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_ Since the property (W) is preserved in the passage to the limit, and
since the functional || does not have the property (W) in any ball, we
infer that [j#] is not a limit of polynomials in any ball.
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Some properties of the norm in F-spaces

by
C. BESSAGA, A. PELCZYNSKI and S. ROLEWICZ (Warszawa)

We deal in this paper with the properties of the norm in F-spaces?).
In section 2 we give a construction of a norm equivalent to the basic norm
and having very desirable properties. In sections 3 and 4 we give the
characterizations of the spaces having some peculiar properties.

1. Let X be an F*-space and let ||z, and lizll, be two norms defined
on X.

DEFINITION 1. The norms |jzf, and ||, are said to be equivalent
(in symbols [zl ~llz|l;) if for every sequence (,) C X the condition

Lim [z, =0

is equivalent to
lim [z, fly = 0.
n

DerprvitioN 2. The norm [jaf is called monotone (strictly monotone),
concave, of class Cy, of dlass Cy, or analytic if for every xeX the function
fa(t) = |itz| is-for ¢> 0 monotone (strictly monotone), concave, k times
differentiable, infinitely differentiable or analytic respectively. A norm
having all these properties except analycity will be said fo have the pro-
perty Wy.

DeriNitioN 3. The norm (|| is called wnbounded (= has the pro-
perty W,) if the set of values of the functional ||| is unbounded for z e X.

Let (4,) be a sequence of positive numbers such that

limd, = oo.
n
DErINITION 4. The norm ||| is said to have the rate of growth () if

limsup 4,
n

z
—“ < co for every seX.
n

!} Concerning the definition and basic properties of the F*.spaces see [1]and [6].
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DerFiNiTION 5. The norm is said to have the property W, if it has a rate
of growth.

2, In this section we shall prove the following

THEOREM 1. In every F*-space with the novm ||| there exists an equi-
valent norm having the property Wi ?). '

LeMMA 1. In every F'-space therc ewists a concave norm.

Proof. From the continuity of multiplication by scalars it follows
that the functional

1) ™ = sup izl

is a monotone norm equivalent to the norm {lz]|.

Let us write ‘

: L ®
2 z|** = sup sup — 3z
@ “ I nl ay>0,a020,...,0520 N £ '
aytag-t.tap=n

The formula (2) defines well the functional [jz|*. Indeed, by the
triangle-inequality it follows that |kz|* < kljz|* for &k =1, 2, ..., whence
by the monaofonity of the norm [af* it follows for a > 0 that

flozl* < (a-+1)fel”,

which implies for ay+ap+...+ap =0, a; 20, i =1,2,...,n,

%Zuaim' < 2",

~Consequently, by (2) we get
(3) el < ™ < 2.

By (2) the functional |lzf** satisties the triangle inequality and by
(3) we infer that |jo|** = 0 implies # = @ 3), Hence the functional [|**
is a morm; from (3) it immediately follows that [o|"~ |2|**. 1t remains
to prove that the norm ||** is concave, i.e. that A > 0, 1z 0 implies

o

At
2

) Wil 4 ™ <2 ” v

%) Eidelheit and Mazur [2] have proved that in every .F-space there exists an
equivalent strictly monotone norm.
?) @ denotes the neutral (zero) element of the space X,
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By the definition of the norm [l#** we can choose, given any & > 0,
& positive integer # and positive numbers 01y Oy eeny O a0d By, By, .oy By
50 that Ya; = Y8, =n and

St

.1 . R AT
(3) Vial” < - D lessl+e, iy <;;’nmu +e.

To see this let us observe that if the positive numbers aj, ay, ..., a, B1,

Baseees By,

are chosen so that
1 1 ¢
% ! JUNTE ] . __ Ut ]
14| <7 i; Hos@i* +e,  |luw]| =7 i;} NBswil* +e,

then it is sufficient to set m=ypr and ajpy; = ay, Birys = B for i=1,2,...,r
j=1,2,...,p.

@

Let us write for ¢ =1,2,...,a

22 2p
= ads ar P = ——
l+ Iu 1 i nti j. /é

(6) Vi B
We have y; >0 for j = 1,2,...,n, and

2n
)
‘}_‘ ¥ = 2m,

i=1
whence
1 < Adu * Adu |*
on L |y <“ 2 ¢
7=1

On the other hand, by (5) and (6),

n n n

1 Adp |I* 1 s 1 Z .

e —%Zuaimwgﬂ Bz 12
F=1 i=1 i=1

1

= 5 (Aall™ + fluz]*) —e.

o]

This implies inequality (4), q. e. d.

