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d’ordre p a exactement p solutions linéairement indépendantes. L’en-
semble des solutions est done, dans notre construction algébrique, plus
riche que dans le caleul opérationnel. Par exemple ’équation

(41) 2"(A)+sx(2) =0

n’a pas de solutions, sauf 0, parmi les fonctions opérationnelles, tandis
quelle a deux solutions linéairement indépendantes dans espace F.

En partant de la cléture algébrique du corps des opérateurs espace F
devient un espace des fonctions exponentielles. La fonction ¢“* existe
pour tout opérateur w. En particulier les fonctions ¢®* ot ¢~ gont
des solutions linéairement indépendantes de 1’équation (41). La théorie
des équations différentielles est, dans cette interprétation, tout & fait
analogue & la théorie classique des équations différentielles ordinaires,
mais l’ensemble des fonections exponentielles est beaucoup plus riche,
méme plus riche que dans le caleul opérationnel. Par I'adjonction d'un
élément tramscendant on obtient une construction analogue au calcul
opérationnel, mais sur un niveau plus haut, une sorte de »caleul opéra-
tionnel du ecalcul opérationnel”.
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A property of multilinear operations
by
A. PELCZYNSKI (Warszawa)

1. Tn this paper I prove a special property of multilinear operations
(see [3]) defined in B*-spaces!). It appears that if the space has some
additional properties (e.g. weak completeness), these operations are
continuous with respect to a sequential topology weaker than the topo-
logy induced by the norm (it follows hence in particular that in the space
C, the polynomials are weakly continuous). For a class of spaces the
functional |z is not continuous with respect to this topology. From this
fact it follows that the functional |z cannot be uniformly approximated
in these spaces by polynomials. This result partly coincides with some
results of J. Kurzweil [2]. In the sequel I give an example of a non-ge-
parable space, in which the functional ||| is not representable in any
ball as the pointwise limit of polynomials.

I am indebted to Professor 8. Mazur for calling my attention to this
problem and the aid which he has given me in solving it.

2. Let E be a B*-space, s — a real number from the interval <0, 1),
(¢;) — @ sequence composed of +1’s or —1’s. I shall define in E a se-
quential topology ;.

DrriniTIoN 1. The sequence (2,) C E is zg-convergent to ©2) if there
is a constant ¢ such that for & =1, 2, ..., for arbitrary different indices
Ny, Ng,y ..., N and for every sequence (g;) the inequality i

(1) e @tny + 29y 4o - x| < CF°

is satisfied.

The sequence (m,) is 7-convergent to the element w, if the sequence
(Tn—g) i8 7e-convergent to O *). This fact will be denoted in symbols:
&y, —1—: Ty,

!} 4. e., in’ (not necessarily complete) linear subsets of B-spaces.

) @ denotes the null element of the space IE. ]

3) It follows in particular from (1) that x.,,,—;—> x, implies w“;;;ﬁ} #,; hence fol-
)

lows the unicity of the zs-limit.
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DEFINITION 2. The operation A (2", 2°, ..., 2") defined on the space

E = ExEX ... xBE, taking on values from a B*-space B, will be
r times .

called z,-continuous at the pomf (mo,mo,.
(@, a5, ..., a3)) the relations 'pn—> b (6=1,2,...
gence of the sequenee (4 (z;, 3, . " a})) to A (xf, a3, ..., @) with respect
to the norm. The operation A(m z*, ..., 2" will be called zy-continuous
if it i8 7e-continuous at every point of the space E'.

DEFINITION 3. A B-space B, will be said to have the rank s (io have

.., ap) if for every sequence
, ) imply the conver-

a loose ranmk s) if for every 0 < a < s (¢ < s) the functional [z is

a 7,-continuous operation.

TEEOREM 1. Let A(z', o, ...,a") be an rlinear operation from the
space B to a space By having the (loose) rank s;. Then A is ve-continuous
if re 8 (18 < 1)

3. The proof of theorem 1 is somewhat complicated and needs some
auxiliary concepts and symbols.

If we fix in an »linear operation A(a',2%,...,2") the eclements

Bopy Layy vy X, ON the places oy, dyy ..y tp, P 7, W obtain an (r—p)-
-linear *) operation which will be denoted by

al, ag,..0p 5
2 ayPagre®ay

Let (x,) C E, 6 > 0; we shall write

)= E (”A('Tnl, Ty -
(ny)eN"

(2 Z,(4 o E )| 2 0).

