Some remarks on Saks spaces

by
W. ORLICZ (Poznafi) and V. PTAK (Praha)

1. In the present paper we shall denote by X a linear space with
a homogeneous norm (B-norm) || || This norm will be called the funda-
mental norm in X. Let || ||* be another norm defined on. X. The norm | ||*
may be a B-norm or, more generally, an F-norm ([2], p.237). On the
set

Xy = B[llol| <1]

we define a metric by the formula

d(zy, 13) = |[xy—ay)", where &, 2,¢X,.

To every starred norm on X there corresponds a notion of conver-
gence in X,. A sequence x,¢X, will be called w-convergent to xyeX if
d(2y, 2s) — 0, in symkols

@

T, >y O wlima, = a,.

N—00

We shall write X,(w) to denote that a fixed starred norm in X,
is considered. By X(w) we shall denote the space X with the noem || |*

If X,(w) is & complete space, we shall call it a Saks space (correspon-
ding to the nosm [ ||*, see [2], p. 240). The same set X, may constitute
also other Saks spaces corresponding to other starred norims, non-equi-
valent to | |*.

In the sequel we assume that |jz|| > |jg|* for every we¢X. Under this
hypothesis it i3 possible to show that, if X,(w) is a Saks space, the space
X is a complete space under the norm || || (see [3D]). )

We shall say that the norm | [IJ is not weaker than || |[* in X, if
llza —aolly = 0 implies [, —ro|* — 0 for a, e X,, e X,. The norms 51 e
will be called eguivalent on X, if the first norm is not weaker than the so-
cond and conversely. Note that two norms equivalent in X, need not be
equivalent on the whole space X.

We shall denote by Y the space conjugate 10 the Banach space X
with the norm || . We shall denote by Y (w) the space of all functionals,
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distributive and continuous with the norm | ||*, e. g. linear over the space

“ X, || |I". We shall denote by ¥,(w) the set of all distributive functionals y

defined on X such that a,eX, (o), 256X (n) and

w-lim z,, = ,
300

implies y(x,) — y(x,). Clearly Y,(w) is a linear subspace of Y.
1.1. The space Y,(w) is closed in Y.
Let y belong to the closure of Y, (o). Suppose that |n,]| < 1, [zl < 1,

,,,]jf,‘; lltn ~erol* = 0.

Let ¢ be an arbitrary positive number. There exists a functional yoe ¥ a(w)
such that |ly—y,l < ¢/3. Since y, is w-continuous on ||| < 1, we have

lim (yo (23,) —0 (o)) = 0.
N—00

¥
There exists a natural number n, such that |y,(a,)—ye(®)| < £/3
for # > n,. We have then, for n > n,,

[y (2n) =9 (20)] < Yo (&) —Yo(2odl -2 ly —v0l] < &,

8o that y is continuous on [«]| < 1 as well. It follows that ye¥,(w), which
concludes the proof. ’ .

It is thus natural to ask whether, given a Banach space X and a clo-
sed subspace ¥, of the conjugate space Y, it is not possible to define an-
other norm | [|* on X in such a way that the corresponding Y, (w)
be equal to ¥Y,. The answer is negative, which may be seen from the
following example.

Let X be the space of all continuous functions defined on the set T'
of all real numbers 0 <<t << 1. In X let us define the usual norm

ll#l = max jz()].
0,1

The conjugate space ¥ consists of all functions of finite variation y defined
on 7, continuous from the left on (0,1) and such that y(¢) = 0.

Let us denote by ¥, the set of all singular functions, 4.e. the seb
of all yeY which fulfil the following condition:

For every &> 0, there exists a finite number of disjoint segments
kieT such that 3|k > 1—e and JW(y;k;) < &)

Let y belong to the closure of ¥;. Given an ¢ > 0, there exists an
Yo€ Y, such that |ly—y,l| < /2. There exist disjoint segments &y, ks, ..., &,

') By W(y;k) we denote the variation of the function y on the segment .
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such that kg C T, Xlkd > 1—sf2 and JW(res ) < g/2. We have then

ZW(?“ k) <2W(?/o§ k )+ZW(y-yo; k) <ZW(.%; k) +lly —voll <e,

g0 that ye¥, as well. We have thus shown that ¥, is. closed in Y

Tet us denote by ¥, the set of all absolutely cont.lr.mous functions,
i. ¢. the set of all ye¥ which fulfil the following condition:

For every s > 0 there existsa 6 > 0 such that for every finite number
of disjoint segments ; C T such thab 3 k| < 0, we have JW(y; ki)<e.

