M. Fisz and K. Urbanik

[6] Lawrence A.Ringenberg, The theory of the Burkill integral, Duke Math,
Journal 15 (1948), p. 239-270.

[7] A- Prékopa, On composed Poisson distributions, IV, Acta Math. Acad.
Scient. Hung. ITI (1952), p. 817-325.

[8] A. Rényi, On composed Poisson distributions, II, Acta Math.
I1 (1951), p. 83-96.

9] C- Ryll-Nardzewski, On the mon-homogeneous Poisson process, I, Studia
Math. 14 (1953), p. 124-128. _

[10] — On the non-homogeneous Poisson process, Coll. Math. 3 (1955), p. 192-195.

Scient. Hung,

INSTYTUT MATEMATYCZNY POLSKIEY AKADEMII NAUK
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 21.8.1956

A general bilinear vector integral
by

R. G. BARTLE (New Haven, Conn.)

Qince the time of the introduction of the Lebesgue integral, several
types of extensions and generalizations have been studied. We shall be
concerned with two such generalizations in the present paper.

The first extension is in the direction of integration when both the
function to be integrated and the measure take values in a relatively
general vector spacel). This paper considers the case that there is a con-
tinuous bilinear “multiplication” defined on the product of the vector
spaces in which the function and the measure take their values, the pro-
duct lying in a (possibly different) vector space. The integral discussed
here possesses many of the properties of the usual Lebesgue integral;
in particular, we show that the well-known Vitali and Bounded Conver-
gence theorems remain valid in this generality, while the natural exten-
sion of the Lebesgue Dominated Convergence theorem fails. The second
extension is in the direction of replacing the usual requirement of eoun-
table additivity of the measure by the assumption of finite additivity.
It was shown by Hildebrandt [20] and Fichtenholz and Kantoroviteh
[13] that this may be done for bounded functions, but some recent work
of Dunford and Schwartz [12] demonstrates that it is also possible for
unbounded functions, provided that almost everywhere convergence is
replaced by convergence in measure.

The structure of the present paper is as follows: sections 1 and 2 in-
troduce the basic terminology and elementary properties; gection 3,
the principal section, develops the general integral with respect to an addi-
five set function. In section 4 the assumption of countable additivity
is imposed and the main results of section 3 are recast in this light. Finally,
in seetion § comparisons are made with other integrals. It is found that
certain cases of the countably additive -integral presented here reduce
to (a) the Lebesgue integral, (b) the second Dunford [9] integral of vector
functions with respect to a scalar measure (which includes the Bochner

1) Such integrals arise naturally in the definition of the concept of work, and
in Ampdre’s law. )
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[5] integral and coincides with the Birkhoff [4] and Pettis [22] integrals
for strongly-measurable functions), and (c) an integral introduced by
Bartle, Dunford and Schwartz [3] for sealar functions with respect to
a vector-valued measure.

The writer is pleased to acknowledge his debt to Professors Dunford
and Schwartz for making their unpublished manuseript (12] available
to him. The use of these notes has been an invaluable guide in the wri-
ting of this paper

1. Elementary notions. In the sequel we let X and ¥ denote two veal
or complex normed linear spaces. We assume that there ig a bilinear
mapping, which is demoted by juxtaposition, defined on X x Y with
values in a Banach space Z, satisfying |oy| <K [#]|y| for some fixed Pposi-
tive number K. For example, (i) X and ¥ may be taken to be one and
the same Banach algebra; (ii) one of the spaces X and ¥ may be a Ba-
nach space and the other its adjoint space; or (iii) one of the gpaces X
and Y may be a Banach space and the other the space of bounded linear
operators on this space with values in a Banach space Z. We observe
that the general case may be reduced to cage (iii), but for reasons of sym-
metry we prefer to avoid doing so.

In the following § denotes an abstract set and & a field of subsets
of 8, called the measurable subsets of § ; hence & is closed under finite
unions, intersections and complements, By u we signify an additive func-
tion: on & to ¥: thus it B,Fe S and BE~F — @, then u(BUF)= u(H) +u (),
In section 4 we shall consider the additional properties when u is coun-
tably additive, but for the present we assume only additivity.