By N¢ will be denoted the set of all systems of indices (n;)
= (Mg, Ny, ..., M,) where n; =1,2,... fori=1,2,...,0.
LemMA 1. Let a sequence (x,)eE have the following properties:
(a) for any 1 > 0, the indices ay, ag, ..., 2, and clements g s Ty 3 +vey Tug,
being fized, the set

P ,( aL, G0,y )

-’n"lr‘;na reeesin, ap

s finite ;
(b) the set Zy(A) is infinite for some § > 0.

) By O-linear operations we mean the constant operations.
%) On principle it would be desirable to make evident in the notation the depen-

dence of B%» %% on the operation A.

qu’wﬂz" . .,@,,T
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Then there ewists a sequence (nj) DN', v =1,2,.
indices such that

.., of systems of

(o) (n3)€Zy(4)

(8) >t (v =12,3,..; 4

(y) if the numbers vy, vy, ..., » are not all equal to one another, then

1

max [(v;) - 2%]
i<<r

(3) Il4 (2, Ly Tty eeey X

)l <

Prooff). The sequence (n}) will be defined by fnduction. As (nl)
we choose an arbitrary system of indices belonging to the set Z,(4). Sup-
pose we have already defined the systems (nf) for u <, » > 1. To
define the »-th system let us set » =»~"27"; let us consider all the
possible operations

a1, ag, ...ap
R
Ty, lmna_, ,.ln 1)

where 1 < v <w, 1=1,2,...
operations is finite. The sets

, 9, p=1,2,...,7. The number of these

15 agr %P
z (B”n"l a-’n“ P p)
@ ap aj

being finite by (a), there exist quantities M,, M,,..., M, such that
Ny > Mgy np, > Mp, 5 ..., Mg, _,, > M, implies
1B e (g 5 Tny M <= =5
znpl,xnza, ,xnyg gy nﬂ PR nﬂ oo

where f; %oy, §=1,2,...,7—p, § =1,2,...,p.

Let N; = max(ny~', M;) for 4 =1,2,...,r. There is only a finite
multitude of systems (n,)eZ,(A) such that for a certain 4 the inequality
7n; < N; holds. Indeed, in the contrary case there would exist an index 4,
such that for infinitely many systems (n;)eZ,(4) the inequality gy < Ny,
would be satisfied. Since there are only finitely many positive integers
not greater than N, , there must exist an @ < N, such that n;, =7

%) It is sufficient for this proof to suppose that A is a distributive operation
on a linear set of an F*-space.
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is satisfied for infinitely many systems (mo)eZ,,(A); this implies, however,
the infiniteness of the seb Z[,(B;v‘_:), which is contrary to (a).

The set Z,(A) being infinite, there exist systems (n;)eZ5(A) of indices
such that n;>N; for ¢=1,2,...,r. We choose as (nj) any of
these systems. It is eays to see that all the desired conditions
are satisfied. :

LeMMA 2. If the conditions of Theorem 1 are satisfied and the sequence
(@) 18 To-convergent to @, then the set Z4(A) is finite for every 6 >0

We prove the lemma by induction with respeet to ». Lt A be linear
(r =1). We have by (1)

lles A (2n)) 4 2.4 (2tg,) +- ..+ e A ()| = 1A (1200, 4 0ty ..
< 4] “[19‘”1—|— ('27'112‘!' +~’Ik'l‘nk”

+ x|

< o)A &,

whence the sequence (A(mn)) is T,-convergent to @,7). The space E; having
the rank s; (the loose rank ), we infer from the inequality s-1 =s <5,
(s1 =8 < s8) that
Lim |4 ()| = 0.
N=00
Now let us suppose Lemma 2 to be true for F<r, #> 1 and
s < & (rs < &)). Let the operation 4 be r-linear and let the set Z,(4)
be infinite for this operation, for some 4> 0. We can casily verify
that the séquence (r,) satisfies the hypotheses of Lemma 1. Thus,
we can choose a sequence of systems of indices (n}) with the properties
(), (B), and (y).
We set for k =1,2,...

k
(4) yf:mew for i=2,3,...,7,
iz
k
(5) & = Z(Pnqu
=1
where u; < gy < ... < pyp = 9.
Then we write
(6) 4,= F (e =0): ﬂ @ < g) mwat = ),
(ap)eN 1<e i<r
(7) Ay = F (mixe; = p).