Yet y belong to the closure of ¥,. Let >0 and suppose that
€Y, and |ly—vol < #/2. There exists a >0 suc.h Lha.b Skl < 6
implies W (%05 *s) < &/2 for every finite number of disjoint segments
B, CT.If k,CT are disjoint segmen suchst that Ikl < 6, we have

N Wiys k) < ) W(yoska) +ly—vell <e.

It follows that ¥, is closed in ¥. ‘
Suppose now that there is a norm on X such that, for the correspon-

ding convergence o, we have ¥; C ¥ (o). Suppose that 2,eX, and

w-lima, = 0.
"

For every teT, the functional y; defined by (%) = «(?) belongs to ‘Yl.
Sinee ¥, C Y (), it follows that @,(f) = #(#,) — 0. At the same iime
leall < 1, 50 that a, is weakly convergent to 0. It follows that y(x,) =0
for every ye¥. We thus have ¥ = Yy(w).

On the other hand, it is easy to see that ¥, =
gence defined by the starred norm

s(w) for the conver-

1
o] = [ lo()]ds.

In this case, however, the space X,(w) is not complele in the metrie
“971"“"2“.-
Tn the sequel we shall examine the following properties of a Saks
gpace X,(w):
(A) Suppose that U is a distributive operation from X to a Banach
space Z. Suppose that, for every linear functional  on Z, the functio-
nal n(U(w)) belongs to ¥,(w)?). In these conditions, the operation U
is continuous on X, (w)?3).
%) An operation U possessing this property is called weakly continuous in X, (w).
%) The. operation U is said to be linear in X,(w) if it is distributive and conti-
nuous, 4. e x,eX, (0),, i’>aao implies U (x,) - U(x,). A distributive operation is
continuous in X (w) if and only if it is continuous in 0.
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(B;) Let y,eY,(w) and suppose that
lim y, (%) = y ()
N—200 .
exists for every ¢ X,. Then y Lelongs to Y,(m).
(B:) Let y, be a sequence of functionals y,e Y (w) and suppose that
lim g, (%) = y ()
n—-00
exists for every xeX,. Then y, are equicontinuous on X,(w).
(Bs) Let U, be a sequence of linear operations from X,(w) to & Banach

space Z. Suppose that
Im U, (z) = U(x)
TN—r00

exists for each xeX,. Then the U, are equicontinuous on X,(w).

The implications (B,) — (B,) — (B,) are obvious. We are going to
show now that (B;) is a consequence of (A).

Let Xy(w) be a Saks space fulfilling the property (A). We begin by
showing that (B;) is fulfilled as well. Suppose that ¥, (x) — y () for every
xeX, and yneY,(w). Suppose that there exists a sequence z, and a po-
sitive @ such that |z,)] <1, |lza)* — 0 and |y(2,)| = a.

We are going to construct two sequences, m; and n;, of indices. Let
my =1 and let n, be the least positive integer for which |y, (x,)] < af4.
This is possible since

Lim 9, (2,) = 0.
N0

¥
Let m, be the least positive integer for which [y, (i,)| > af2. Such
a number exists since

L |3, (20,)] = [y (2n))| 2= a.
M—00

Let », be the least positive integer n, = n; such that |y, (1) < a/t.