The sems-variation of p is the extended non-negative function el
‘whose value on a set ¥ in S, denoted by ||H|| or llull (B), is defined to be

|B]| = sup l Z 2 (By)

where the supremum is extended over all partitions of E into a finite
number of disjoint sets {E.i}cé and all finite collections of elements
{w,-}CX with [¢;|<<1. The wvariation of # is the extended non-negative

function || whose value on a set B in S, denoted by |E| or || (B), i3 de-
fined to be

’

1Bl = sup D |u(By)],

where the supremum is taken over all partitions of ¥ into a finite num-
ber of disjoint measurable sets.

The reader may readily verify that the semi-variation of 4 is a mo-
notone, subadditive function on ©, and that the variation of 4 18 a mo-
notone, additive function on &. Tt is evident that if B iy in &, then
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0| BI<KE |B[<+oo. If Y is the scalar field, then the finiteness of 2
implies that of | B, but for a general space it is possible that [lBf|< oo while
|B|=4-oc. (For an example, see [15], p. 2587). It is for this reason that
we prefer to work with the semi-variation rather than the variation.
If u is countably additive, then the fact that S¢S leads to the conclu-
sion that [|S]| is finite, but this does not follow in the additive cage.

It is technically convenient to extend the definition of [lw]l and |u|
to arbitrary subsets of 8. We do this as follows: if 4 ig an arbitrary sub-

© set of §, then ||4]l=||u||(4) is defined to be inf{]lE[[:Ee@,ACE}. We may

extend |u| similarly. It is easily seen that the extension of ||| agrees
with its former value on & and is a monotone, subadditive function on
the collection of all subsets of §.

We say that a subset 4 of § is a u-null set?) if |4]=0, . e. if for
every ¢>0 there is an ¥ in & such that ACE and ||E|l<e. We say that
a proposition holds u-almost everywhere if it holds outside of a null set.

A p-stmple function is a function f: §—+X which assumes only a fi-
nite number of values z;,4=1,...,n, each non-zero value x; being taken
on a set E; in © with |B;||<co. Such a function may be represented as
a linear combination of characteristic functions; thus

(*) f= D oiim, Bie®,

=1

where gy denotes the characteristic function of the set E. If f is a funetion
and M>0, then f™ denotes the M-truncation of f and is defined by

, 1(s), it (e <M,
M —_
)= I;((Z;l M, i |fs) =M.

It will be noted that f is a simple function if f is. '
If fis a simple function with representation given by (*) and if E
is in &, we define the integral of f over E to be

n
[#(s)uids)= > w;u(B~By).
I i=1
The reader will observe that the integral of a simple fUFG.f:i.OIl is in-
dependent of the representation of the form (*) in its deflmtlfm. We
omit the proof of this statement and of the following lemma which will

" be used repeatedly:

?) Subsequently, if confusion does not threaten, we will ordinarily omit explicit

mention of the measure. . s
22%
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Lemma 1. Lt u be an additive function on St Y.

(a) For each fized B in S, the integral over E s a linear mapping
defined on the linear space of simple functions on 8 to X, and has values
n Z.

(b} For each fived simple funciion, the integral is an additive function
on . -

(¢) If f is a simple fundiion and [f(8)|<M for all s in BeS, then

| [H)(ds) | < 2.
F

9. Measurable functions. In extending the notion of integral to
a larger class of functions we need the concepts of convergence in measure
and of measurable function. A sequence {fn} of functions on S to X
is said to comverge in p-measure to a function f if [(S,n,e)|>0 as
n->oco for each &> 0, where we have put (8,n,s) = {se8:|fn (8)—1(5)] >a}.
A similar definition can be given for a sequence of functions to be fun-
damental in measure. We say that a function is u-measurable®) if it si
$he limit in measure of a sequence of simple functions. It is not difficult
o show that the collection of all measurable functions on § to X is a li-
near space which is closed under the operation of convergence in measure
of sequences. We also omit the demonstration that if f is a measurable
funetion, then there exists a sequence {4,} of subsets of § with |l 4y,]l<oco
o0
and such that f vanishes outside of |JA4,.
=1
A sequence |f,] of functions is said to be w-almost wniformly con-
vergent to a function f on § if for every >0 there is a subset A, of 8
such that [4,]<e and the convergence to f is uniform on §-—A4,.

