Since
\[\lim_{n \to \infty} (2k_n/\delta_n) = 0, \]
the neighbourhood
\[U = E \{ \|y\| < \epsilon \} \]
satisfies the condition (\(\ast\)), i.e., is bounded.

Corollary. From the proof of Theorem 3 it follows directly that if in an \(E^*\)-space a norm has the property \(W_1\), then an equivalent norm has it also.

Remark 1. The above theorem is false in the case of the \(E^*\)-space. An example is provided by the space \(K\) of all the sequences \(x = (x_n)\) almost all elements of which vanish, the norm being
\[\|x\| = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{1}{1 + |x_n|}. \]

It is easily verified that the sequence \(\delta_n = n\) is a rate of growth for the norm \(\|x\|\).

"Since \(K\), being an \(E^*\)-space, is not a \(K^*\)-space (see [6]) there are not any bounded neighbourhoods in \(K\).

References

Reçu par la Rédaction le 13. 9. 1956

Spaces of continuous functions (II)
(On multiplicative linear functionals over some Hausdorff classes)

by

Z. SEMADENI (Poznań)

8. Mazur [5] has proved that with every bounded sequence \(\{x_n\}\) a real number \(\operatorname{Lim} x_n\) can be associated in such a way that \(\operatorname{Lim} x_n\) is equal to the usual limit of a subsequence of \(\{x_n\}\); consequently

\[
\begin{align*}
(1) & \quad \operatorname{Lim} x_n \leq \operatorname{Lim} x_n \leq \operatorname{Lim} x_n, \\
(2) & \quad \operatorname{Lim}(ax_n + by_n) = a\operatorname{Lim} x_n + b\operatorname{Lim} y_n, \\
(3) & \quad \operatorname{Lim}(x_n y_n) = \operatorname{Lim} x_n \cdot \operatorname{Lim} y_n.
\end{align*}
\]

In this note a construction of generalized limits for some classes of functions is given. This construction is non-effective, just as those of Mazur; it is based on the theorem of Kakutani on the representation of abstract (\(M\))-spaces. It is easily seen that this limit can also be derived from the theorem of Tychonoff, but I think that the way which I have chosen leads to more consequences.

The generalization of the theorem of Mazur to the case of real-valued, bounded functions defined on \(\langle 0, 1 \rangle\) is trivial, e.g., we can put
\[
\lim_{t \to \delta} \operatorname{Limes} x(t) = \operatorname{Lim} x(t),
\]
where \(\operatorname{Lim}\) denotes an arbitrary limit of Mazur and \(t_n \to \delta\). The functional \(\operatorname{"Limes"}\) constructed in the Theorems 1, 1a, 1b and 2 satisfies also some additional conditions. It can be considered as a solution of the following problem: given a space of equivalence classes of functions how to assign in a reasonable way the value to every function at every point.

The second part of this paper contains some applications (the existence of certain multiplicative measures and a negative solution of two questions concerning the extension of linear functionals).
1. The generalized limits. Let E be a topological space and R a σ-ideal of boundary sets (i.e., $A \in R$ and $B \subseteq A$ imply $B \in R$, $A_n \in R$ imply for $n = 1, 2$
\[\bigcap_{n=1}^{\infty} A_n \in R, \]
no open non-empty set belongs to R). The family H of all sets of form $G \setminus A$ (where G is open and $A \in R$) is multiplicative and σ-additive.

Denote by H the class of all real-valued functions $x(t)$ on E such that the sets $[a < x(t) < b]$ belong to H for every a and b. Hausdorff ([3], p. 235) has established that H is closed with respect to addition, multiplication, supremum and infimum of two elements. Next, note by $\sup_{x(t)}$ the least upper bound of the totality of numbers a such that the set $[x(t) > a]$ belongs to R. In particular, $\sup_{x(t)}$ denotes the usual essential supremum and $\sup_{t \in A}$ denotes the essential supremum with respect to the sets of Baire's first category. We introduce also the R-essential limit in t_0 in the following manner:
\[\lim_{t \to t_0}^{R} x(t) = \inf_{A \in H} \{ \lim_{t \to t_0} x(t) \}, \quad \lim_{t \to t_0} x(t) = \lim_{t \to t_0} [-x(t)]. \]

Lemma 1. For any $\alpha \in H$ the sets
\[A = [t: \lim_{t \to t_0} x(t) \neq \lim_{t \to t_0} x(t)] \]
and
\[B = [t: \lim_{t \to t_0} x(t) = \lim_{t \to t_0} x(t)] \]
belong to R.

