

Some remarks on Saks spaces

hv

W. ORLICZ (Poznań) and V. PTÁK (Praha)

1. In the present paper we shall denote by X a linear space with a homogeneous norm $(B\text{-norm}) \parallel \parallel$. This norm will be called the *fundamental norm in X*. Let $\parallel \parallel^*$ be another norm defined on X. The norm $\parallel \parallel^*$ may be a B-norm or, more generally, an F-norm ([2], p. 237). On the set

$$X_s = \underset{x}{E}[\|x\| \leqslant 1]$$

we define a metric by the formula

$$d(x_1, x_2) = ||x_1 - x_2||^*$$
, where $x_1, x_2 \in X_s$.

To every starred norm on X there corresponds a notion of convergence in X_s . A sequence $x_n \in X_s$ will be called ω -convergent to $x_0 \in X$ if $d(x_n, x_0) \to 0$, in symbols

$$x_n \stackrel{\omega}{\to} x_0$$
 or ω - $\lim_{n \to \infty} x_n = x_0$.

We shall write $X_s(\omega)$ to denote that a fixed starred norm in X_s is considered. By $X(\omega)$ we shall denote the space X with the norm $\|\cdot\|^*$.

If $X_s(\omega)$ is a complete space, we shall call it a *Saks space* (corresponding to the norm $\|\ \|^*$, see [2], p. 240). The same set X_s may constitute also other Saks spaces corresponding to other starred norms, non-equivalent to $\|\ \|^*$.

In the sequel we assume that $||x|| \ge ||x||^*$ for every $x \in X$. Under this hypothesis it is possible to show that, if $X_{\sigma}(\omega)$ is a Saks space, the space X is a complete space under the norm $\| \ \|$ (see [3]).

We shall say that the norm $\| \cdot \|_{\bullet}^{\bullet}$ is not weaker than $\| \cdot \|_{\bullet}^{\bullet}$ in X_s if $\|x_n-x_0\|_{\bullet}^{\bullet} \to 0$ implies $\|x_n-x_0\|_{\bullet}^{\bullet} \to 0$ for $x_n \in X_s, x_0 \in X_s$. The norms $\| \cdot \|_{\bullet}^{\bullet}$, $\| \cdot \|_{\bullet}^{\bullet}$ will be called equivalent on X_s if the first norm is not weaker than the second and conversely. Note that two norms equivalent in X_s need not be equivalent on the whole space X.

We shall denote by Y the space conjugate to the Banach space X with the norm $\| \ \|$. We shall denote by $Y(\omega)$ the space of all functionals,

distributive and continuous with the norm $\| \|^*$, e.g. linear over the space X, $\| \|^*$. We shall denote by $Y_g(\omega)$ the set of all distributive functionals y defined on X such that $x_n e X_g(\omega)$, $x_0 e X_g(\omega)$ and

Some remarks on Saks spaces

$$\omega$$
- $\lim_{n\to\infty} x_n = x_0$

implies $y(x_n) \to y(x_0)$. Clearly $Y_s(\omega)$ is a linear subspace of Y.

1.1. The space $Y_s(\omega)$ is closed in Y.

Let y belong to the closure of $Y_s(\omega)$. Suppose that $||x_n|| \leq 1$, $||x_0|| \leq 1$,

$$\lim_{n\to\infty}||x_n-x_0||^*=0.$$

Let ε be an arbitrary positive number. There exists a functional $y_0 \in Y_{\sigma}(\omega)$ such that $||y-y_0|| < \varepsilon/3$. Since y_0 is ω -continuous on $||x|| \le 1$, we have

$$\lim_{n\to\infty} \left(y_0(x_n) - y_0(x_0) \right) = 0.$$

There exists a natural number n_0 such that $|y_0(x_n)-y_0(x_0)|<\varepsilon/3$ for $n>n_0$. We have then, for $n>n_0$,

$$|y(x_n)-y(x_0)| \leq |y_0(x_n)-y_0(x_0)|+2||y-y_0|| < \varepsilon,$$

so that y is continuous on $||x|| \leq 1$ as well. It follows that $y \in Y_s(\omega)$, which concludes the proof.

It is thus natural to ask whether, given a Banach space X and a closed subspace Y_0 of the conjugate space Y, it is not possible to define another norm $\| \ \|^*$ on X in such a way that the corresponding $Y_s(\omega)$ be equal to Y_0 . The answer is negative, which may be seen from the following example.

Let X be the space of all continuous functions defined on the set T of all real numbers $0 \le t \le 1$. In X let us define the usual norm

$$||x|| = \max_{\langle 0,1\rangle} |x(t)|.$$

The conjugate space Y consists of all functions of finite variation y defined on T, continuous from the left on (0,1) and such that y(0) = 0.

