N,e) = W"(E%%, 2 Billiy ery 2 tiwz)
i=1 i=1 i=1
/41
-W’(Zt mﬂz BiZiy ey Z ta;i),
q=]1 1=1

(N, ) = w' —w' +W" (Wyry Wrorg1y oees Winyq) = W' (Wney Wip g1y oy Wrogp) -

The element u(N,e¢) is of the form

ey
€) = 2 f'imiy
where =
(14 il < (}jmw Z\m) Il = 2 il
k=0
(15) t;={i‘uk—21k)n—( 1-Ut; =0, for i<ru,
k=0 k=0

q
(16) t£=(2,uk) =1ty =1 f0T Ty <i<Tor
=


GUEST


172 (. Bessaga and A. Pelezynski

By (16), (6) and 1.4 of [0], we have

Iy oy
r 2 f"b"“]

i=ryrptl

=Kz

a7 e, el = Ka

} 2 JM""’H = {31\’,;[,‘
=ty gl
By (14), (15) and (17) we obtain (8), (9) and (10). The inequality
(11) is an immediate consequence from (12),.(13) and (7').
3.5. Let Ny < M(Ny, 27Y) < Ny < M(N,,27%) < Ny < ...

o0 .

Sy, 27

k=1

The series
(18)

does not converge but it s w, u. c.
o0
According to 1.5 it is enough to establish that the series 3" (N, 27%)
fie=1

is w. w. e. but is not convergent. But this is an casy consequence of 3.1,
3.3 and 1.4.

Theorem 5 of [0] and 3.5 imply that the space [y, ] contains a subspace
which is isomorphic to ¢, q.e.d.

4. Corollaries. From Theorems 1 and 2 and a well-known result
of Eberlein [10] we obtain

CorOLLARY 1. Let ¥ be a subspace of a Banach space X~ with an absolute
basis. In order that ¥ be reflexive it is necessary and sufficient, that Y
contain no subspace which is isomorphic either to the space ¢, or to the
space 1.

DEFINITION. The set A C X is called an absolute basis of the power 4 i

1° the get of linear combinations of elements of 4 is dense in X,

2° every countable sequence of different elements of A is an abso-
lute basic -sequence.

Remark 1. Theorems 1 and 2 and Corollary 1 hold true in the case
where the space X has an absolute basis of arbitrary power.

R. C. James has shown in his paper [14] an example of a non-reflexive
Banach space without an absolute basis, no subspace of which is
isomorphic either to the space I or to the space ¢,. We ghall denote this
space by J.

COROLLARY 2. If the space X contains a subspace which is isomorphic
o J, then there is mo absolute basis (of any power) of X.

It imples that no Banach space that is universal (with respeet to

the isomorphic mappings) for all separable Banach spaces, hag an absolute
basis (of any power). In particular:

GOB:OLLARY 3. The spaces C and m are not imbeddable in a Banach
space with an absolute basis (of any power).

icm

Generalization of resulls of R. ('. James 173

COROLLARY 4. If X* is a conjugate space (to a space X) and X" is o sub-
space of a space with an absolute basis, then X* is weakly complete.

This fact is a simple consequence of Theorem 2, Corollary 3 and
Theorem 4 of [0].

COROLLARY 5. If the space Y-is complemented in every space in which
it can be vmbedded, and Y is a subspace of a space with an absolute basis
(of any power), then Y is veflewive®).

Suppose that that the space ¥ fulfills the hypotheses of Corollary 5
and Y is separable. ¥ may be considered as a subspace of the space m.
Tf ¥ is not reflexive, then, according to Corollary 1, it contains a sub-
space ¥, which is isomorphie either to ! or to ¢,. Thus, by [0] (C. 6 and
0. 7), ¥, must be complemented in ¥, therefore it must be complemented
in m. This is not true (see [25]). The proof in the case of a non-separable X
can be made without' any essential changes. :

Remark 2. One can genéralize the results of this paper to the case
of linear metric spaces which are considered in [0], section 5.

5. Unsolved problems. Finally we quote some problems.

5.1. Does every infinitely dimensional Banach space contain an
infinitely dimensional subspace with an absolute basis?

Remark 3. Dworetzky and Rogers [9] have shown that

(D-R) In every Banach space of an infinite dimension there exists

)

[
@ u.c. series > o, such that |ln)l = ~-oo-
fn=1 1

N=
Suppose that the answer to question 5.1 is positive. Then the proof
of (D-R) can be immediately reduced to the easy case of the space I
5.11. Give a solution of 5.1 with the additional assumption that the
space X is weakly complete (reflexive).
5.12. Suppose that x, >0, ir:bf{]mn|] > 0. Does there exist a sub-

sequence (x, ) which is an absolute basic sequence ?