Remark. The above construction of a concave norm is equivalent
to the following construction: ‘

Let us consider the functions f,(t) = {liz]l. Let £3*(¢) be the smallest
concave function such that f3"(2) > fu(t), then |y|** = 25 (1).
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Let 0{‘0 1» be the space of the functions # = 2(f) having t,?e k-th
derivative 4)’ continuous in the interval (0,1>. The spaces Cg,, are
B,-spaces with the pseudonorms

(M) Jelle = sup [29(2)],
te o1y

d*a(t) )

i=0,1,..,k 0<a<l (m“’(t): T

Let (z;) be a sequence of positive numbers such that

(8) Z e = 1.

i=1

Let us set for p =1,2,..., ¢ =p, p+1, p+2,...,

1 1
! f fm(ts,,...sq)dsq...d.v,,.

£, eee &
Eptpi1 a 1—syp 1-ey

) Upa(®)

LeMmA 2, The sequences {Um} have the following properties:
(&) For every me(,, there exists

lim Upo(a®) = Upu(a®)  for
g=00

(B) Upglw) e CHET (¢ =, P+, ...
(v) The operation U, is linear and maps the space (1, into the space O 1.

p=1,2 0y k=0,1,2,...

Proof. By (8) the infinite product

n (1—e)
=1
is convergent and
00
[Ja—ey =06<1.

-,
=t

Let @ eCfy;,, then by (7), (9) afd the inequality

b
[ima < (b—a) sup I7(0)
we have ¢

(19) 1Tne(@lla < llelly  for i=1,2,..,k

‘) By O-times differentiable fumction we mean the continuous funetions. We
shall write g1, instead of 0?0,1>.
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Let g, > ¢;; then

12 '?l(m)’— Upﬂz(x)”til = ” Uzo,q; (w‘” U!11+1,q2(m))”gt < lle— qu1+1,q2(m)”a.5
! 1 1

1
= sup

(), @) (4. ¢ .
() — (Lo voe 8 ) ds, ... ds
te<as,1y &gy 41 - - - &) ( 2+ qz)l % fa+1

£,
q:
2 l—sql-(-l L—gg,
if ¢1, gz oo, then in virtue of the-relation
J=qy

im [ (1-e)=1

i=qp+1

and the continuity of the function 2®)(t) we infer that
e O) — 0DNt-54041 ... 55)] > 0

uniformly for te<ad, 1), 1—g < <1, § =q+1,..., ¢, whence from
the completeness of the space Cf,; we deduce that the sequences {Usd
have the property («).

‘We shall prove the property (B) by induction with respect to the
difference 7 = p—g. For # = 0 the theorem follows from the identity
(11) by the theorems on the differentiation of the integral of a continuous

function
1 1 |2
(11) fa:(t's)ds =7 fm(u)du.
1—-¢ (1—e)
Suppose that the theorem is true for » — 7o—1, 4. 6. that
drott 1
dtfot! Eptl -ee Epyrgil f ’ ;fm(t.sp“ 8p+,-0+1)d$p+1 o d8,,+r°+1

=@(t)e Coy-
Differentiating under the sign of the integral we get

drott

1
1
WUP.DHUH(‘G) = f B(i-sp)dsy € Clogy,y

P 12
bt Uppirs1€City, 4. e d. :
The property (y) follows by the identity

Upylz) = p+1.a( Ul.p(w))’
whence by the property (B) it follows that Uy g(@) e CFY} for g > p.
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By the property (a) we get for p = 1,2, ..., passing to the limit
a§ §—» 00,

lim U] q(m) = Uypel®) = lim UTH‘]:‘I( Ul»n(m))" = Uﬂ"'l’w( Ul'p(m)) ¢ C%:}ilw
P ’ q

whenee Uy (@) € C1y- o A .
The lilhogarity (of the operation U, () follows in virtue of (10) from

the inequality
1Tsl@)lls = [[Upsra Urp@fe < 1T 0@l

and from the fact that the operation Uy,(x) maps linearly the spajce
Oy, into the space Cfy,p =1,2,..., which may he proved by in-
duction similarly to the property (B).