Let us denote by Y_1 the set of all singular functions, *i. e.* the set of all $y \in Y$ which fulfil the following condition:

For every $\varepsilon>0$, there exists a finite number of disjoint segments $k_i\,\epsilon\,T$ such that $\sum |k_i|>1-\varepsilon$ and $\sum W(y;k_i)<\varepsilon$ 1).

Let y belong to the closure of Y_1 . Given an $\varepsilon > 0$, there exists an $y_0 \, \epsilon \, Y_1$ such that $||y - y_0|| < \varepsilon/2$. There exist disjoint segments $k_1, \, k_2, \, \ldots, \, k_n$

¹⁾ By W(y;k) we denote the variation of the function y on the segment k.

such that $k_i \in T$, $\sum |k_i| > 1 - \varepsilon/2$ and $\sum W(y_0; k_i) < \varepsilon/2$. We have then $\sum W(y; k_i) \leqslant \sum W(y_0; k_i) + \sum W(y - y_0; k_i) \leqslant \sum W(y_0; k_i) + ||y - y_0|| < \varepsilon,$

so that $y \in Y_1$ as well. We have thus shown that Y_1 is closed in Y.

Let us denote by Y_2 the set of all absolutely continuous functions, i.e. the set of all $y \in Y$ which fulfil the following condition:

For every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every finite number of disjoint segments $k_i \subset T$ such that $\sum |k_i| < \delta$, we have $\sum W(y; k_i) < \varepsilon$.

Let y belong to the closure of Y_2 . Let $\varepsilon>0$ and suppose that $y_0 \varepsilon Y_0$ and $||y-y_0||<\varepsilon/2$. There exists a $\delta>0$ such that $\sum |k_i|<\delta$ implies $\sum W(y_0;k_i)<\varepsilon/2$ for every finite number of disjoint segments $k_i \subset T$. If $k_i \subset T$ are disjoint segmen suchst that $\sum |k_i|<\delta$, we have

$$\sum W(y; k_i) \leqslant \sum W(y_0; k_i) + ||y - y_0|| < \varepsilon.$$

It follows that Y₂ is closed in Y.

Suppose now that there is a norm on X such that, for the corresponding convergence ω , we have $Y_1 \subset Y(\omega)$. Suppose that $x_n \in X_s$ and

$$\omega \lim_{n} x_{n} = 0.$$

For every $t \in T$, the functional y_t defined by $y_t(x) = x(t)$ belongs to Y_1 . Since $Y_1 \subset Y(\omega)$, it follows that $x_n(t) = y_t(x_n) \to 0$. At the same time $\|x_n\| \leq 1$, so that x_n is weakly convergent to 0. It follows that $y(x_n) \to 0$ for every $y \in Y$. We thus have $Y = Y_0(\omega)$.

On the other hand, it is easy to see that $Y_2 = Y_s(\omega)$ for the convergence defined by the starred norm

$$||x||^* = \int\limits_0^1 |x(t)| dt.$$

In this case, however, the space $X_s(\omega)$ is not complete in the metric $\|x_1-x_2\|^s$.

In the sequel we shall examine the following properties of a Saks space $X_s(\omega)$:

(A) Suppose that U is a distributive operation from X to a Banach space Z. Suppose that, for every linear functional η on Z, the functional $\eta(U(x))$ belongs to $Y_s(\omega)^2$). In these conditions, the operation U is continuous on $X_s(\omega)^2$).

continuous in $X_{\bullet}(\omega)$ if and only if it is continuous in 0.

(B₁) Let $y_n \in Y_s(\omega)$ and suppose that

$$\lim_{n\to\infty}y_n(x)=y(x)$$

exists for every $x \in X_s$. Then y telongs to $Y_s(\omega)$.

(B₂) Let y_n be a sequence of functionals $y_n \in Y_s(\omega)$ and suppose that

$$\lim_{n\to\infty}y_n(x)=y(x)$$

exists for every $x \in X_s$. Then y_n are equicontinuous on $X_s(\omega)$.

(B₃) Let U_n be a sequence of linear operations from $X_s(\omega)$ to a Banach space Z. Suppose that

$$\lim_{n\to\infty} U_n(x) = U(x)$$

exists for each $x \in X_s$. Then the U_n are equicontinuous on $X_s(\omega)$.

The implications $(B_3) \to (B_2) \to (B_1)$ are obvious. We are going to show now that (B_3) is a consequence of (A).

Let $X_s(\omega)$ be a Saks space fulfilling the property (A). We begin by showing that (B_1) is fulfilled as well. Suppose that $y_m(x) \to y(x)$ for every $x \in X_s$ and $y_m \in Y_s(\omega)$. Suppose that there exists a sequence x_n and a positive a such that $||x_n|| \leq 1$, $||x_n||^* \to 0$ and $|y(x_n)| \geq a$.