LueMMA 2. Let u be an additive function on & to Y.

(a) w-almost uniform convergence mplies CONVErgence in |-MeEaSUre
to the same function.

(b) p-almost uniform convergence implies p-almost everywhere con-
vergence to the same function.

The demonstration requires only trivial modifications in the usual
proofs (cf. [18], p. 92, 89). .

3. The general integral. We are now prepared to introduce the
general integral and show that it possesses at least some of the proper-
ties usually associated with a Lebesgue theory of integration. Through-
out this section x is an additive function on & to Y.

3) This notion of measurability is somewhat more restrictive than that employed
by some authors, but it is sufficient for the purposes of integration.

©
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Definition 1. A function f on § to X is said to be u-integrable
over S if there is a sequence { f,,} of simple functions on § to X satisfying
the conditions:

(i) the sequence {f,} converges in measure to f;

(ii) the sequence {4,} of indefinite integrals

In(B)= [fo()u(ds), BeS,
B

has the property that given any >0 there is a >0 such that if F is
in © and ||B|| <4, then |A,(B)| <e, n=1,2,...;

(iii) the sequence {4,} has the property that given any &> 0 there
is a set K, in & with ||E,|<co and such that if G is in & and GCS—E,,
then |4, (G)|<e, n=1,2,...

We remark that condition (iii) is trivially satisfied in case ||§]<<co,
but otherwise it is important. Condition (i) is frequently described by
saying that the sequence {2,,} is uniformly absolutely continuous with res-
pect to [|ull, and (iii) by saying that {2,,} i8 equicontinuous with respect
0 [ull. In the case that X and Y are the spaces of scalars a definition of
this sort has been employed by Riesz [26] and Graves [17] to lead to a sim-
ple and rapid development of integration theory. Hildebrandt ([21],
p. 117) reports that he employed a similar approach in an unpublished
paper [19] dealing with the integration of vector-valued functions with
regpect to a scalar measure.

TEEOREM 1. If f is integrable over S in the sense of definition 1, then
for each B in S the Uimit of the indefinite integrals emisis in the norm
of Z. This limit is denoted by A(E) or by

. [ Hs)p(ds),
E

and is called the value of the indefinite integral & at E, or the integral of
over the set B. In addition, the limit

MB)=lim 2, (E)

N 00

exists in the norm of Z uniformly for B in &.

Proof. Let ¢>0 be given and take § as in condition (ii) and E°
with ||B,|s£0 as in (iii). By (i) there exists an integer ¥, such that if m
and n are any fixed integers larger than N,, then there is a set FeS with
7| <é such that if seF then |f,,(s)—7n(s)| < e/l Bl


GUEST


342 R. G. Bartle

Now if He® is arbitrary, then we have from the above and Lem-
ma 1 that

o (B) — 2 (B)| < (BT 41 (BAT) |+
i [B—(FO B+ 10 [E—(FUB,)]| +
. + U [(B—=F) nB,1= 4 [(B—F) L]
<etetetet| [ () —fu(e)) u(ds)|<det(e/IB ) (B—F)~B|<Se.

(E—F)~Es
This proves the existence and the uniformity of the limit.

The fact that the integral is independent of the sequence of simple
functions used to define it is readily shown and will be omitted. It will
also be clear what is meant for a function to be integrable over a subset
F in .

) 'J:‘HZEOREM 2. (a) If E is in S, the set of functions integrable over B
8 a linear space and the integral over E is a linear mapping of this space
into Z.

(b) If f is integrable over 8, the integral of f is an additive fundtion
on the field S. )

(¢) If f is integrable over S, then

1i =
lim Ef () u(ds) =0.