5.2. Let X be reflexive. May X be imbedded in a reflexive Banach
space with a basis?

5.21. Let X be a reflexive (separable) Banach space. Can X be im-
bedded in a Banach space with an absolute basis?

5.29. Let X be a reflexive subspace of a Banach space with an absolute
basis. Can X be imbedded in a reflexive Banach space with an absolute
basis? ‘

5.3. Give an example of a separable Banach space having no absolute
basis which is a subspace of a Banach space with an absolute basis.

) This is a generalization of James's result ([15], Theorem 2).
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Let Jyyq be a (2n+1)-dimensional space, composed of the real
gequences 4 = (@, @ay ..., Gyny1), under the norm
k

lyalln = sup sup (2 (@, — (‘L‘I’zi—l)2 - a';’2k+l)“2
E<n p1<Py<..<Ppp41 =1
Let X = (J3XdJsX )12 be a space of all sequences & = (v,), 1/,,6,72%1
(n =1,2,...), such that leyﬂ]\n< -+ co, under the norm |z = (Zﬂynﬂn 2,
=1

The space X can be isomorphically imbedded.®) in the space
Y = (6,X X ...); having an absolute bagis.
space X has no absolute basis.

5.4. Let X Dbe a separable Banach space. Are the following conditiong
equivalent:

(a) every bounded set in X is conditionally weakly compact,

(b) no subspace of X is isomorphic to I,

(¢') ¥* is separable?

" Added in proof. In other way the results given in this paper can
be obtained in a stronger form: for instance to the assertion of Theorem
can be added the following equivalent condition:

(e) The space Y* is weakly complete.
(See C. Bessaga and A. Pelczyiski, On subspaces of the space
with an absolute basis, Bull. Acad. Pol. Seci. 6 (1958), p. 313-315.)

Regu par le Rédaction le 6. 8. 1957

% 4. e. the space X is isomorphic to a subspace of Y.

We conjecture that the
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Elliptizitdit und schwache Halbstetigkeit gewisser
Funktionale der Variationsrechnung mehrfacher Integrale.
Volistetigkeit Greenscher Transformationen

K. MAURIN (Warszawa)

In dieser Abhandlung wird gezeigt wie man auf elementare Weise
(Ehrlingsche Ungleichungen und Rellichscher Auswahlsatz) die Ellipti-
zitét einer wichtigen Klasse quadratischer Funktionale beweisen kann
(§ 2). Diese Klasse umfaft u.a. die Funktionale aus der Theorie der
elastischen Platten und die von C. B. Morrey [12] in der Theorie der har-
monischen Integrale eingefiihrten Formen.

Mit Hilfe derselben SchluBweise, aber mit Heranziehung der Kon-
draschewschen Sétze (und eines Kriteriums von E. Rothe) gelingt es die
schwache Halbstetigkeit auch fiir eine gewisse Klasse nichtquadratischer
Funktionale der Variationsrechnung mehrfacher Integrale und die Ellip-
tizitdt ihrer zweiten Differentiale zu beweisen (§ 3)."

Es wird weiter eine notwendige und hinreichende Bedingung fiir
die Annahme des absoluten Minimums fir quadratische Funktionale,
des im §2 untersuchten Typus angegeben. Diese Funktionale kinnen
auch auf Funktionenrdumen definiert sein, die gewissen allgemeinen,
von Ehrling eingefiihrten Randbedingungen geniigen. Unser Vorgehen
ist elementar und umgeht die Theorie der selbstadjungierten Fortsetzun-
gen (§4).

Im §5 bringen wir einen einfachen Beweis fiir die Vollstetigkeit
der Greenschen Transformationen. Unser Satz ist zugleich eine Verschér-
fung eines Satzes von Ehrling [1] und umfaBt einen vor kurzem publi-
zierten Satz von L. Schwartz [16]. Durch die Anwendung dieses Satzes
anf das im § 3 untersuchte zweite Differential eines Funktionals erhal-
ten wir schlieBlich einen Eigenwertsatz, der eine weitgehende Verall-
gemeinerung eines auf anderem Wege von E. Rothe gewonnenen Satzes
([15], § 6) darstellt.

Um die Abhandlung leicht zuginglich zu maechen sind im §1 die
benutzten Hilfsmittel in ihrem logischen Zusammenhang zusammen-
gestellt.
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