(ag)eNT ST

") @) denotes the null element of the space 1.
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y (2)-(7) we have

k
4 ($k, ."lllcy ?/If‘!:) reey ?/r HZ ZEGIA W41y Tnblazy ooy .’(?n;‘a,.)
e=1 4,
k
.
” ve ATy Tnfey -y Tuo —}—22; A (afray Tyttag, ooy Ty
o=1 e=2 4
‘_‘ + k
= \2’ f'gA('Tn’ft'r Tpfey - o ’ ZZ“A Cnfary Xnflagy - .oy Lnliar)]
=1 e=2 4, )
k k 1
= ”Z:%A(mn'fhyngﬂr'-'a‘l‘nrﬂ) - 22,42(” ’;'
o= 9=2 4, e
k
“Zs A(rptie, Tulle, -, mn;te)”—l.
=1
From (1) it follows that
14 9%, 955 - ¥ < LAEHENYS - el < 4] - 07k
The above inequalities imply that the sequence (4 (@ugs Tngy - . By) 18
Te-convergent to 6,. The space E; having the (1oose rank 7, it

follows from sr < s, (sr < &) that

Hm |4 (2u]y @ngy -0y 2] = 0,

which is impossible, for njeZ,(4). Thus the hypothesis that the set Z,(4)
is infinite leads to a contradiction.

Proof of Theorem 1. Lemma 2 implies directly that under the
hypotheses of Theorem 1 every r-linear operation is 7,-continuous at 6.
To see this, it suffices to notice that the r,-convergence of the sequences
(#%) to @ for i =1,2,...,r implies the 7,-convergence of the sequence
@y, @, ..., X, X5, Xay ..., X5, ... t0 O, and then to apply Lemma 2.

The proof of 7,-continuity at an arbitrary point will be proved by
induction. This fact is trivial for 0-linear (= constant) opera.tmns Suppose
that it is true for p-linear operations, 0 <p <r. Let ar,,,—» xy for

i=1,2,...,7. We shall use the identity

1 1 2 2
(8) A('Tgn “"fn ,(I‘;) = A(xn,— 0, Tn— Loy +.+s J‘;——(l‘;)—
r—1

r— 2 1 a1s 02yenss ! Ao
‘“2(—1) ¢ Bzal.zaz'_ ,xap( n ey T )
=0 1<¢1:“2----:"r—g LR
where iy £, i =1,2,..,p,1=1,2,...,7—p.

Studia Mathematica XVI. 12
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By the induction hypothesis

. ip r; )
lim B @it (oft o b

1 2 7
201003, | % ) = A (o, X5, ..\, ).
n=00 0700

Hence follows the existence of the limit of the left-hand side of equality (8)
a8 n—oo, for limA(xh—axzy, vo—4, ..., 2—a5) = @, by virtue of the
7,-continuity of 4 at 6. A direct computation shows that this limit is
equal to A(xg, 23,...,45), d.e. d.
4. We get the following corollaries:
4.1, The space I’ (p > 1) has the following property ([1], p. 200):
(w1) If the sequence (wn) C 1P converges weakly to @, then it contwins
a subsequence vy -convergent to 6.
. This implies in particular that ¥ has & loose rank 1/p. Hence from
Theorem 1. we deduce the following corollary:
Any r-linear operation from the space (PY" 1o ¥ (p,q = 1) is weakly®)
continuous for r < plg. (We set s =1/p, ¢, = 1/g).
4.2. Tt is easily shown that the space of reals (the finite dimensional
space) has a loose rank 1. Hence by the property (w;) we find that
Any r-linear form (finitely dimensional operation) on the space (®y
(p 2 1) is weakly continuous for r < p.
The polynomials of degree » < p defined on I are therefore weakly
continuous.
4.3. Any r-linear operation from the space E" to o weakly complete
space By is ry-continuous for r = 0,1, ... .
This follows from Theorem 1 with s = 0, s, = 0 and the following
property:
(Wq) Any weakly complete B*-space has the rank 0.
Proof of the property (w,). It is easily verified that the 7y-conver-
gence of the sequence (a,) to @is equivalent to the following condition (0):