(d) If f is integrable over S, then given any >0 there is a set E, in
& such that if G is in S and GCS—E, then

| [1(s)n(ds)| <e.
Q

We omit a detailed proof of this theorem. Properties (a) and (b)
r?qmre“Lemma. . 1 and properties (c) and (d) are consequences od defini-
tion 1 (ii) and (iii) and the uniformity of the limit established in Theorem 1.

We say that a funetion f on § to X is u-essential
ot ATy A u-essentially bounded on a sub-

inf sup |f(s)|<oe,
N sed—N

where the infimum is taken over all null sets N . ‘ :
for this number. - o N. We wiite es::jup @)

THEOREM 3. An essentially bounded meas jon 18 ¢
2 wrable funct
over any set B in © with ||B}<oco. : fumation & iniegrebie

icm
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Proof. Let
M, = ess sup |f(s)],
8¢l

and suppose that the sequence {f,} of simple functions converges in mea-
gure to f. Let M=2+M,, then there exists a null seb B such that
{seB: |f(3)| > M;+1}CB, and hence {seE: |f,(s)|>M|CBy(E,n,1).
Therefore, for the sequence of truncated simple functions {ﬂ,"}, we have

(o5 [24(6) =7 (8)] > 2] s B: 2 (5)— o) e} o By, 6)
CBu (B,n,1) o (Byn,e), |

and so {f2) converges in measure to f on B. Hence we may and do assume
that the sequence {f.n} is uniformly bounded; from Lemma 1(¢) it follows
that definition 1 (i) is satisfied. Since (iil) is automatic for [B]<co,
we conclude that f is integrable over E.

TamoREM 4. If | ¢s measurable and essentially bounded on a set E in
S with ||B|<oo, then

| [ 16 )| < fess sup f(s) } 1.
b fe

This wag given for a simple function in Lemma 1 (¢c). The general
case follows from a slight vefinement of the argument in the first part
of the preceding theorem and from theorem 1.

‘We now prove a theorem which, in the case of scalars, is essentially
diue to G- Vitali. It derives its importance from the fact that it is a key
to the interchange of limits and integration.

TEEOREM 5 (VITALI CONVERGENCE THEOREM). Let f be a function
on § to X and let {f,} be a sequence of integrable functions which are such
that

(i) " the sequence {f,,} converges in measure 0 f;

(i) the sequemce of indefinite integrals is uniformly absolutely conti-
nuous with respect to ||ull;

(iii) the indefinite integrals are equicontinuous with respect to Il
Then it follows that f is an integrable fumction and that

[#(s)u(ds) =lim [ f,(s) u(ds), He&.
E Lsaad -}

Furthermore, the limit is uniform for E in S.
Proof. We shall first prove the integrability of {. Since f, possesses
this property, definition 1 implies that there is a gimple function g, such
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that [{seS:]f,(8)—g,(s)|=2""}|<2™" From the uniformity of the limit
in theorem 1, we may also suppose that g, is selected such that

*) 2 (B) =2 (B)] <27",  EeG,

where we have put 4, and 1, for the indefinite integrals of f, and g, re-
spectively. Suppose that such a simple function g, has been chosen for
n=1,2,... Since

{86119, (s)— ()| >2e} C {6 S:1g, (8) —F ()1 226 {8 €8 1, (8) =7 (5)| =)
it follows that {g,} converges in measure to f. Also, since
(**) 7 (E) < |2, (B)| 427",  EeG,

it follows that eondition (ii) of definition 1 is satisfied for the sequence
{9,)- Condition (iii) of that definition for the sequence {g,} is a conse-
quence of hypothesis (iii), the inequality (**) and the fact that a finite
number of simple functions vanish outside of a set of finite ||u|-measure.
Hence f is integrable. We conclude from theorem 1 that

[1(5) u(ds) = tim 4,(B),
® Nn—>00

and that this convergence is uniform on &. Applying (*), the statement
is proved.

In the cases when either X or Y is the scalar field, the integrability
of a funetion g implies that of the function |g(-)|. Further, in these cases,
one may ordinarily use the Vitali Convergence theorem to derive a re-
sult generalizing the Lebesgue Dominated Convergence theorem. In the
case ab hand, these remarks are not true, in general, ag we shall show.