We are going to construct two sequences, m_i and n_i , of indices. Let $m_1=1$ and let n_1 be the least positive integer for which $|y_{m_1}(x_{n_1})|\leqslant \alpha/4$. This is possible since

$$\lim_{n\to\infty}y_{m_1}(x_n)=0.$$

Let m_2 be the least positive integer for which $|y_{m_2}(x_{n_1})| \ge \alpha/2$. Such a number exists since

$$\lim_{m\to\infty} |y_m(x_{n_1})| = |y(x_{n_1})| \geqslant \alpha.$$

Let n_2 be the least positive integer $n_2 \ge n_1$ such that $|y_{m_2}(x_{n_2})| \le a/4$. Now let r > 1 and suppose we have already defined m_1, m_2, \ldots, m_r and n_1, n_2, \ldots, n_r in such a way that the following conditions are fulfilled:

1°
$$m_1 < m_2 < \dots m_r$$
,

$$2^{\mathbf{o}} \quad n_1 < n_2 < \dots n_r,$$

$$3^{\circ} |y_{m_i}(x_{n_i})| \leq a/4, \quad i = 1, 2, ..., r,$$

$$4^{\circ}$$
 $|y_{m_{i+1}}(x_{n_i})| \geqslant \alpha/2, \quad i = 1, 2, ..., r-1.$

To obtain m_{r+1} , it is sufficient to note that

$$\lim_{m\to\infty}|y_m(x_{n_r})|\geqslant \alpha.$$

²⁾ An operation U possessing this property is called weakly continuous in $X_*(\omega)$.
3) The operation U is said to be linear in $X_*(\omega)$ if it is distributive and continuous, i. e. $x_* \in X_*(\omega), x_* \xrightarrow{\omega} x_*$ implies $U(x_*) \to U(x_*)$. A distributive operation is

61

Let us define m_{r+1} as the least positive integer $\geqslant m_r$ such that $|y_{m_{r+1}}(x_{n_r})| \geqslant \alpha/2$. Take n_{r+1} as the least positive integer $\geqslant n_r$ for which $|y_{n_{r+1}}(x_{n_{r+1}})|\leqslant a/4$. It is easy to see that the conditions mentioned above are fulfilled, so that the induction is complete.

Now let
$$\overline{y}_i = y_{m_{i+1}} - y_{m_i}$$
, $z_i = x_{n_i}$. We have

$$\lim_{i\to\infty} \overline{y}_i(x) = 0 \quad \text{ for every } x,$$

further $||z_n|| \leq 1$ and $||z_n||^* \to 0$. At the same time, $|\overline{y}_i(z_i)| \geq a/4$ for every i. Since \overline{y}_i are functionals on a Banach space X and

$$\lim_{i\to\infty} \overline{y}_i(x) = 0 \quad \text{for every } x,$$

there is a constant β such that $\|\overline{y}_i\| \leq \beta$ for every i. Let a_k be a sequence of real numbers such that $\sum |a_k| < \infty$. Since all \overline{y}_i belong to $Y_s(\omega)$ and are equibounded, the sum $\sum a_k \overline{y}_k$ exists. The space $Y_s(\omega)$ being closed in Y, we have $\sum \sigma_k \overline{y}_k \epsilon Y_{\bullet}(\omega)$. Let us denote by V the Banach space of all sequences $v = \{t_k\}$ convergent to 0, with the norm

$$||v|| = \max_{k} |t_k|.$$

For every $x \in X$, let U(x) be the sequence $\{\bar{y}_k(x)\}$. Every linear functional η on V is of the form $\eta(v) = \sum \lambda_k t_k$, where $\sum |\lambda_k| < \infty$. In view of what has been said above, it follows that the operation U is weakly continuous on $X_s(\omega)$. It follows that U is continuous. Since $||z_i|| \leq 1$ and $||z_i||^* \to 0$, we have

$$\lim_{i\to\infty}U(z_i)=0.$$

This is a contradiction since $||U(z_i)|| \ge |\overline{y}_i(z_i)| \ge a/4$ for every i.

Now suppose that we are given a sequence of linear operations U_n from $X_s(\omega)$ to a normed space Z such that $U_n(x) \to U(x)$ for every $x \in X_s$. If η is an arbitrary linear functional on Z, $\eta(U_n(x))$ will be a sequence of linear functionals on $X_{\bullet}(\omega)$ such that for every $x \in X_{\bullet}$ we have $\eta(U_n(x)) \to \eta(U(x))$. According to what we have proved above, $\eta(U(x))$ will be a linear functional on $X_s(\omega)$. It follows that U(x) is continuous

Let V_n be defined by $V_n(x) = U_n(x) - U(x)$. Let us denote by W the normed space of all sequences $w = \{w_k\}$, where $w_k \in \mathbb{Z}$ and $w_k \to 0$, equipped with the norm

$$||w|| = \max_{k} ||w_k||.$$

For every $x \in X$ let us denote by $W_n(x)$ the element of W defined by the sequence $V_1(x), V_2(x), ..., V_n(x), 0, 0, ...$

Let us denote by W(x) the sequence $V_1(x)$, $V_2(x)$, ... Since

$$||W_n(x)-W(x)|| = \max_{k>n} ||V_k(x)||,$$

it follows that $W_n(x) \to W(x)$ for every x. The operations W_n being continuous on $X_s(\omega)$, it follows that W is continuous as well. This, however, already implies the equicontinuity of the operations V_n and, consequently, that of the operations U_n . This concludes the proof.