Proof of Thearem 1. Let [lz]** be a concave (and thus monotone)
norm defined in Lemma 1. Let us set |2 = Uyq(llo]™*).

By Lemma 2 and the definition of the sequence {U,,} we see that
the functional |#] is a convex norm of class C. It remains to prove that
le|~ ll&|**. We have for ¢ =1,2,...

*w
inf [itz]** < Uyq(lel™) < sup [a]™.
16¢4,1> 16(6,1)

Passing to- the limit we get

. . PRI
inf |tz|| < |2| = sap || .
18,1 te(d,1)

The norm |jz||** being monotone, we see that

inf |tz < |dal™;
16¢4,1)

on the other hand,

L1
sup [iz]™ = Jlal .
te(3,1)

Finally,
lldw™ < foo} < flal™

which implies |o|~|z|**, q.e. d
Remark. To obtain a strictly monotone norm it iy sufficient to set

1
lef* = [ i)t
' 0

We omit the easy proof based on the computation of

1
l ~
2z f [t dt.
ds §
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Problem. Does there exist in every F*-space a norm equivalent
to the analytic norm?

3. In this section we characterize these F*-spaces in which there
exists a norm with the property W,. :

THEOREM 2. The following condition is necessary and sufficient for
the existence of an umbounded norm in an F*-space:

{*)  there emists a neighbowrhood U such that for me-positive - integer

U" = UQU®...®U = X9,
—— ——

» times

Proof. Necessity. Let us suppose that (*) i not satisfied and [l
has the property W,. Let U,, Us, ... be a decreasing sequence of neigh-
bourhoods such that

We have

sup fjzfl = oo for i=1,2,...
zeU;

Tndeed, in the contrary case the idefitity U = X would imply for
some 7,

112l < i sup 2]l < oo
ZeX zeU;

which is impossible. Therefore there exist for ¢ — 1,2,... elements x,e U,
such that [l;]| = 1; this, however, is impossible, for the sequence of neigh-
bourhoods U, is chosen so that

limz; = 0,
1=00
q.e d.

Sufficiency. The construction of the norm proceeds similarly
to the proof of Theorem 4 in [5] (see also [37) the only difference is that
the hypothesis U(f) = B, t = 1, is to be replaced by U™ — g~

Remark 1. From the above construction it follows that if there
exists a bounded neighbourhood of @, then there exists & bounded norm,
4. e. the following condition is satisfied:

(the set Z is bounded) = (sup 2| < SN
2eZ

5) A®B = E{x = a+b, where aed, beB}.
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Remark 2. In the proof of Theorem 2 only the fact that X is a metric
connected Abelian group was used; thus Theorem 2 is true for metric
connected Abelian groups (in this case the norm is understood as g(x, 0)
where o(z,y) is the distance in the group X).

Remark 3. If the space X fulfils the condition (), then starting
in the proof of Theorem 1 from the unhounded norm one can easily show
that there exists in X a norm with the properties W, and W,.

Remark 4. If the space X has not the property (x), then no non-
-trivial linear functional (¢.¢. different from the functional ¢(z)= 0)
exist in X.

Indeed, if there ig & non-trivial linear functional in X, then 13110 norm
lle* =]jz]l+|¢ ()] has the property W, and obviously ||~ |lz|".

The example of the space I” of the functions @ = x(f) integrable
in <0, 1) with the p-th power (with the norm

1
el = [la@Pde, 0<p<1)
0

shows that the converse theorem is not true. Indeed, the norm I is un-
bounded, but no non-trivial linear functionals exist in L¥, 0 <p <1
(see [4]). ‘ . ’
It is easy to show that the space S of all measurable funetions in
€0, 1>, with the norm
1
| (1)

2| = | ————dt

e § Tle@)
has not the property (x), whence in § there are neither non-trivial linear
functionals nor unbounded equivalent norms.

4. In this section we shall characterize those F-spaces in which there
exists an equivalent norm having the property W,.

THEOREM 3. There exists in an F-space X a norm having the property
W if and: only if there exists @ bounded®) neighbourhood of @7).