Proof. According to Alexiewicz ([1], p. 64) a function $x(t)$ belongs to H if and only if the set D of its points of discontinuity belongs to R. It follows that $A \in R$ and $B \in R$, because $A \cap B \subseteq D$.

In the class X_0 of bounded functions of H we introduce the reflexive, symmetric and transitive relation $x_t \sim y_t$ when $[x_t(t) = y_t(t)] \in R$, and we identify R-equivalent functions. Denote by x, y, \ldots the classes of equivalence under the relation \sim, corresponding to elements x_t, y_t, \ldots. Evidently the space $X = X_0/\sim$ is a Banach space with the norm $\|x\| = \sup_{R} \|x_t(t)\|$.

In X we introduce a partial ordering by the relation: $x \leq y$ if and only if the set $[t: x_t(t) > y_t(t)]$ belongs to R for $x_t \in x$ and $y_t \in y$. If $x \wedge y = 0$ then the set $[t: x_t(t) > y_t(t)] \in R$, and it follows that $\sup_{t \in A}$ implies $\|x + y\| = \|x - y\|$. Similarly $x \geq 0$ and $y \geq 0$ imply $\|x \vee y\| = \|x\| \vee \|y\|$, therefore X is an (M)-space with a unit element (see [3]). Denote by $\mathcal{F}(E, R)$ and by \mathcal{B} the set of all linear functionals defined on X which satisfy the conditions

\[\|x\| = 1, \quad \forall (x) \geq 0 \quad \forall x \geq 0, \quad x \wedge y = 0 \implies \forall x, y = 0. \]

By the theorem of Kakutani X can be linearly, isometrically and isotonically mapped on the space $C(E)$ of continuous functions defined on E (which is compact in a weak topology).

Theorem 1. Suppose that E satisfies the first axioms of countability at each point $t \in E$, and suppose that there exists a base $\{U_n\}$ of neighborhoods of t and a sequence of continuous functions ξ_n from E into U_n such that no $\xi_n(E)$ belongs to R ($n = 1, 2, \ldots$). Then to every $x \in \mathcal{F}(E, R)$ corresponds a generalized limit
\[\lim_{t \to t_0} x(t) = \xi_0(x) \]
such that

\[\lim_{t \to t_0} x(t) \leq \xi_0(x) \leq \lim_{t \to t_0} x(t), \]

\[\xi_0(\lambda t) = \lambda \cdot \xi_0(t), \]

\[\xi_0(t + y) = \xi_0(t) \cdot \xi_0(y), \]

\[\theta (t \vee y) = \max \{\xi_0(x), \xi_0(y)\}. \]

If this limit exists for any $t \in E$, then the function $u(t) = \xi_0(x)$ is R-equivalent to x, i.e.,
\[\{t: \xi_0(t) = \xi_0(t) \in R \text{ for } x \in x \}. \]

Proof. Choose an arbitrary fixed $\xi \in \mathcal{B}$. We put $x_n(t) = \xi_0(\xi_n(t))$ for $t \in E$ and $\xi_n(x) = \xi(\xi_n(t))$. Evidently $\xi_n \in R$. Every limit point ξ_n of the set $\{\xi_n\}$ satisfies (6), (7) and (8); (5) follows from the identity
\[\lim_{t \to t_0} x(t) = \lim_{n \to \infty} \sup_{R} x(t), \]
and (9) results by lemma 1.

Now, we specialize the space E and the family R to obtain some applications of theorem 1.

(a) Let E be the interval $(0, 1)$ and R the family L of sets of Lebesgue's measure zero. Then
Theorem 2. For every bounded function satisfying the condition of Baire in a complete metric space E there exists a function $u(t) = \xi(x)$ such that (6), (7), (8), (11) and (12) hold.