Under the condition of separability of the space Z, we may prove the converse implication $(B_2) \rightarrow (A)$.

In fact, suppose that $X_s(\omega)$ is a Saks space which fulfils the property (B_2) . Let U be a weakly continuous transformation of $X_s(\omega)$ into a separable Banach space Z. Suppose there exists a sequence $x_n \in X$ and a positive a such that $||x_n|| \leq 1$, $||x_n||^* \to 0$ and $||U(x_n)|| \geq a$. There exist functionals η_n on Z such that $\|\eta_n\| = 1$ and $\eta_n (U(x_n)) \geqslant \alpha$. The space Z being separable, we may find a subsequence η_n and a functional η such that $\eta_{n_t}(z) \to \eta(z)$ for every $z \in Z$. It follows that the functionals $\eta_{n_t}(U(x))$ converge to $\eta(U(x))$ for every $x \in X_s$. Since (B_2) is fulfilled, the functionals $\eta_{n,j}(U(x))$ are equicontinuous. This, however, is a contradiction of $\eta_{n_i}(U(x_{n_i})) \geqslant \alpha \text{ for every } i.$

1.2. Suppose that a Saks space $X_s(\omega_0)$ corresponding to the B-norm || ||, possesses the property (A). Suppose that we are given another convergence ω corresponding to the B-norm $\|\cdot\|^*$ and such that $Y_s(\omega) \subset Y_s(\omega_0)$. In these conditions the norm $\| \|_0^*$ is not weaker than $\| \|^*$ in X_s .

Let $x_n \in X_s$ and $||x_n||_0^* \to 0$. We are to prove that $||x_n||^* \to 0$ as well. Let us denote by U the operation which assigns to an element $x \in X_s(\omega_0)$ the same element considered as an element of the space $X(\omega)$. We have $Y(\omega) \subset Y_{\mathfrak{g}}(\omega) \subset Y_{\mathfrak{g}}(\omega_{\mathfrak{g}})$, so that U is weakly continuous in $X_{\mathfrak{g}}(\omega_{\mathfrak{g}})$. It follows that U is continuous. Since

$$\omega_0 - \lim_{n \to \infty} x_n = 0,$$

we have $||x_n||^* = ||U(x_n)||^* \to 0$ which concludes the proof.

It is important to know the sufficient conditions for a given space $X_8(\omega)$ to possess the property (A). The following condition are given in [2]:

 (Σ_1) Given any $x_0 \in X_s$ and $\varrho > 0$, there exists a positive number δ such that every $x \in X_s$, $||x||^* < \delta$ can be written in the form $x = x_1 - x_2$, where $||x_1-x_0||^* < \varrho$, $||x_2-x_0||^* < \varrho$, $x_1, x_2 \in X_s$.

We are going to give another condition of this kind.

 (Σ_{1g}) For every separable subspace $X_0 \subset X_s(\omega)$ there exists a separable linear subspace X_0' of the normed space $X(\omega)$ such that $X_{0s}'(\omega) = X_s X_0'$ fulfils the condition (Σ_1) .

Let us note, if $X_s(\omega)$ is supposed to be a Banach space, *i. e.* if the equality $\|x\|^* = \|x\|$ holds for all $x \in X$, the condition (Σ_{1g}) is always satisfied. Another example of a space satisfying this condition is to be found in 2.1.

Let us note that in [2] we are given one more condition assuring the fulfilment of property (A) (condition (Σ_2)). The importance of these conditions is seen from the following two results:

1.31. Suppose that $X_s(\omega)$ is a Saks space and fulfils the condition (Σ_2) . Then $X_s(\omega)$ possesses the property (A).

This result has been proved in [2] under the assumption that Z is separable. It is easy to see, however, that this assumption is not necessary in the proof.

1.32. Suppose that $X_s(\omega)$ is a separable Saks space and fulfils the condition (Σ_1) . Then $X_s(\omega)$ possesses the property (A).

The proof has been given in [2].

1.33. Suppose that a Saks space $X_s(\omega)$ fulfils the condition (Σ_{1g}) . Then $X_s(\omega)$ possesses the property (A).