Now let r > 1 and suppose we have already defined m;, ms, ..., m. and

N1, Ngy ..., Ay 0 such a way that the following conditicns are fulfilled:
1° my < my <<...My,
2% ny < Ny < .hl Ny
3% Ym,(n)| < a/4,
4 Yy, ()| 2 @2,

To obtain m,.;, it is sufficient {0 note that

i=1,2,..,7,
i=1,2,..,r—1.

lim I?/m(a‘n,.” Za.
00
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Let us define m,,; as the least positive integer =m, such t}}at
!ymm(m,,r)] >a/2. Take n,,; as the least positive intege'r.;» n, for thh
1Yoy 40 Ty i) < e It is easy to see tl}alt the conditions mentioned
above are fulfilled, so that the induction is complete.

Now let 7; == Ymy,, — Yy %5 = By ‘We have

limy;(z) = 0 for every &,

1—00
further |jz,]| <1 and lRall" > 0. At the same time, |Fi(#)] 3= af4 for
every 1. Since 7; are functionals on a Banach space X and

lim7;{z) =0 for cvery u,

{s00
there is & constant # such that ||| < § for every i. Let oz be a sequence
of real numbers such that o] < oo, Since all g; belong to Y,(w) and
are equibounded, the sum Y% exists. The space Yy(w) being closed
in ¥, we have D o7e X (o). Let us denote by ¥V the Banach space of
all sequences v = {tk] convergent to 0, with the norm

floll = max [t
)

For every zeX, let U(x) be the sequence {yk(w)}. Every linear functio-
nal 7 on V is of the form n(v) = YAyty, where 3|4, < co. In view of what
has been said above, it follows that the operation U is weakly contin-
wous on X,(w). It follows that U is continuous. Since [z <1 and
e — 0, we have

lim U(z;) = 0.
1—00
This is a contradiction since | U (2;)|| = |7:(2:)| = «/4 for every 4.

Now suppose that we are given a sequence of linear operations U,
from X,(w) to a normed space Z such that U,(a) — U(z) for every zeX,.
If 7 is an arbitrary linear functional on Z, 5(U, (@) will be a sequence
of linear functiomals on X,(w) such that for every zeX, we have
7 (Up (@) = n(U(®)). According to what we have proved above, 7{U ()
will be a linear functional on X, (w). Tt follows that U(a) is continuous
as well.

Let ¥, be defined by V,(z) = U,(x)—U(x). Let us denote by W
the normed space of all sequences w = {w,,}, where wyeZ and wy, — 0,
equipped with the norm

llw]] = max ffaey] .
%

For every ze X let us denote by W, (z) the element of W defined by
the sequence Vy(x), Vy(x), ..., V,(2), 0, 0, ... .

icm
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Let us denote by W(wx) the sequence V(x), Vy(2), ... Since
W (2)—W(@)| = IfaXlle(w)ll,
>0

it follows that W, (2} — W () for every . The operations W, being con-
tinuous on X,(w), it follows that W is continuous as well. This, howe-
ver, already implies the equicontinuity of the operations V, and, conse-
quently, that of the operations U,. This concludes the proof.

Under the condition of separability of the space Z, we may prove
the converse implication (B,) — (A).

In fact, suppose that X w) is a Saks space which fulfils the property
(Bs). Let U be a weakly continuous transformation of X (w) into a se-
parable Banach space Z. Suppose there exists a sequence , e X and a po-
sitive a such that |l <1, |g,/|"— 0 and |U(x,)]| > «. There exist fune-
tionals 7, on Z such that ||, = 1 and %, (U(w.,,)) > a. The space Z being
separable, we may find a subsequence 7, and a functional % such that
fni(#) =7 (2) for every zeZ. It follows that the functionals 7, (U ()
converge to 5 (U(x)) for every ze X,. Since (B,) is fulfilled, the functio-
nals n,“(U(m)) are equicontinuous. This, however, i3 a contradiction of
e (U (@) > o for every i.

1.2. Suppose that a Saks space X, (w,) corresponding to the B-norm
Il s, possesses the property (A). Suppose that we are given another conver-
gence w corresponding to the B-norm || ||° and such that Ys(w) C Ye(w,).
In these conditions the norm || s 4s mot weaker than | |* in X,.

