

On Cauchy's condensation theorem

by

A. ALEXIEWICZ (Poznań)

Let us write $a_n = n$ if $n = 2^k$ (k = 1, 2, ...) and $a_n = 0$ elsewhere. Cauchy's well-known condensation theorem (test) states that if $\{e_n\}$ is l a non-increasing sequence with non-negative terms, then the series

(1)
$$\sum_{n=1}^{\infty} a_n \varepsilon_n, \quad \sum_{n=1}^{\infty} \varepsilon_n$$

converge or diverge simu-taneously. In this paper we determine all the sequences $\{a_n\}$ with non-negative terms for which the above proposition is valid. To be precise, we shall call the sequence $\{a_n\}$ with non-negative terms effective for monotone series if, for every sequence $\{\varepsilon_n\}$ with non-increasing non-negative terms, the convergence of either of the series (1) implies the convergence of the other one. We prove that the sequence $\{a_n\}$ is such if and only if

$$0 < \lim_{n \to \infty} \frac{a_1 + \ldots + a_n}{n} \leqslant \overline{\lim}_{n \to \infty} \frac{a_1 + \ldots + a_n}{n} < \infty.$$

This shows that in the generalized Cauchy's test with

$$\sum_{n=1}^{\infty} a_n r_n \equiv \sum_{n=1}^{\infty} (a_{n+1} - a_n) \varepsilon_{a_n}$$

the hypothesis

$$\lim_{n \to \infty} (a_{n+1} - a_n)(a_n - a_{n-1})^{-1} > 0$$

is indispensable.

We also give the necessary and sufficient conditions for one-side implications of the convergence of the series (1).

1. In the sequel $\mathfrak{a}=\{a_n\}$ will denote a sequence of non-negative numbers such that $a_1\neq 0$. By $\mathfrak{X}(\mathfrak{a})$ we shall denote the set of all sequences $\mathfrak{x}=\{x_n\}$ tending to 0 for which there exists a non-increasing sequence $\{\epsilon_n\}$ such that $|x_n|\leqslant \epsilon_n$ and

$$\sum_{n=1}^{\infty} a_n \, \varepsilon_n < \infty.$$

Under the usual definition of addition and multiplication by scalars, $\mathfrak{X}(\mathfrak{a})$ becomes a linear space. Let us write, for $\mathfrak{x} \in \mathfrak{X}(\mathfrak{a})$,

$$\mu_n(\mathfrak{x}) = \sup\{|x_n|, |x_{n+1}|, \ldots\},\$$

then the sequence r is in $\mathfrak{R}(\mathfrak{a})$ if and only if

(2)
$$\sum_{n=1}^{\infty} a_n \mu_n(\mathfrak{x}) < \infty.$$

Hence $\mathfrak{X}(\mathfrak{a})$ may be considered as the space of all sequences $\mathfrak{x} = \{x_n\}$ for which the series (2) converges. The sum of the series (2) defines in $\mathfrak{X}(\mathfrak{a})$ a functional $||\mathfrak{x}||$ which obviously has all the properties of the norm, moreover, as may easily be verified, the space $\langle \mathfrak{X}(\mathfrak{a}), || || \rangle$ is complete, whence it is a Banach space. We shall need some properties of this space.

LEMMA 1. If $a_n \geqslant 0$, $\varepsilon_n \searrow 0$, and

$$\sum_{n=1}^{\infty} a_n \, \varepsilon_n < \infty,$$

then

$$\lim_{n\to\infty} (a_1+\ldots+a_n)\,\varepsilon_n=0.$$

This is a trivial generalization of the well-known theorem of Olivier.

Given any element $\mathbf{r} = \{r_n\}$ of $\mathfrak{X}(\mathfrak{a})$, the element

is also in $\mathfrak{X}(\mathfrak{a})$. Since

$$\|\underline{\mathfrak{x}}-\underline{\mathfrak{x}}^n\|=(a_1+\ldots+a_n)\mu_n(\underline{\mathfrak{x}})+\sum_{i=n+1}^\infty a_i\mu_i(\underline{\mathfrak{x}}),$$

we deduce from the fact that

$$\lim_{n\to\infty}\mu_n(\mathfrak{x})=0$$

for every $r \in \mathfrak{X}(\mathfrak{a})$ and from the Lemma that

$$\lim_{n\to\infty}\|\mathbf{x}-\mathbf{x}^n\|=0$$

for every $\mathfrak{x} \in \mathfrak{X}(\mathfrak{a})$; this implies that the space $\langle \mathfrak{X}(\mathfrak{a}), || || \rangle$ is separable. Now, we wish to determine the general form of linear functionals in $\langle \mathfrak{X}(\mathfrak{a}), || || \rangle$. Let ξ be such a functional, and let \mathfrak{x}_n denote the *n*-th unit vector. Then

$$\xi(\mathfrak{x}) = \sum_{n=1}^{\infty} b_n x_n$$
 where $b_n = \xi(\mathfrak{x}_n)$.