Let U be a distributive operation on $X_s(\omega)$ into a Banach space Z. Suppose that, for every linear functional η on Z, the functional $\eta \left(U(x)\right)$ belongs to $Y_s(\omega)$. Suppose that there exist an $\alpha>0$ and a sequence $x_n\epsilon X_s$ such that

$$\omega - \lim_{n \to \infty} x_n = 0$$

and $\|U(x_n)\| \geqslant a$. Let us denote by X_0 the subset of X_s consisting of all points x_n . There exists a linear separable subspace X'_0 of the normed space $X(\omega)$, with the property defined in (Σ_{1g}) , which contains all points x_n . Let us denote by X''_0 the closure (in $X_s(\omega)$) of the space X'_{0s} . It follows that X''_{0s} is a separable Saks space. Now let us show that the least linear subspace Z_0 containing the set $U(X''_{0s})$ is separable. The set X''_{0s} contains a countable dense subset v_n . If x is an arbitrary point of X''_{0s} , there exists a subsequence v'_n of v_n such that $\|v'_n - x\|^* \to 0$. For every linear functional η on Z we have $\eta(U(v'_n)) \to \eta(U(x))$. It follows that U(x) may be approximated by linear combinations of points of the countable set $U(v_n)$. Since all $\|U(x_n)\| \ge a$, there exist linear functionals η_n on Z_0 such that $\|\eta_n\| = 1$ and $\eta_n(U(x_n)) \ge a$. Since Z_0 is separable, there exists a subsequence η_n which converges to a linear functional η on Z_0 . Hence follows the existence of a point $x_0 \in X''_{0s}$ and a positive ϱ such that $x \in X''_{0s}$, $\|x-x_0\|^* < \varrho$ implies $|\eta_{n_k}(U(x)) - \eta_{n_k}(U(x_0))| < a/4$ for every i.

There exists a point $\tilde{x} \in X'_{0s}(\omega)$ such that $\|\tilde{x} - x_0\|^* < \varrho/2$. Now if $x \in X'_{0s}(\omega)$, $\|x - \tilde{x}\|^* < \varrho/2$, we have

$$\left|\eta_{n_i}(U(x)) - \eta_{n_i}(U(\tilde{x}))\right| < \alpha/2$$
 for every i.

Now there exists a $\delta>0$ such that every point $x\in X'_{0s}(\omega)$ which fulfils $\|x\|^*<\delta$ may be written in the form $x=x_1-x_2$, where $\|x_i-\tilde{x}\|<\varrho/2$ for $i=1,2,\ x_i\in X'_{0s}(\omega)$. It follows that, for such an x, we have

$$\left|\eta_{n_i}(U(x))\right| \leqslant \left|\eta_{n_i}(U(x_1)) - \eta_{n_i}(U(\tilde{x}))\right| + \left|\eta_{n_i}(U(x_2)) - \eta_{n_i}(U(\tilde{x}))\right| < \alpha,$$

which is a contradiction since $||x_{n_i}||^* \to 0$ and $\eta_{n_i}(U(x_{n_i})) \ge a$.

In connection with 1.2 these remarks give the following result:

- 1.4. Let $X_s(\omega_0)$ be a Saks space. Let us consider all B-norms $\| \|^*$ such that $X_s(\omega)$ is a Saks space and that we have $Y_s(\omega) = Y_s(\omega_0)$ for the corresponding convergences. Among these norms, there exists at most one norm $\| \|^*$ which fulfils (Σ_2) or (Σ_{g1}) . Here, of course, "at most one" is taken in the sense of equivalence of norms on X_s . In the case where $X_s(\omega)$ is separable the same holds for (Σ_1) .
- **2.** We shall say that a set $Y_0 \subset Y$ possesses the property (T) if, for every $x_0 \in X$, $x_0 \neq 0$, there exists an $y_0 \in Y_0$ such that $y_0(x_0) \neq 0$.

Let Y_0 be a closed linear subspace of Y possessing the property (T). A set $B \subset Y_0$ consisting of functionals of norm ≤ 1 will be called a basis of the space Y_0 if the linear combinations of elements of B are dense in Y_0 . If B is a basis of Y_0 , we may define a B-norm in X by the formula

$$\left\|x\right\|^{*} = \sup_{y \in B} \left|y(x)\right|.$$

It follows that $||x|| \ge ||x||^*$.

This norm possesses the following properties:

- (1) if $C = \overline{\operatorname{conv} B}$, then $\|x\|^* = \sup_{y \in C} |y(x)|$,
- $(2) \quad Y_0 \subset Y_s(\omega),$
- (3) if B is compact, then every B-norm $\| \|_0^*$ in X such that $Y_0 \subset Y_s(\omega_0)$ is not weaker in X_s than the norm $\| \|_1^*$.
- (4) there exists at most one norm (in the sense of equivalence on X_s) defined by means of a compact basis such that $Y_s(\omega) = Y_0$,
- (5) the space Y_0 is separable if and only if there exists a compact basis of Y_0 ,
- (6) suppose that the norm || ||* is defined by means of a compact basis; then it is possible to define an equivalent norm by means of a count-

able compact basis $\overline{y}_1, \overline{y}_2, \ldots$; this norm will be equivalent to a norm of the form

$$||x||_0^* = \sum_{n=1}^{\infty} \frac{1}{2^n} |\overline{y}_n(x)|.$$

The properties (1) and (2) are trivial.