Let @, e X, and [lr,ll; — 0. We are to prove that |lm,)|* — 0 as well.
Let us denote by U the operation which assigns to an element xeX,(w,) -
the same element considered as an element of the space X (w). We have
Y(0) C Yo(w) C Yg(wy), so that U is weakly continuous in X, (w,).
It follows that U is continuous. Since

wp-lim »,, =0,

N=rt0

we have [, = || U(x,)||" - 0 which concludes the proof.

It is important to know the sufficient conditions for a given space
X,(w) to possess the property (A). The following condition are given
in [2]:

(Zy) GQiven any wye X, and o > 0, there exists a positive number & such
that every ze Xy, |jo]* < 6 can be written in the form x = o,—,,
where |z, —mo|" < ¢, [a—aol” < o @1, B X,

We are going to give another condition of this kind.
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For every separable subspace X, C X, (w) there exists a separable li-

near subspace X, of the normed space X (w) such that Xg,(w) =

= X X, fulfils the condition (Z,).
Let us note, if X,(w) iy supposed to be a Banach space, i. ¢. if the
equality |lz]" = |lz] holds for all ze X, the condition (Z,) is always sa-
tisfied. Another example of a space satisfying this condition is to be found
. Ziet us note that in [2] we are given one more condition assuring
the fulfilment of property (A) (condition (). The importance of these
conditions is seen from the following two resulfis:

1.31. Suppose that X,(w) s & Saks space and fulfils the condition
(2,). Then X (w) possesses the property (A).

This result has been proved in [2] under the assumption that Z is
separable. It is easy to see, however, that this assumption is not necessary
in the proof.

1.32. Suppose that X,(w) is a separable Saks space and fulfils the con-
dition (Z,). Then X,(w) possesses the property (A).

The proof has been given in [2].

1.33. Suppose that a Saks space X,(w) fulfils the condition (Zyg).
Then X,(w) possesses the property (A).

Let U be a distributive operation ¢n X,(w) into a Banach space Z.
Suppose that, for every linear functional 5 on Z, the functional # (U (z))
belongs to Y,(w). Suppose that there exist an « > 0 and a sequence
2,6 X, such that

(Elg)

w-lima, =0
n—00

and [[U(z,)| > a. Let us denote by X, the subset of X, congisting of all
points «,. There exists a linear separable subspace Xj of the normed space
X(w), with the property defined in (Z14), which contains all points a,.
Let us denote by X;, the closure (in X,(w)) of the space X,,. Tt follows
that Xg, is a separable Saks space. Now let us show that ths least linear
subspace Z, containing the set U(Xg,) is separable. The set X contains
a countable dense subset #,. If z is an arbitrary point of X, there
exists a subsequence vj, of #, such that lrn—a||* — 0. For every linear
functional 7 on Z we have 7(U(v)) — (U (#)). It follows that U(s)
may be approximated by linear combinations of points of the countable
set U(v,). Since all |U(x,)] > a, there exist linear functionals N ON Zy
such that [, =1 and 7, (T(=,)) > o. Since Z, is separable, there exists
a subsequence 7, which converges to a linear functional n on Z,. Hence
follows the existence of a point z,e X7 and a positive o such that we Xy,
llo—aq* < o implies [704( T () ~ne (U (@0))] < af4 for every i,
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There exists a point Ze Xy, (w) such that [|&—a,|* < ¢/2. Now if

ze Xy (), le—a|* <.e/2, we have
[77,“(17(&7)) —Wm(U(‘Z))I <af2

Now there exists a 6 > 0 such that every point ze X (w) which
tulfils flz|*< & may be written in the form z = @y —,, Where |lz; —Z | < 0/2
for ¢ =1,2, 2,6 X5e(w). Tt follows that, for such an 2, we have

s (T @] < o (0 (02)) (0 8))| 1 (U (@) — 10 T (@) <

which is a contradiction sinee [z,)[*~ 0 and (U (20))) = a.
In connection with 1.2 these remarks give the {ollowing resnlt:

for every 4.