Examples. (a) Let X= Y=real Euclidean three-space, with the
usual inner product, and let 8,6, and 6, be the unit coordinate vectors.
Let 2 be Lebesgue measure on § = [0,1] and let u(B)=A({E)5,. It is easy
to see that the function g(s)=s"14, is u-integrable and itis* integral over
any measurable set is zero. However, the function |g(-)| is not integrable.

(b) Let 8,X,Y,u, and g be as in (a). If f,(s)=s"2¢/™ 5, then {f,)
is a sequence of integrable functions with Ifo(8)<|g(s)] and such thab
{fn} converges almost everywhere and in meagure to fo(s)=8""6;. Since
fo is not integrable, the wsual formulation of the Lebesgne Dominated
Convergence theorem does not hold, in general.

(c) Let 8,X,Y, and u be as in (a). Let by, (8)=18, and hy(s)=14;,
80 each h, is integrable and

[ ho(s)(ds) =Tim [ B, (s)(ds) =0
E n—>co g

icm
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wniformly for E in &. Condititions (i) and (iii) of the Vitali Convergence
theorem are satisfied, but {h,} does not converge at any point to hy and
not in measure. Thus the converse of the Vitali theorem fails.

Despite (b), a slight alteration in statement renders valid a form
of the Dominated Convergence theorem.

THEOREM 6 (DOMINATED CONVERGENCE THEOREM). Let {f,) be a
sequence of integrable functions on 8 to X which converges in'meas.wr.e to
o function f. If there exists am integrable function g such that if B is in S
and n=1,2,..., then

| [fnto)ntds)| <| [ g(6)ids)],
B E
then we may conclude that | is integrable on S and
[]‘(s)/:,(ds)=1imffﬂ(s),u(ds), EeG,
B n—o0

Proof. It follows from theorem 2(c) that condition (ij). of theorem 5
is satistied, and from 2(d) thab (iii) is. Therefore the Vitali theorem may

be applied. -
A weaker, but somewhat more convenient, result follows:

TaroREM 7 (BOUNDED CONVERGENCE THEOREM). Le‘t {j,,} be a se-
quence of integrable functions on St X wh?ch converges in measure t.o f@
If |f ()M for almost all se8, then f is integrable over any set B in
with ||B|<oo and

[ 1(s) s(ds) = Hm. [ £, (s) e (ds).
i =00 7

Tn the theorem just stated and in the next one, the requirement
that |B|<oco cannot be dropped, as is easily seen. ‘ '

TeporeM 8. Let {f,} be a sequence of integrable functions 'w}.noé co?@;b
verge almost uniformly to f. Then f is integrable over any set E in S wit
|1 Bl << oo and .

[ #(s)(ds) =lim [ f,(s)u(ds).
B >0 Iy

This is an immediate consequence of theorem 5 once it i.s obse.rv.ed
that lemma 2(a) implies that condition (i) of that thec.)r.em is satisfied
and that the almost uniform convergence implies condition (ii).

4. The countably additive case. In the preceding section a theory
of integration was constructed under the assumption that the .measuiielg
was merely finitely additive. In this gection we suppose that Sisa o-fie
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and that u is countably additive in the sense that if {F,} is a disjoint se-
quence in S, then

where the series converges unconditionally in the norm of ¥. Under this
restriction we can prove that if f: §—X is integrable, then the indefinite
integral of f is a countably additive set function on Sto Z. If f is g
simple function this conclusion follows immediately from the countable
.additivity of p; in the general case it follows from the definition of
the integral and the uniformity of the convergence established in
theorem 1. ’ ‘

Ordinarily the countable additivity of the meagure ingsures that the
requirement of convergence in measure — made frequently throughout
section 3 — can be replaced by almost everywhere convergence. We
have not been able to demonstrate thiz without further restrictions.
Fortunately these restrictions are frequently automatic.

Definition 2. We say that a countably additive measure u defi-
ned on a o-field @ to XY has the *-property (with respect to X) if there
is a non-negative finite-valued countably additive measure » on &
such that »(E)—0 if and only if ||B||=||u||(¥)—>0. When we are assuming
this we will mark the theorems with an asterisk, and employ terms such
as the “*-integral”.