To prove (3), let us take a sequence $||x_n|| \le 1$ and $||x_n||_0^* \to 0$. It follows that $y(x_n) \to 0$ for every $y \in B$. This convergence being uniform on B, we have $||x_n||_0^* \to 0$.

The property (4) follows immediately from (3).

Property (6) is an easy consequence of the fact that, if y_n is an arbitrary sequence of elements $||y_n|| \leq 1$ such that linear combinations of these elements are dense in Y_0 , and if ε_n is an arbitrary sequence of positive numbers convergent to 0, clearly $\varepsilon_n y_n$ is a compact basis of Y_0 .

The space $X_s(\omega)$ defined by means of a basis need not be complete in the general case. We can state the following result:

2.1. Let B be a compact basis and let the norm $\| \cdot \|^*$ be defined by (\dagger) . The corresponding space $X_s(\omega)$ will be complete if and only if it is compact.

Suppose that $X_s(\omega)$ is complete. Let $x_n \in X_s$. The space Y_0 being separable, it is possible to construct a subsequence x_{m_n} such that $y(x_{m_n})$ is convergent for every $y \in Y_0$. The convergence of the sequence $y(x_{m_p}) - y(x_{m_q})$ being uniform on B, we have $||x_{m_p} - x_{m_q}||^* \to 0$ for $p, q \to \infty$. Since $X_s(\omega)$ is complete, there exists an $x_0 \in X_s$ such that $||x_{m_n} - x_n||^* \to 0$ for $n \to \infty$. The other implication being trivial, the proof is complete.

To define norms by means of bases gives a method to obtain different "starred" norms in the case where the space X and the fundamental norm $\|\ \|$ are given and a starred norm with prescribed properties is sought. In the examples given below we define the starred norms by means of bases and explain some properties of the corresponding $X_s(\omega)$.

I. Let us denote by X the normed space consisting of all bounded sequences $x=\{v_i\}$ of elements of a given Banach space V. The fundamental norm in X will be defined by

$$||x|| = \sup_i ||v_i||.$$

Suppose that there is defined on V a sequence of norms $\|\ \|_i^*$ such that V_s is a Saks space under each of those norms. Suppose further that in each of these Saks spaces the condition (Σ_1) is fulfilled. It is easy to show that, under these conditions, the space X_s is a Saks space satisfying condition (Σ_1) under the norm

$$||x||^* = \sup_n \frac{1}{n} ||v_n||_n^*.$$

In fact, let X_0 be a separable subset of $X_s(\omega)$. There exists a countable dense subset x_n of X_0 . If $x_n = \{v_{ni}\}_i$, let us denote by x_{nk} the element

$$x_{nk} = v_{n1}, v_{n2}, \ldots, v_{nk}, 0, 0, \ldots$$

Let us denote by X_0' the closed linear subspace of $X(\omega)$ generated by the sequence $\{x_{nk}|_{nk}$. It follows that X_0' is separable and that $X_0 \subset X_0'$. It is easy to show that the space X_{0s}' fulfils the condition (Σ_1) .

II. Let X denote the space of all bounded sequences of real numbers $x = \{t_n\}$. The fundamental norm will be defined by

$$||x|| = \sup_{n} |t_n|.$$

Let us denote by Y_0 the space of all linear functionals on X of the form

$$y(x) = \sum_{n=1}^{\infty} t_n a_n$$
, where $\sum_{n=1}^{\infty} |a_n| < \infty$.

In this case $||y|| = \sum |a_n|$ and Y_0 fulfils the condition (T). We may take a basis consisting of the elements $y_k = \{t_{km}\}$ where $t_{km} = 0$ for $m \neq k$ and $t_{kk} = 1/k$. We may thus define a norm

$$||x||^* = \sup_{y \in B} |y(x)| = \sup_{n} \frac{1}{n} |t_n|.$$

This norm is the weakest starred norm in X_s for which $Y_s(\omega) = Y_0$, $Y_s(\omega)$ fulfils conditions (Σ_1) and (Σ_2) and is a compact space.

III. Let us denote by X the space of all sequences of real numbers $x=\{t_n\}$ such that $\sum |t_n|<\infty$. The fundamental norm will be defined by

$$||x|| = \sum_{n=1}^{\infty} |t_n|.$$

Let us denote by Y_0 the space of all linear functionals on X of the form

$$y(x) = \sum_{n=1}^{\infty} t_n b_n$$
, where $b_n \to 0$.

We have

$$||y|| = \sup_{n} |b_n|,$$

and Y_0 fulfils the condition (T); we may take the same compact basis as

Some remarks on Saks spaces

in example II. In the corresponding starred norm $X_s(\omega)$ is separable and, moreover, compact. We have $Y_s(\omega) = Y_0$ and Y_0 is separable.