(0) there exists a constant ¢ such that for arbitrary different indices
My, Ny ..., N the inequality

ny+ Tng b)) < €

I8 valid for k =1,2,...

f) The definition of weakly eontinuous operation is analogous to the definition
of zg-continuous operation.
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A theorem of Orlicz [4] states that if in a weakly complete space
the sequence (x,) satisfies the condition (0), then the series

0
R
n=1

converges unconditionally. It follows that |jz,)|— 0 ;in our case, q.e. d.

4.4. The space ¢, has the following property, easy to verify:

(ws) Buvery sequence (x,) C ¢y weakly convergent to @ contains a subse-
quence To-convergent to 6.

Using this property and the result of 4.3 we find that

Any r-linear operation from the space ¢, to weakly complete space B,
is weakly continuous for ¥ = 0,1, ...

It follows in particular that multilinear forms (whence also the poly-
nomials) defined on the Cartesian product of the space ¢, are weakly conti-
nuous functionals. The last result was obtained in another way by
W. Bogdanowicz °).

5. The corollary obtained in 4.3 implies some negative results concer-
ning the approximation of functionals by polynomials.

5.. I shall need the following

DrFINITION 4. The sequence (m,) is called essentially T,-convergent
to xy if it i3 7,-convergent to z, but does not converge to , in the norm-
-topology.

THEOREM 2. If there exist in the space B essentially Ty-convergent
sequences, then the functional |l cannot be wniformly approwimated by
polynomials in any ball with centre 6.

Proof. It is easily shown that if there exist in B essentially z4-con-
vergent sequences, then every ball K(@,r) with centre ® and radius
r > 0 contains a sequence (x,) with the following properties:

1° z* -1—0) 9,
2° lwy|| =7/2 for n=1,2,...
Indeed, let (y,) be essentially z,-convergent to €. Since
Limsup |ly,,|| > 0,
m

we can choose an increasing sequence of indices (m,) such that Ym, | > &
for n =1,2,...; then we set 2, = (r/2Ypm,|) Yy, - ' ’

?) See W. Bogdanowicz, On the weak continuity of the polynomial junctionals
defined on the space ¢ (in Russian), Bull. Acad. Pol. Sci. Cl. III, 5(1957). p. 243-246.
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Suppose that there exists a sequence Py(2z) of polynomials uniformly
convergent to the functional || in K (@, r). Then there must exist an M
such that

[Prf) —lll| <[4
for every xzeK(0,r) and m > M. In particular
|Pp(dy)—7[2] <7r/4 (n=1,2,...).

It follows that Pp(z,) Z=7/4 (v =1, 2, ..., m > M). The polynomials
are, however, 7,-continuous, whence lim Pp(x,) = P,(0) for m = 1,2,..,
and this implies |P,(@)| = r/4 for m = M which is contrary to the hypo-
thesis

lim P,,(@) = (@] = 0.
m

Remark. The space C(Q) of continuous real functions defined on
a compact infinite metric space § contains always essentially To-cOnvergent
:sequences.

This follows from the fact that the space (@) contains a subspace
equivalent to the space ¢, of numerical sequences convergent to 0 and
in this space the sequence (e,) where ¢, = (0, ..., 0,1,0,...)is essentially
7p-convergent. "

5.2, Let ¢{0,1> denote the set of all real functions @ = x(1) defined
for 1e{0, 1>, such that for every & > 0 the set

B (ja@®)] = ¢)
ta(0,1y
is finite. It is easily seen that, with the usual definition of addition and
multiplication by scalars, ¢,<0,1> is a B-space, the norm being
] = sup |2 (#).
te(0,1)

THEOREM 3. It is impossible to represent in the space e{0, 1> the fun-
ctional ||zl as a Umit of a sequence of functionals in any ball.