1.4. Let X, (w,) be a Saks space. Let us consider all B-norms || ||* such
that X,(w) is a Saks space and that we have Y (w) = Y (w,) for the
corresponding convergences. Among these norms, there exists at most
one norm || ||* which fulfils (Z) or (Z,). Here, of course, ,,at most one”
i taken in the sense of equivalence of norms on X,. In the case where
X,(w) is separable the same holds for (%)

2. We shall say that a st Y,C ¥ possesses the property (T) if, for
every z,e X, x, 5= 0, there exists an Yo€ ¥, such that y,(z,) £ 0.

Let Y, be a closed linear subspace of ¥ possessing the property (T).
A set B C Y, consisting of functionals of norm < 1 will be called 2 basis
of the space Y, if the linear combinations of elements of B are dense in
Y,. If B is a basis of ¥,, we may define a B-norm in X by the formula

()] llz)* = sup Jy ().
YeB
It follows that (o] > (2|,
This norm possesses the following properties:
(1) if 0 = convB, then |o|* = sup [y(x)],
veC
(2) ¥,C Yy{w),
(3) if Bis compact, then every B-norm II it in X such that Y, C Y, (w,)
is not weaker in X, than the norm | |*,
(4) there exists at most one norm (in the sense of equivalence on X,)
defined by means of a compact basis such that Y, (w) =Y,
(6) the space ¥, is separable if and only if there exists a compact basis”
of ¥,,

(6) suppose that the norm || |* is defined by means of a compact hasis;
then it i3 possible to define an equivalent norm by means of a count-
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able compact basis 7, Fa, ...; this norm will be equivalent to a norm
of the form
o 1
lols = D) 57 Bl
n=l =

The properties (1) and (2) are trivial.

To prove (3), let us take a sequence |,/ < 1 and lienlls = 0. Tt follows
that y(z,) - 0 for every yeB. This convergence heing uniform on B,
we have ||z, — 0. .

The property (4) follows immediately from (3).

Property (6) is an easy consequence of the fact that, if v, is an arbi-
trary sequence of elements |ly,|| < 1 such that linear combinations of these
elements are dense in Y,, and if &, is an arbitrary sequence of positive
numbers convergent to 0, clearly s,y, is a compact basis of ¥,.

The space X (w) defined by means of a basis need not be complete
in the general case. We can state the following result:

2.1. Let B be a compact basis and let the norm | ||* be defined by (-
The corresponding space X, (w) will be complete if and only if it is compact.

Suppose that X,(w) is complete. Let x,¢X,. The space ¥, being
separable, it is possible to construct a subsequence a, such that y(a,,)
is convergent for every ye ¥,. The convergence of the sequence Y (Zmy) —
—Y(#m,) being uniform on B, we have |, —an|" -0 for p,q— co.
Since X,(w) is complete, there exists an z,e X, such that (l®m, — o] * — 0
for n — co, The other implication being trivial, the proof is complete.

To define norms by means of bases gives a method to obtain different
»starred” norms in the case where the space X and the fundamental
norm || || are given and a starred norm with preseribed properties is sought.
In the examples given below we define the starred norms by means of
bages and explain some properties of the corresponding X, (w).

L Tet us denote by X the normed space consisting of all bounded
sequences & = {v;} of elements of a given Banach space V. The fundamen-
fal norm in X will be defined by

flell = Sup [fog]

Suppose that there is defined on V a sequence of norms || |f such
that V, is a Saks space under each of those norms. Suppose further that
in each of these Saks spaces the condition (Zy) is fulfilled. It is easy to
show that, under these conditions, the space X, is a Saks space satisfying
condition (X,) under the norm

. 1
lo" = sup — .
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Now suppose that V is non-separable and that [[o|} = [v]] for every 4.
According to what has been said above, the space X,(w) satisfies condi-
tion (%) and is not separable. In this case, however, the condition (Zgg)
is fulfilled as well.

In fact, let X, be a separable subset of X,(w). There exists a coun-
table dense subset @, of X,. If 4, = {v,};, let us denote by @, the element

Lot = Unis Vnzy --«s Unky 0, 07

Let us denote by X the closed linear subspace of X (w) generated by the
sequence {u ). It follows that X; is separable and that X,C X;.
It is easy to show that the space X, fulfils the condition (Z;).