The *-property is available under a variety of circumstances: (a) if
y*u is a finite countably additive scalar-valued measure for each y*e ¥*,
it is seen in [3] that x has the *-property with regpect to the scalar field,
(b) if u is scalar-valued, or (c) if 4 has a finite variation in the sense of
section 1, then x has the *-property with respect to any Banach space X.
It is not difficult to show from a theorem of Saks [27], that if u has the
*-property, then [|§||<co. In addition, |ju|| is countably subadditive on
subsetis of 8. We shall use these two facts freely.

(*) Levwa 3. (a) If a sequence {f,} of functions on 8 to X conver-
ges in p-measure to a function f, then some subsequence comverges u-almost
uniformly to f.

(b) If a sequence {fﬂ} converges u-almost everywhere to f, then it con-
verges u-almost uniformly to f.

Proof. Statement (a) is proved precisely as in the usual case (ef.
[18], p. 93). To prove (b), let ¢>0 and take Hye¢S such that ||H||<s and
a(8)~>f(s) for all seE,. Let 6=5(c)>0 be such that if BeS and v(B)<9
then ||E]<e. By the standard proof of the theorem of Egoroff (cf. [18],
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p. 88) which is valid for vector-valued functions, we conclude that there
is a set FyeS with »(B,)<d such that {f,} converges to f uniformly on
8 — (ByuBy). But ||ByoByl|<2e, and so {f,} converges p-almost uniformly
to f.

Thus we conclude that if u has the *-property, then a function is
measurable if and only if it is the limit almost everywhere of a sequence
of gimple funections. Further, the family of measurable funections is closed
under the operation of almost everywhere convergence of sequences.
We now show that integrability takes a simpler, though equivalent,
form.

(*) TEHROREM 9. A function f on 8 to X is integrable if and only if
there ewists a sequence {fn} of simple functions such that

(i) the sequence {f,} comverges to f almost everywhere;

(i) the sequence |A,} of indefinite integrals converges in the norm of
Z for each E in ©.

Proof. Let 7 satisfy the hypotheses of definition 1. Lemmas 3(a)
and 2(b) imply that some subsequence converges almost everywhere,
and from theorem 1 we conclude that the corresponding subsequence
of indefinite integrals converges for each Ee®. Conversely, if {fn} satisfies
the present hypotheses, then by lemmas 3(b) and 2(a), the sequence
{f,} converges in measure. Since |§]|<oo, it suffices to establish condi-
tion (ii) of definition 1. To do this we use Lemma 1(c) and definition 2

to observe that for each n=1,2,..., we have
(+) lim 4, (E) =0.
WE)—»0

Furthermore, by hypothesis (i) we have that the funetion A on & to Z
defined by
A(B) =im 3,,(E),
n—-oo

exists for each E in &. It follows from the well-known Vitali-Hahn-Saks
theorem (cf. [27]), which is valid for countably additive functions with
values in a Banach space, that the convergence in (4) is uniform in 7.
Thus definition 1(ii) is verified.

Because of its importance, we explicitly restate theorem 5 in a form
appropriate for measures with the *-property.

(*) TesorEM 10. If {fn} is a sequence of integrable functions which
are such that

(i) the sequence {fn} comwerges almost everywhere to 13
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(i) given e>0 there is a 6>>0 such that if B is in S and ||B||<<é, then
u}‘n(s)u(ds).<e, n=1,2,..;

then we may conclude that f is integrable on S and

[ () u(ds) =Lim [ f(s)u(ds),
E

Nes00 77
uniformly for B in €.

Corresponding replacementi of almost everywhere convergence by
convergence in measure is possible in theorems 6 and 7.

5. Relations with other integrals. Since there are already many
abstract integrals, it is proper that we indicate the connection between
them and the integrals in sections 3 and 4. For a very readable account
of abstract integration the reader should consult Hildebrandt [21]. In
most cases studied in the past, u is countably additive, so unless explicit
mention to the contrary is indicated, we shall assume this condition.
Also, for simplicity, we shall consider only the case of finite measure,

Scalar functions; scalar measure

If X, Y and Z are all the field of scalars, then it is clear that if
a function is Lebesgue-integrable, then it is *-integrable, and conversely.
Hence the *-integral reduces to the Lebesgue integral in this case.