The space $X_s(\omega)$ does not possess the property (B₁). It is sufficient to take the sequence of functionals

$$y_k(x) = \sum_{n=1}^k t_n$$
 for $k = 1, 2, ...$

We have $y_k \in Y_0$, and the sequence $y_k(x)$ is convergent to the limit $\overline{y}(x) =$ $=\sum t_n \overline{\epsilon} Y_0$. It follows from [2], theorem 7 (compare also 1.1, 1.31, 1.32) that there exists no starred norm $\|\cdot\|_0^*$ such that $X_s(\omega_0)$ will be a Saks space fulfilling the conditions (Σ_1) or (Σ_2) and $Y_8(\omega_0) = Y_9$. We note that the set of the points of continuity of the function $\overline{y}(x)$ on the space $X_{\bullet}(\omega)$ (this set cannot be empty by the theorem of Baire) is exactly the set of all points $x \in X_s$ which fulfil ||x|| = 1.

IV. Let X be the space L^{α} , $\alpha > 1$. The fundamental norm will be defined by

$$||x|| = \left(\int_a^b |x(t)|^a dt\right)^{1/a}.$$

Let Y_0 denote the space of all linear functionals of the form

$$y(x) = \int_{a}^{b} x(t) y(t) dt,$$

where $y \in L^{\beta}$, $1/\alpha + 1/\beta = 1$. Clearly, Y_0 fulfils the condition (T) and $Y_0 = Y$. The basis B_1 will be defined as the set of all functions y_{τ} where

$$y_{\tau}(t) = \begin{cases} 1 & \text{for } a \leqslant t \leqslant \tau, \\ 0 & \text{for } \tau < t \leqslant b. \end{cases}$$

The set B_1 is compact and generates the norm

$$\|x\|_1^* = \sup_{\langle a, b \rangle} \left| \int_a^\tau x(t) dt \right|.$$

In this norm $X_s(\omega_1)$ is a Saks space. Another norm may be obtained in the following manner. Let $\varphi_1, \varphi_2, \ldots$ be a sequence of functions orthonormal in $\langle a, b \rangle$ and such that $|\varphi_n(t)| \leq K$, $t \in \langle a, b \rangle$, for every n. Suppose that the sequence φ_n is complete in L^a . For a suitable c>0, the sequence $c\varphi_1, c\varphi_2, \ldots$ is a basis B_2 of the space Y_0 which generates the norm

$$||x||_2^* = c \sup_{n} \Big| \int_a^b x(t) \varphi_n(t) dt \Big|.$$

In this norm, $X_s(\omega_2)$ is a Saks space. Evidently B_2 is not compact. The set B_3 consisting of the elements $c\varphi_n/n$ is compact and generates the norm

$$||x||_3^* = c \sup_n \frac{1}{n} \left| \int_a^b x(t) \varphi_n(t) dt \right|.$$

The space $X_s(\omega_3)$ is a Saks space too. Let us denote by B_4 the set of all measurable functions y such that $|y(t)| \leq (b-a)^{-1/\beta}$ for $t \in \langle a, b \rangle$. The corresponding norm is

$$||x||_{4}^{*} = \sup_{y \in B_{4}} \left| \int_{a}^{b} x(t) y(t) dt \right| = (b-a)^{-1/\beta} \int_{a}^{b} |x(t)| dt,$$

and $X_8(\omega_4)$ is a Saks space. We note that B_4 is weakly compact but not compact. It is easy to see that the norms $\|\cdot\|_1^*$ and $\|\cdot\|_3^*$ are equivalent in X_s and that convergence in $X_s(\omega_1)$, $X_s(\omega_3)$ coincides with the weak convergence in X. Further, the inequalities $K||x||_4^* \ge ||x||_2^* \ge ||x||_3^*$ hold, but $\| \|_2^*$ and $\| \|_3^*$ are not equivalent.

The additive operation U(x) = x on $X_s(\omega_1)$ into L^a is not continuous, but for every $y \in Y_0 = Y$ the functional y(U(x)) is continuous in $X_s(\omega_1)$. It follows that the property (A) is not fulfilled in $X_s(\omega_1)$. According to what has been said about the connection between the properties (A) and (B_2) , the property (B_2) cannot be fulfilled since U(x) is mapped into a separable space. On the other hand, the property (B₁) is fulfilled.

V. Let X be the space of all bounded measurable functions defined in $\langle a, b \rangle$ with the norm

$$||x|| = \sup_{\langle a,b\rangle}^* |x(t)|^4).$$

Let Y_0 be the space of all linear functionals of the form

$$y(x) = \int_{a}^{b} x(t)y(t)dt$$
 where $y \in L^{1}$,

so that Y_0 is separable and possesses the property (T). The bases B^i (i=1,2,3,4) given in IV are bases of Y_0 as well. The same norms may be defined as in IV (in the case of B_2 we assume that the functions φ_n are complete in M; in the definitions of B_4 and $\| \|_4^*$ we replace $(b-a)^{-1/\beta}$ by $(b-a)^{-1}$). Just as in IV, the corresponding $X_s(\omega_i)$ are Saks spaces and $Y_s(\omega_i) = Y_0$. This follows from the known result of Fightenholz and from the relations between the norms | | | , which remain unchanged in the present case.