II. Let X denote the space of all bounded sequences of real numbers
@ = {t,}. The fundamental norm will be defined by

llell = sup ]

Let us denote by Y, the space of all linear functionals on X of the

form
D 1] < oo,
=1

In this case {ly|| = X'l|a,] and ¥, fulfils the condition (T). We may take
a basis consisting of the elements ¥, = {fxm] Wwhere f, = 0 for m %k
and t;, = 1/k. We may thus define a norm

oo
y(z) = Zt,,a,,,,, where
==l

1
flell* = sup |y ()| = sup = |t,].
yeB n

This norm is the weakest starred norm in X, for which ¥ (w) = ¥,,
Y, (w) fulfils conditions (%,) and (Z,) and is a compact space.

III. Let us denote by X the space of all sequences of real numbers
@ = {t,} such that }|t,] < co. The fundamental norm will be defined by

ol = ) tal-

Let us denote by ¥, the space of all linear functionals on X of the
form

&,
y(x) = Sab, where b, - 0.
. ,yf;:Jl n? n
We have
lyll = sup |bal,

and ¥, fulfils the condition (T); we may take the same compact basis a8

Studia Mathematiea XVI 8
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in example IT. In the corresponding starred norm X, (w) is separable and,
moreover, compact. We have ¥ (w) = ¥, and ¥, is separable.

The space Xy(w) does not possess the property (Bi). It is sufficient to
take the sequence of functionals

k
mie) =Yt for k=1,2,..
fN=1

We have y;,€Y,, and the sequence iy (%) is convergent to the limit 7(x) =
= Yt,e¥,. It follows from [2], theorem 7 (compare also 1.1, 1.31, 1.32)
that there exists no starred norm || |lj such that X (w,) will be a Saks
space fulfilling the conditions (X;) or (Z,) and Yg(wp) = ¥,. We note
that the set of the points of continuity of the function 7 (z) on the space
X, (o) (this set cannot be empty by the theorem of Baire) is exactly the
set of all points xe X, which fulfil ||jz]| = 1.

IV. Let X be the space L*, o > 1. The fundamental norm will be
defined by

b 1ja

e = ([ la(t)=at) .

@
Let Y, denote the space of all linear functionals of the form
b
y@) = [2@y @),
where ye L#, 1 /a+1/f = 1. Clearly, ¥, fulfils the condition (T) and ¥, = Y.
The bhasis B, will be defined as the set of all functions y, where
1 for a<igrn,
y'r(t) =
0 for T<<t<bh.

The set B, is compact and generates the norm
. T
i} = sup “ fm(t)dt |
{a,by a

In this norm X, (w,) is a Saks space. Another norm may be chtained in the
following manner. Leb ¢y, ¢y, ... be a sequence of functions orthonormal
in (a,b) and such that |g,(t)| < K, tela,b), for every n. Suppose
that the sequence g, is comyplete in L*, For a suitable ¢ > 0, the sequence
CP1, 6¢a, ... I8 & basis B, of the space ¥, which generates the norm

b
Il = e sup| [o(t)gn(tids].

icm°®
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In this norm, X (w,) is a Saks space. Evidently B, is not compact., The
set B; consisting of the elements ¢g, /n is compact and generates the norm

b
. 1
Joli = esup— | [ e(ga())-
n
a

The space X,(a) is a Saks space t0o. Let us denote by B, the set
of all measurable functions y such that |y(2)} << (b—a)~"# for tela, b).
The corresponding norm is

i = sup
YeBy

b b
[aty@rat| = o—ay [ awia,
and X,(ew,) is a Saks space. We note that B, is weakly compact but not
comgact. It is easy to see that the norms || | and || |3 are equivalent
in X, and that convergence in X (w;), Xs(w3) coincides with the weak
convergence in X. Further, the inequalities K |jaf; > |zl > |z|ls hold,
but || |3 and || |§ are not equivalent.