Proof. Sufficiency. Let U be a bounded neighbourohod. Let us
write
’"!

n

7y, = NUp
xeU

*) The set Z is called bounded if IT X IT IT |nel| < e.
80 6>0 282 n<gs
7} During the print of this paper it was proved that there exists in the
space X a bounded neighbourhood if and only if there exists for some 0 < p=<1
an equivalent p-homogeneous norm (i. e. the norm satisfying the condition |[faf] = [¢|P|jail).
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The boundedness of the set U implies

limr, =0.
n

Obviously 7, > 0 for n =1,2,... If 9, =1 [Tns then the sequence
(9,) is a rate of growth of the norm [jz||. Indeed, let e X and let 7, be the
smallest positive integer such that #/noe U (such integer exists, for
#fn—06 and U is a neighbourhood of ©). For n — 1,2,... we have

[

|
|
i

x/n,

K Mo Py

l<770.

Necessity. We prove first the
LeMMA. The set Z is bounded if and only if

(#%) 1> [z < e

>0 >0 ZeZ

The necessity of the condition (%) is trivial, only the sufficiency
must be proved. Let |lz]* be a monotone norm equivalent to the norm |z
Boundedness being an invariant property under isomorphisms, it is
sufficient to show that the set Z is bounded under the norm J=*. Let
&> 0; since |[z]|~|j2|*, there exists an g > 0 such that [lz]| < ¢ implies
llz|* < e. By (%) there is a 6 > 0 such that ||éz]] < & for xzeZ, whence
16z]* < e.

The monotonity of the norm fle]* implies [pe)* < e for n < 4,
whence the set Z is bounded, g.e.d.

Let the sequence (#,) be a rate of growth for the norm |x|. Let us
set for k =1,2, ...

z

n=lx

Z, = ﬂ E{ﬁn

< k}
These sets are closed and

o0

U Zk = .X,

k=1

‘whence by Baire’s theorem there is an index ko, an & > 0 and a point i,
such that [o—m) < & implies &,)z/n|| <k, for n = 1,2,... Thus for
every [yl <e and n =1, 2,...

Lo+ Y

2l<nfee] o
n

n

Gy, < Oy <2k07

Lo

whence |ly/n|l < 2ky/S.
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Since ‘
Lim (2k,/9,) =0,
Hh=00
the neighbourhood
U = E{lyl <
v

satisfies the condition (*x), 4. ¢. is bounded.

COROLLARY. From the proof of Theorem 3 it follows divectly that if
in an F-space a norm has the property Wy, then an equivalent norm has it
also.

Remark 1. The above theorem is fulse in the case of the .F'-spaee.
An example is provided by the space K of all the sequences o = (&)
almost all clements of which vanish, the norm heing

1 &

lell = > <% TH&

k=1l

It is easily verified that the sequence 9, = n iy a rate of growth for
the norm |j2. . -
“Since K, being a B;-space, is not a' B*-space (see [6]) there are not
any bounded neighbourhoods in K.
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Spaces of continuous funections 1))
(On multiplicative linear functionals over some Hausdorff classes)

by
Z. SEMADENI (Poznan)

8. Mazur [5] has proved that with every bounded sequence {arn}
a real number Lim z, can be associated in such g way that Lim z, is

n
equal to the usual limit of a subsequence of {a‘n}, consequently

(1) lima, < Lima, < EE.’I‘,,,
(2) Lim (az,+by,) = aLim 2y + b Limy,,
(3) Lim (2,y,) = Lim 2y Lim y, .

In this note a construction of generalized limits for some classes
of functions is given. This construction is non-effective, just as those
of Mazur; it is based on the theorem of Kakutani‘on the representation
of abstract (3)-spaces. It is easily seen that this limit can also be derived
from the theorem of Tychonoff, but I think that the way which T have
chosen leads to more consequences.

The generalization of the theorem of Mazur to the case of real-valued,
bounded. functions defined on <0, 1) is trivial, e. g., we can put

Limes 2 (t)

= Lima(t,)
1ty n

where Lim denotes an arbitrary limit of Mazur and tn—>1ty. The functional
“Limes” constructed in the Theorems 1, 1a, 1b and 2 satisfies also some
additional conditions. Tt can be considered as a solution of the following
problem: given a space of equivalence classes of functions how to assign
in a reasonable way the value to every function at every point.

The second part of this paper contains some applications (the exis-
tence of certain multiplicative measures and a negative solution of two
questions concerning the extension of linear functionals)
Studia Mathematica XVI.
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