Proof. Let & stand for the family of functions e,, se¢0, 15> defined
as follows:

0 for
1 for

§ it
i) = b
§ == {.

One can easily verify that this family has the following properties:

(«) Every element « of the space C'(0, 1) may be represented uniquely
in the form

where

D

&= ) lies, t, #0

T

]
A
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and (s;)C<0,1> is a finite or infinite sequence. The set of finite

linear combinations of elements of & is therefore dense in ¢<0, 1>.
(B) The smallest linear space spanned upon any denumerable subfamily

of @ is equivalent to the space ¢,
(y) TFor every sequence (s;) C 0,1> (s; 7% 8; for i s §), the sequence (6a;)
is 7o-convergent to @.

LeMMA. For every homogencous polynomial P(x) there ewisis a separ-
able set T C0,1), such that s€T implies P(z--26,) = P(x) for every
2ec{0,1> and every real 2.

Proof of the lemma. Let A(«',4% ...,4") be the (rlinear) ge-
nerating form of P(z). By (y) and (8) it follows from Lemma 2 (p. 176)
that the set Z,(4) is finite for every sequence (5;)€ D ((s,-) 60,1, s;5%8;
for i £ j) and every 6 > 0. It implies the existence of an at most de-
numerable set T' such that if at least one of the numbers 81y 82y ..., 8 18
not in 7, then

(10) A("el:eez,---:eq,) = 0.

Therefore, for seT

(11) Bl(d' o' .., ) =0 (j=1,2...,%).
Indeed, it follows from (10) that formula (11) is true if @*, 2%, ..., a"~?
are finite linear combinations of the elements of @. The validity of formula
(11) for arbitrary points a',4?, ..., 2" follows from («) and from the
continuity of the operation B, .

The lemma follows from (11) and the identity

P(z+ Aey) = A(n+ 265, B+ Aeg, ..., B+Ies)

\ -
r

@)+ D
o=1 1<ay,ag,...,ep<r
ulatlzj

a1,09,...,0p

P
= Az, %, ... eecarnnts (L3 Ly oeey YA .

Every polynomial being a sum of a finite number of homogeneous
polynomials, and the union of a denumerable family of denumerable
sets being denumerable, we infer from the above lemma that every se-
quence (P,(x)) of polynomials has the following property:

(W) There exists an se{0,1> such that

Py(a+ de;) = Py(w)

for n =1,2,..., every ze¢, 0, 1), and every real A.
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_ Since the property (W) is preserved in the passage to the limit, and
since the functional || does not have the property (W) in any ball, we
infer that [j#] is not a limit of polynomials in any ball.
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Some properties of the norm in F-spaces

by
C. BESSAGA, A. PELCZYNSKI and S. ROLEWICZ (Warszawa)

We deal in this paper with the properties of the norm in F-spaces?).
In section 2 we give a construction of a norm equivalent to the basic norm
and having very desirable properties. In sections 3 and 4 we give the
characterizations of the spaces having some peculiar properties.

1. Let X be an F*-space and let ||z, and lizll, be two norms defined
on X.

DEFINITION 1. The norms |jzf, and ||, are said to be equivalent
(in symbols [zl ~llz|l;) if for every sequence (,) C X the condition

Lim [z, =0

is equivalent to
lim [z, fly = 0.
n

DerprvitioN 2. The norm [jaf is called monotone (strictly monotone),
concave, of class Cy, of dlass Cy, or analytic if for every xeX the function
fa(t) = |itz| is-for ¢> 0 monotone (strictly monotone), concave, k times
differentiable, infinitely differentiable or analytic respectively. A norm
having all these properties except analycity will be said fo have the pro-
perty Wy.

DeriNitioN 3. The norm (|| is called wnbounded (= has the pro-
perty W,) if the set of values of the functional ||| is unbounded for z e X.

Let (4,) be a sequence of positive numbers such that

limd, = oo.
n
DErINITION 4. The norm ||| is said to have the rate of growth () if

limsup 4,
n

z
—“ < co for every seX.
n

!} Concerning the definition and basic properties of the F*.spaces see [1]and [6].
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