The additive operation U(x) = 2 on X;(w,;) into L is not continuous,
but for every ye¥, = ¥ the functional y(U(z)} is continuous in X,(w,).
It follows that the property (A) is not fulfilled in X,(w;). According to
what has been said about the connection between the properties (A)
and (B,), the property (B,) cannot be fulfilled since U(z) is mapped into
8 geparable space. On the other hand, the property (B;) is fulfilled.

V. Let X be the space of all bounded measurable functions defined
in {(a, > with the norm

el = sup*lo(6)] 9-
<a,b>
Let Y, be the space of all linear functionals of the form
b
y(@) = [e()y(t)dt where yel',

so that Y, is separable and possesses the property (T). The bases B*
(t =1,2,3,4) given in IV are bases of ¥, as well. The same norms may
be defined as in IV (in the case of B, we assume that the functions ¢,
are complete in M; in the definitions of B, and || |; we replace (b—a)™ "
by (b—a)7t). Just as in TV, the corresponding X,(w;) are Saks spaces
and Y,(w;) = ¥,. This follows from the known result of Fichtenholz
and from the relations between the norms || ||j, which remain unchanged
in the present case.

4) sup*y(t) means the essential upper bound of the function y(f) in <a, b).
@by
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The situation is different from IV in the following point. The space
X,(w) Dossesses the property (A) since (3;) and (X,) are fulfilled (see
[2]). The norms | [if and || [§ being non-equivalent in X, with | ||f,
the corresponding Saks spaces do not possess the property (A).

Especially in X,(w;) we have (By) but not (By).

VI. Let us denote by X the space of all bounded continuous fun-
ctions defined in an open interval (a, b). (The end points need not he fi-
nite here). As ¥, we take the set of all linear functionals of the form

b—

[ =)y,

at
where y denotes a function of finite variation in (a, b), continuous from
the left and equal to zero at the point (a--b)/2. It is easy to see that
Y, is not identical with ¥ and possesses the property (T). The space Y,
is non-separable, since

Iyl = vary(t) for
(@b)

3

yeXo.

Let a, b be finite and let us denote by B the set of all ye¥, such that
y(t) =0 for te(a,a+1/n)4(b—1/n,b) and var y() =1/n.

(a4 1n, b=1/n)
Then

flaf* = suply(@)] = sup  sup
vel no{a-klin, b1y

| @)l /.

In the case when a, b are infinite we define B and the norm || |*
analogically,

It is possible to show that X,(w) is a Saks space fulfilling condi-
tions (3)) and (3,) and that Y,(w) = ¥, (see [1],[2]).
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On the continuity of linear operations in Saks spaces with an
application to the theory of summability

by
W. ORLICZ (Poznan)

1. Let X be a linear space and let a B-norm || || (fundamental norm)
and a B- or F-norm | |* (starred norm) be defined in X. If the seb

X = E{mEX, flell < 1}

with the distance defined as d(x,y) = loe—y|" is a complete space, it
will be called a Saks space (with the norm || ||*, see [2]%)). The following
theorem is a generalization of the result given in [3]:

i.4. Let X, X,,..., X,,... be linear subspaces of the space X and
et an F-noom || I be defined in X, for n=1,2,... Writing

Xy = ml-Xn;

N=
we suppose the following conditions to be satisfied:
(a) X; DX, D...D0X,2..;
(b) there exists a linear subspace ¥, C Xy swch that the set X, = Yorn X X
is dense in X, ~ X,, the distance being induced by || e for m =1,2,...;
(c) the set X, ~ X, is a Saks space under the norm | s satisfying the
condition (Z;)2), for n =1,2,...);
(dy 4f x;e X, and llzylly — 0 for a fized k& and ¢ — oo then lzgl 5 = O for
every k' <k.
Further suppose that in X, additive operations U, awith values in
a Fréchet space Y are defined, such that

(«) for every xeX, the sequence {Un(w)} is convergent;

(B) for every fized positive integer n, k, |l <1, w6 Xy and |zglf — 0
for i—>o0 imply Un(w;)—0.

1) The numbers in square brackets refer to the references at the end of this

paper.
%) Concerning the definition of the -condition (Z,) see [2], p- 240.
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