⁴⁾ $\sup * y(t)$ means the essential upper bound of the function y(t) in $\langle a,b \rangle$.

icm[©]

The situation is different from IV in the following point. The space $X_s(\omega_4)$ possesses the property (A) since (Σ_1) and (Σ_2) are fulfilled (see [2]). The norms $\|\cdot\|_1^*$ and $\|\cdot\|_3^*$ being non-equivalent in X_s with $\|\cdot\|_4^*$, the corresponding Saks spaces do not possess the property (A).

Especially in $X_s(\omega_1)$ we have (B_1) but not (B_2) .

VI. Let us denote by X the space of all bounded continuous functions defined in an open interval (α, b) . (The end points need not be finite here). As Y_0 we take the set of all linear functionals of the form

$$\int_{a}^{b-} x(t) \, dy,$$

where y denotes a function of finite variation in (a, b), continuous from the left and equal to zero at the point (a+b)/2. It is easy to see that Y_0 is not identical with Y and possesses the property (T). The space Y_0 is non-separable, since

$$\|y\| = \underset{(a,b)}{\operatorname{var}} y(t) \quad \text{ for } \quad y \in Y_0.$$

Let a, b be finite and let us denote by B the set of all $y \in Y_0$ such that y(t) = 0 for $t \in (a, a+1/n) + (b-1/n, b)$ and $\underset{\langle a+1/n, b-1/n \rangle}{\text{var}} y(t) = 1/n$. Then

$$||x||^* = \sup_{y \in B} |y(x)| = \sup_{n \langle a+1/n, b-1/n \rangle} |x(t)|/n.$$

In the case when a, b are infinite we define B and the norm $\| \cdot \|^*$ analogically.

It is possible to show that $X_s(\omega)$ is a Saks space fulfilling conditions (Σ_1) and (Σ_2) and that $Y_s(\omega) = Y_0$ (see [1], [2]).

References

- [1] J. Musielak and W. Orlicz, Linear functionals over the space of functions continuous in an open interval, Studia Math. 15 (1956), p. 216-224.
- [2] W. Orlicz, Linear operations in Saks spaces (I), ibidem 11 (1950), p. 237-272.
 - [3] Linear operations in Saks spaces (II), ibidem 15 (1955), p. 1-25.

Reçu par la Rédaction le 3. 2. 1956

On the continuity of linear operations in Saks spaces with an application to the theory of summability

by W. ORLICZ (Poznań)

1. Let X be a linear space and let a B-norm $\| \|$ (fundamental norm) and a B- or F-norm $\| \|^*$ (starred norm) be defined in X. If the set

$$X_s = E\{x \in X, ||x|| \leqslant 1\}$$

with the distance defined as $d(x, y) = ||x-y||^*$ is a complete space, it will be called a *Saks space* (with the norm $|| ||^*$, see [2]¹)). The following theorem is a generalization of the result given in [3]:

1.1. Let $X_1, X_2, ..., X_n, ...$ be linear subspaces of the space X and et an F-norm $\| \cdot \|_n^*$ be defined in X_n for n = 1, 2, ... Writing

$$X_0 = \bigcap_{n=1}^{\infty} X_n,$$

we suppose the following conditions to be satisfied:

- (a) $X_1 \supset X_2 \supset \ldots \supset X_n \supset \ldots$;
- (b) there exists a linear subspace $Y_0 \subset X_0$ such that the set $\overline{X}_n = Y_0 \cap X_n \cap \overline{X}_s$ is dense in $X_n \cap X_s$, the distance being induced by $\|\cdot\|_n^*$ for n = 1, 2, ...;
- (c) the set $X_n \cap X_s$ is a Saks space under the norm $\| \|_n^*$, satisfying the condition $(\Sigma_1)^2$, for n = 1, 2, ...;
- (d) if $x_i \in X_0$ and $||x_i||_k^* \to 0$ for a fixed k and $i \to \infty$ then $||x_i||_{k'}^* \to 0$ for every k' < k.

Further suppose that in X_0 additive operations U_n with values in a Fréchet space Y are defined, such that

- (a) for every $x \in X_0$ the sequence $\{U_n(x)\}$ is convergent;
- (β) for every fixed positive integer n, k, $||x_t|| \le 1$, $x_t \in X_0$ and $||x_t||_k^* \to 0$ for $i \to \infty$ imply $U_n(x_t) \to 0$.

¹⁾ The numbers in square brackets refer to the references at the end of this paper.
2) Concerning the definition of the condition (Σ_1) see [2], p. 240.