On Cauchy's condensation theorem

To characterize the sequence $\{b_n\}$ we shall first compute the norm of the functional

$$\xi_k(\mathfrak{x}) = \sum_{n=1}^k b_n x_n.$$

Since

$$||\xi_k|| = \sup_{\|\xi\| \leqslant 1} \Big| \sum_{n=1}^k b_n x_n \Big|,$$

and since $\vartheta_n = \pm 1$, $\mathfrak{x} \in \mathfrak{X}(\mathfrak{a})$ implies $\mathfrak{x}_{\theta} = \{\vartheta_n \mu_n(\mathfrak{x})\} \in \mathfrak{X}(\mathfrak{a})$ and $\|\mathfrak{x}\| = \|\mathfrak{x}_{\theta}\|$, we see that

$$\|\xi_k\| = \sup_{\|\mathbf{z}\| \le 1} \sum_{n=1}^k |b_n x_n| = \sup_{\|\mathbf{z}\| \le 1} \sum_{n=1}^k |b_n| \, \mu_n(\mathbf{z}),$$

whence $\|\xi_{\mathbf{k}}\|$ is equal to the supremum of

$$\sum_{n=1}^{k} |b_n| \, \mu_n(\mathfrak{x})$$

under the condition $||\mathbf{r}|| = 1$.

We shall prove that

$$\|\xi_k\| = \max\bigg(\frac{|b_1|}{c_1}, \frac{|b_1| + |b_2|}{c_1 + a_2}, \dots, \frac{|b_1| + \dots + |b_k|}{a_1 + \dots + a_k}\bigg).$$

This immediately follows from

LEMMA 2. Let $b_k \geqslant 0$; then the supremum of the sums

$$\sum_{n=1}^{k} b_n x_n$$

under the conditions $x_1\geqslant x_2\geqslant\ldots\geqslant x_k\geqslant 0$, $a_1x_1+a_2x_2+\ldots+a_kx_k=1$ is equal to

$$\max\left(\frac{b_1}{a_1}, \frac{b_1+b_2}{a_1+a_2}, \dots, \frac{b_1+\dots+b_k}{a_1+\dots+a_k}\right).$$

Proof. Let Ω be the subset of R^k , the space of k-dimensional euclidean vectors, composed of those elements $\mathfrak{x}=\{x_1,\ldots,x_k\}$ for which $x_1\geqslant x_2\geqslant\ldots\geqslant x_k\geqslant 0$, $a_1x_1+a_2x_2+\ldots+a_kx_k=1$. This set is evidently closed and convex. Let us now write

$$\mathfrak{x}_n = \{\underbrace{1, \dots, 1}_{n}, 0, \dots, 0\}, \quad c_n = \frac{1}{a_1 + \dots + a_n}, \quad \mathfrak{d}_n = c_n \, \mathfrak{x}_n.$$

Then, for every $r \in \Omega$

$$\mathfrak{x} = \frac{x_k}{c_k} c_k \mathfrak{x}_k + \frac{x_{k-1} - x_k}{c_{k-1}} c_{k-1} \mathfrak{x}_{k-1} + \dots + \frac{x_1 - x_2}{c_1} c_1 \mathfrak{x}_1,$$

$$\frac{x_k}{c_k} + \frac{x_{k-1} - x_k}{c_{k-1}} + \dots + \frac{x_1 - x_2}{c_1} = \frac{x_1}{c_1} + x_2 \left(\frac{1}{c_2} - \frac{1}{c_1}\right) + \dots + x_k \left(\frac{1}{c_k} - \frac{1}{c_{k-1}}\right)$$

$$= a_1 x_1 + a_2 x_2 + \dots + a_k x_k = 1,$$

and $\delta_1, \ldots, \delta_k \in \Omega$. Thus every $\mathfrak{x} \in \Omega$ is of the form $\lambda_1 \delta_1 + \lambda_2 \delta_2 + \ldots + \lambda_k \delta_k$ with $\lambda_i \geqslant 0, \lambda_1 + \ldots + \lambda_k = 1$. Since the elements δ_n are linearly independent (for $c_n \neq 0$), $\{\delta_1, \ldots, \delta_k\}$ is the set of all extreme points of the set Ω . Since the linear functional $\varphi(\mathfrak{x}) = b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$ assumes its extrema over Ω in the extreme points of Ω , we get

$$\sup_{\mathbf{x}\in\mathcal{Q}}|\varphi(\mathbf{x})|=\max[\varphi(\mathfrak{z}_1),\,\varphi(\mathfrak{z}_2),\,\ldots,\,\varphi(\mathfrak{z}_k)],$$

from which the statement of the lemma follows immediately.

These considerations lead, by a familiar procedure, to

Theorem 1. The general form of linear functionals in $\langle \mathfrak{X}(\mathfrak{a}), || || \rangle$ is

$$\xi(\mathfrak{x}) = \sum_{n=1}^{\infty} b_n x_n,$$

where

(3)
$$\sup_{n=1,2,\dots} \frac{|b_1| + \dots + |b_n|}{a_1 + \dots + a_n} < \infty,$$

the last number being equal to the norm of ξ .