Independently, Hildebrandt [20] and Fichtenholz and Kantoro-
viteh [13] employed an integral for bounded functions with respect to
a measure with finite variation which was assumed to be finitely addi-
tive. It is readily verified that the integral of section 3, with X, Y, and
Z taken as the scalars, includes this integral.

Vector functions; scalar measure

The first abstract integral was studied by Graves [16] and was of
the Riemann type. However, it is not subsumed in our discussion,
since a Graves-integrable function need not be almost separably-valued
([11], p. 166)%). If it is, then it is *-integrable to the same value.

Probably the most frequently-used abstract integral is that intro-
duced by Bochner [5], and also studied by Dunford [8] and Hildebrandt

. %) It may be seen that if 4 is countably additive, then any function integrable
in the sense of section 3 is essentially separably-valued.
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[19] (ct. [21], p. 117). Tt may be seen that any funetion which is Bochner-
-integrable is *-integrable to the same value. This follows very readily
from [21] (p.117-118) or from theorem 9 and the definition employed
by Dunford [8]. However, there are functions which are *-integrable
but not Bochner-integrable ([4], p. 377).

Dunford [9] introduced an integral (the second Dunford integral)
by declaring a funetion f on § to X to be integrable with respect to a fi-
nite positive measure x if it satisfies the hypothesis of theorem 9. Thus
the *-integral contains this Dunford integral, and therefore. ([21], p. 123)
it coineides for measurable functions with the integrals of Birkhoff [4]
and of Gelfand [14] and Pettis [22]. Birkhoff’s integral is more gen-
eral than the *-integral, however, since it also integrates certain multi-
ply-valued functions. The Gelfand-Pettis integral is more general than
the *-integral in that it does not require the integrable function to be
essentially contained in a separable manifold. The convergence theorems
presented here compare favorably with those in [4] and [22]. Again,
the Phillips integral [23] includes this case of the *.integral, since it is
defined for functions with values in a locally convex topological
linear space and includes both the Birkhoff and Gelfand-Pettis in-
tegrals.

The only extensive development of a finitely additive integral in
the spirit presented here that is known to the writer is due to Dunford
and Schwartz [12]. While the approach is different, it may be seen that
if 4 is a scalar measure, the integral of section 3 contains the Dunford-
-Schwartz integral.

Scalar functions; vector measure

Integrals of the Riemann type which allow one to integrate scalar-
_valued continuous functions with respect to a vector-valued measure
have been treated by Dunford ([11], p.312). In the generality treated
in [11], they are subsumed here.

Alexiewicz [1] employed an integral of a bounded function with
respect to a finitely additive measure with values in an F-space. The
discussion is close to the treatment in Fichtenholz and Kantorovitch
[13] and the Banach space case of this integral is included in the results

of gection 3.

A Lebesgne-type theory of integration for unbounded functions
with respect to a countably additive measure was presented by Bartle,

. Dunford and Schwartz [3]. It follows from theorem 9 that the *.integral

containg this theory.
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Vector functions; vector measure

The first integral of this sort known to the writer is due to Gowurin
[15]. It is of the Riemann type and the discussion is almost entirely
limited to bounded functions. A convergence theorem along the lines
of theorem 8 is presented. Section 3 contains and extends the Gowurin
theory. Similar Riemann integrals and their extensions were defined
and employed by Bochner and Taylor [6] — they were only incidentally
concerned with the development of an integration theory, however.