The proof is analogous to the proof of Theorem 1.

The method presented here may be applied to other functional spaces, but the second part of Theorem 1 is not true in all cases.

2. Multiplicative measures. Let us consider the space X of bounded sequences $x = [x_1, x_2, \ldots]$ with the norm

\[\|x\| = \sup_B |x(t)|, \]

the ordering $x \leq y$ if $x_n \leq y_n$ for $n = 1, 2, \ldots$ and the unit $e = [1, 1, \ldots]$.

By the above mentioned theorem of Kakutani X is strongly equivalent to the space $G(\sigma)$ (where σ is given by (4)). Every functional

\[\xi(x) = x_n \]

obviously belongs to \mathfrak{a}. Any limit point ξ of the sequence $\{\xi_n\}$ satisfies (1), (2) and (3), whence it follows that ξ is a limit of \mathfrak{a}. Conversely, each functional which satisfies (1), (2) and (3) is a limit point of $\{\xi_n\}$ because it belongs to \mathfrak{a} and by (1) it is none of the functional (13).

In other words: the Stone-Cech compactification $\beta(N)$ of the countable isolate set N consists of the functionals (13) and of the limits of \mathfrak{a}.

Let S denote a subset of N and χ_S its characteristic function. Given $\xi \in \mathfrak{a}$, we put $m(S) = \xi(\chi_S)$.

It is easily seen that $(a) m(S) \geq 0$, $(b) m(S \cap \mathcal{S}_0) = m(S \cap \mathcal{S}_0) + m(S \cap \mathcal{S}_0)$ if $S = \varnothing = 0$, $(c) m(S \cap \mathcal{S}_0) = m(S \cap \mathcal{S}_0) + m(S \cap \mathcal{S}_0)$, $(d) m(N) = 1$, (e) if S is finite and ξ is no of (13), then $m(S) = 0$.

Thus $m(S)$ is a finitely-additive and multiplicative set function defined on all subsets of N. The condition (c) can be interpreted as a stochastical independence. Conversely, to every measure of such kind there corresponds a multiplicative functional

\[\xi(x) = \int_S x \, dm. \]

In other words the functional ξ is multiplicative if and only if it is multiplicative on nought-or-one sequences.

This procedure may be generalized. Let X be the space of Baire-functions in E (see Theorem 2). For an arbitrary Baire-set $A \subset E$ and $\xi \in \mathfrak{a}$ we establish that $\mathfrak{m}(A) = \xi(\chi_A)$ is a finitely-additive and multi-
plicative measure vanishing on sets of the first category. The general form of linear functional over \(X \) is the integral

\[
f(x) = \int_{\xi} x(t) \, dm(t)
\]

and \(||f|| = \text{Var} m \). More generally, we can consider Hausdorff classes \(\xi \) corresponding to arbitrary Boolean algebras.

Theorem 3. The following conditions are equivalent for linear functionals over the space \(C(\Omega) \) of continuous functions defined on a 0-dimensional compact space \(\Omega \):

1. \(\xi \in \mathcal{A} \) (i.e., \(\xi(x) = x(t_0) \) for fixed \(t_0 \in \Omega \));
2. \(\xi \) is multiplicative and \(\xi \neq 0 \);
3. the measure \(m_\xi \) does not vanish everywhere and for \(A, B \subset \Omega \) open and \(A \cap B = \emptyset \), we have \(m_\xi(A \cup B) = m_\xi(A) \cdot m_\xi(B) \);
4. \(m_\xi(\Omega) = 1 \), \(m_\xi \geq 0 \), and \(A \cap B = \emptyset \) implies \(m_\xi(A) \cdot m_\xi(B) = 0 \).