We infer

THEOREM 2. In order that the series

$$\sum_{n=1}^{\infty} b_n x_n$$

be convergent for every $\mathfrak{x} = \{x_n\} \in \mathfrak{X}(\mathfrak{a})$ it is necessary and sufficient that the inequality (3) be satisfied.

Let us denote by $\mathfrak{X}^{\bullet}(\mathfrak{a})$ the space of all bounded sequences $\mathfrak{x}=\{x_n\}$ for which

$$\sum_{n=1}^{\infty} a_n \mu_n(\mathfrak{x}) < \infty.$$

Then $\mathfrak{X}^{\bullet}(\mathfrak{a})$ is a Banach space under the norm defined by (1). It is obvious that if

$$\overline{\lim}_{n\to\infty}a_n>0,$$

then

$$\lim_{n\to\infty}\mu_n(\mathfrak{x})=0\quad\text{ for every }\quad\mathfrak{x}\,\epsilon\mathfrak{X}^*(\mathfrak{a})\,,$$

whence $\mathfrak{X}^*(\mathfrak{a}) = \mathfrak{X}(\mathfrak{a})$

2. Let $\mathfrak{a}_1=\{1,1,\ldots\}$. Then $\mathfrak{X}(\mathfrak{a}_1)$ is the space of all the sequences which can be majorized by non-decreasing sequences with convergent sums. Since \mathfrak{x} is in $\mathfrak{X}(\mathfrak{a}_1)$ if and only if $\{\mu_n(\mathfrak{x})\}$ is in $\mathfrak{X}(\mathfrak{a}_1)$, we get, by Theorem 2.

THEOREM 3. The series

$$\sum_{n=1}^{\infty} a_n \, \varepsilon_n$$

converges for every convergent series $\sum\limits_{n=1}^{\infty} \varepsilon_n$ with non-increasing terms if and only if

$$\sup_{n=1,2,\dots}\frac{a_1+\dots+a_n}{n}<\infty.$$

The assumption $a_1 \neq 0$ with regard to the space referred to in the proof is inessential.

Now we ask what the sequence $\{a_n\}$ with non-negative terms must be like in order that

$$\sum_{n=1}^{\infty} a_n \, \varepsilon_n < \infty$$

imply $\sum_{n=1}^{\infty} \varepsilon_n < \infty$ for every sequence $\{\varepsilon_n\}$ with non-increasing terms. The assumption $a_1 \neq 0$ does not restrict generality.

Theorem 4. Let $a_n \geqslant 0$. The sequence $\{a_n\}$ is such that

$$\sum_{n=1}^{\infty} a_n \, \varepsilon_n < \infty$$

implies

$$\sum_{n=1}^{\infty} \varepsilon_n < \infty$$

for every sequence $\{\epsilon_n\}$ with non-negative, non-increasing terms if and only if

$$\lim_{n\to\infty}\frac{a_1+\ldots+a_n}{n}>0.$$

Proof. Necessity. For every $\mathfrak{x} = \{v_n\} \in \mathfrak{X}^*(\mathfrak{a})$ the convergence of

$$\sum_{n=1}^{\infty} a_n x_n$$

implies the convergence of $\sum_{n=1}^{\infty} x_n$. A fortiori this is satisfied for every $\mathfrak{x} \in \mathfrak{X}(\mathfrak{a})$. By Theorem 2 we must have

$$\overline{\lim}_{n\to\infty} n(a_1+\ldots+a_n)^{-1} < \infty.$$

To prove the condition sufficient, note that

$$\lim_{n\to\infty} n^{-1}(a_1+\ldots+a_n)>0$$

implies

$$\overline{\lim}_{n\to\infty}a_n>0,$$

whence $\mathfrak{X}^*(\mathfrak{a}) = \mathfrak{X}(\mathfrak{a})$. Then we apply again Theorem 2.

Theorems 3 and 4 yield

THEOREM 5. The sequence $\{a_n\}$ is effective for monotone series if and only if

$$0 < \underline{\lim}_{n \to \infty} \frac{a_1 + \ldots + a_n}{n} \leqslant \overline{\lim}_{n \to \infty} \frac{a_1 + \ldots + a_n}{n} < \infty.$$

The following proposition is an obvious generalization of Theorem 5. Let $a_n \ge 0$, $b_n \ge 0$,

$$\overline{\lim}_{n\to\infty}a_n>0.$$

The sequence $\{b_n\}$ is such that the convergence of either of the series

$$\sum_{n=1}^{\infty} a_n \, \varepsilon_n, \quad \sum_{n=1}^{\infty} b_n \, \varepsilon_n$$

with non-negative non increasing ε_n 's implies the same for the other series if and only if

$$0 < \lim_{n \to \infty} \frac{a_1 + \ldots + a_n}{b_1 + \ldots + b_n} \leqslant \overline{\lim}_{n \to \infty} \frac{a_1 + \ldots + a_n}{b_1 + \ldots + b_n} < \infty.$$

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 14.5.1956