The first Lebesgue theory in the bilinear case was presented by
Price [24] and ik along the lines of the Birkhoff integral. Insofar as it
permits the integration of multiply-valued functions it is more general
than the *-integral. In the Price integral, X=2 and the meagure u i3
a function on a o-field to the space of bounded linear operators in the
space X, and such that (a) if BCE,eS and u(H)=0, then u(E)=0;
(b) if u(E) 50, then x(¥) has a bounded inverse; and (c) 4 is countably ad-
ditive. The portion of Price’s paper most clogely related to the present
one is Part IV ([24], p. 25-34); here he shows that bounded measurable
functions are integrable in his senge and obtaing a bounded convergence
theorem of the same sort as theorem 7. Unbounded functions are inte-
grated (cf. [24], p.32-34) only when u has finite variation, and here
Price obtaing a dominated convergence theorem. It is seen, then, that
the results of this part of [24] are contained in what we have done.

We now turn to the remarkable Rickart integral [25]; we are con-
cerned primarily with his bilinear integral ([25], p.511-519). This in-
tegral is more general than ours in that it permits the integration of mul-
tiply-valued functions in a locally convex linear topological space. On
the other hand it is countably additive and requires ([25], p. 518) that
it BC HoeS and o (By)=0 for all zeX, then zu(B)=0, e X. Nevertheless,
Rickart obtains theorems related to theorems 3 and 10. Direct com-
parisons between the Rickart integral and the one presented here are dif-
ficult due to the radically different nature of these integrals. It is clear
however, that neither definitely contains the other. ) y

In [7], Day treated the case where X =2 and u is defined on a o-field
S with values in the space of bounded operators in X. In much of [7]
(p- 596-603), it is assumed that ; is countably additive, but in a sense
appropriate to the strong operator topology rather than in the uniform
operator topology as in section 4. The possibility of integrating bounded
measurable functions is shown, as is a theorem of the bounded conver-
gence type. In addition, the permutability of the integral and a bounded

linear operator is discussed. Except for the last result, section 3 extends
these results to some extent.

©
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Zum distributiven Gesetz der reellen Zahlen
von

S. GOLAB (Krakéw)

Im Jahre 1952 habe ich im Zusammenhange mit einem Problem aus
der Algebra der geometrischen Objekte (vgl. [4]) die Frage gestellt, welche
(mbglichst schwache) Voraussetzungen tiiber die Funktionen f und ¢
in der Gleichung des distributiven Gesetzes

(1) g[f(@,y),2]1=F[g(%,2),9(¥,2)]

hinreichend sind, um die Folgerung zu ziehen, da8 f und g einen Auto-
morphismus inbezug auf die Addition und Multiplikation im Bereiche
der reellen. Zahlen bilden.

Die gestellte Frage habe ich beantwortet. Die Lisung habe ich im
Jahre 1953 Herrn J. Fo¢ schriftlich mitgeteilt und im Jahre 1954 habe
ich sie in polnischer Sprache verdffentlicht [2].

Tm Jahre 1953 ist eine Arbeit von Herrn M. Hossztt [3] erschienen,
die unter gewissen Regularitdtsannahmen itber die Funktionen f und g
eine allgemeine Losung der Gleichung (1) gibt.

Da tnein Satz inzwischen eine Anwendung in der Wahrscheinlichkeits-
rechnung gefunden hat [1], da zweitens die Zeitschrift, in welcher mein
Ergebnis erschienen ist, schwer zuginglich ist, und da letztens es gelun-
gen ist eine der Voraussetzungen meines Satzes abzuschwichen, habe
ich mich entschlossen den Satz nochmals zu publizieren.

SATZ. Wenn die Funktionen f(z,y) und g(z,y) folgende Vorausse-
teungen erfillen: . B

1. sie sind reell und in der ganzen Ebene definiert;

II. sie gehdren auf der ganzen Bbene der Klasse C, an (d. h. sie besi-
teen stetige Ableitungen erster Ordmung) DN

1) Meine urspringliche Voraussetzung II war etwas stirker; sie lautete, daB
die Punktion g mit den ersten Ableitungen dg/0x, 9g/dy und auBerdem mit der zwei-
ten Ableitung §%¢/dxdy (auf einer gewissen Geraden) ausgestattet ist. Meiner Schil-
lerin U. Stono-Wrébelist es gelungen diese Voraussetzung abzuschwichen. Dadurch
habe ich die Beweismethode (in bezug auf die frithere) in zwei Punkten umindern
milssen.
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