Proof. The implications \(1 \Rightarrow 2, 2 \Rightarrow 3, 3 \Rightarrow 4 \) are trivial, we shall prove only \(4 \Rightarrow 1 \). From the obvious \(\xi = \xi(x) \) we have \(||\xi|| = ||\xi(x)|| = 1 \). Suppose that \(x_1, x_2, x_3 \in X \) and \(x_1 \cdot x_2 = 0 \). For any \(n \) there exist simple functions \(\alpha_n \cdot x_1 \) and \(\beta_n \cdot x_2 \) such that \(|\alpha_n - x_1| < 1/n \), \(|\beta_n - x_2| < 1/n \), and \(x_1 \wedge x_2 = 0 \). Moreover, there exist sets \(A_1, \ldots, A_m \) and \(B_1, \ldots, B_m \) such that \(A_k \cap B_l = \emptyset \) for \(j, k = 1, 2, \ldots, m \),

\[
x_k = \sum_{\xi_k} a_k x_{\xi_k} \quad \text{and} \quad y_k = \sum_{\xi_k} b_k y_{\xi_k}.
\]

Then

\[
\xi(x_k) \cdot \xi(y_k) = \sum_{\xi_k} a_k b_k m_\xi(A_k \cdot B_k) = \sum_{\xi_k} a_k b_k m_\xi(A_k \cap B_k) = 0.
\]

Passing to the limit we obtain \(\xi(x) \cdot \xi(y) = 0 \), whence \(\xi \in \mathcal{A} \).

Theorem 4. A compact space \(\Omega \) is 0-dimensional if and only if the condition \(\xi \in \mathcal{A} \) is equivalent to the following: if \(x \in C(\Omega) \) and \(x(t) \) take only 0 and 1 as the values, then either \(\xi(x) = 0 \), or \(\xi(x) = 1 \).

Proof. Necessity. Since every positive function \(x \in X \) can be approximated by non-negative simple functions, we have \(\xi \neq 0 \) and \(||\xi|| = 1 \) (if \(\xi \neq 0 \)). Suppose that \(E_1 \cap \Omega, E_2 \cap \Omega \) and \(E_1 \cap E_2 = 0 \). Then every number \(m_\xi(E_1), m_\xi(E_2), m_\xi(E_1 \cap \Omega - (E_1 \cap E_2)) \) is equal to 0 or 1, whence from \(m_\xi(E_1) + m_\xi(E_2) - m_\xi(E_1 \cap \Omega - (E_1 \cap E_2)) \) there follows \(m_\xi(E_1), m_\xi(E_2) = 0 \).

By theorem 3 (proposition 4) \(\xi \in \mathcal{A} \).

Sufficiency. Suppose that there exists a connected set \(E \subset \Omega \) containing two different points \(t_1 \) and \(t_2 \). Then the functional \(\eta(x) = \frac{x(t_1) + x(t_2)}{2} \) does not belong to \(\mathcal{A} \), and \(\eta(x) = 0 \) or \(\eta(x) = 1 \) holds for any non-negative one continuous function \(x \in X \).

5. Extension of linear functionals. Similarly to Theorem 1 we can prove the existence of a generalized left-hand limit, \(\xi_l \), and a right-hand one, \(\eta_r \), in the space \(X \) of Riemann-integrable functions, at any point \(t \in (0, 1) \). Let \(X_t \) denote the subspace of \(X \) of continuous functions on \((0, 1)\). The functionals \(\xi_l \) and \(\eta_r \) are equal on \(x_0 \). There follow two propositions:

1. A norm-preserving extension of linear functional from an \(M \)-subspace \(X_t \) on \(M \)-space \(X \) is not necessarily unique (even if \(X_t \) and \(X \) have the same unit).

However, by a theorem of M. Krein and S. Krein ([4], p. 7) it follows that if \(\Omega_x \) is an open and closed subset of \(\Omega \), then every linear functional has a unique norm-preserving extension from \(X_t = C(\Omega_x) \) to \(X = C(\Omega) \); this is also easily deducible from the integral representation of functionals.

2. If \(X_t = C(\Omega_x) \) is an \(M \)-subspace \(X = C(\Omega) \), then \(\Omega_x \subset \Omega \) is not necessarily satisfied even if every functional \(\xi \in \mathcal{A} \) has an extension \(\xi \in \mathcal{A} \).

References

Repri par la redaction le 21, 9, 1956