Analytical characterization of a composed,
non-homogeneous Poisson process
. by
M. PISZ (Warszawa) and K. URBANIK (Wroctaw)

1 The non-homogeneous Poisson process has been dealt with by
Rényi [8], Prékopa [7], and Ryll-Nardzewski [9] and [10]. In the paper
[10] the non-homogeneous Poisson process, whose realizations are of
bounded variation, has been fully discussed. The aim of this paper is to
give by means of analytical methods a general formulation of a composed
non-homogeneous Poigson process.

L. Let us consider a stochastic process & defined in the closed time
interval [0,T]. We shall denote by & the inerement of & in the interval
I=[a,b], where 0<Ca<<b<T. Let Q(z,I) be a function of an interval,
given by the formulae
. P q
® Q=] Elr=ey for et

—P(¢r=w) for x>0,
We shall prove the following
THEEOREM. Let us assume that:
(i) & s a process with independent increments,

(i) llimP( £r=0)=1 (|I| denotes the length of the interval I).
-0

Then & is a composed Poisson process and the characteristic function
o(s,1) of & is given by the formula

(2) logp(s,]) = [ (¢*=—1)d, [ Q(,]).
A0 I

{ 1fr Q(»,J) denotes the Burkill integral of the function @ (w,I)).

The proof of the theorem will be preceeded by the proof of the fol-
lowing

LeMmmA. If assumptions (i) and (i) are satisfied, the wpper Burkill
integral of the function P(&;=£0) s findle.

Proof?). Let the interval I be the sum of non-overlapping inter-

1) In the proof of the lemma an idea of Kolmogorov is used ([51, p.56-57)-
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vals Ir,Ip,...,I, where the indices are so chosen that I, and I,
(k=1,2,...,m—1) have a common point. J; will denote the interval
obtained as the sum of Iy ,,...,I,.

Assumption (ii) implies the existence of such a §>0, that if |I]<S,
the relation.

(3) P(&#0)=1-P(&=0)<1/4
holds. Let us now assume that the considered interval I satisfies (3);

then, taking into account assumption (i), we obtain the following ine-
qualities:

Y

n

D P&, 0)P(£,=0)

-1

P(ér, = 0) SP(&5#0) <1/4,

=
1
-
5
-

» k-1 n k-1
N P, A 0)P(6,=0) [ | Plér,= 0) 2% Y P(&,0) [ [P(&1,= 0).
k=1 r=1 k=1 r=1
These inequalities imply
n1 k-1
N P(er#0)] [ P(er,=0) <1/3;
Ier=1 r=1
hence, taking into account formula (3), we obtain
n ) k-1
(8)  [[P(&,=0)>P(&=0)— 3 Per,#0) [ [ P(&,=0) >5/12.
t=1 k=1 r=1

This inequality, relation (3), in which I is replaced by Jy, and relation
(4) imply

5 n ’.’.1 k-1
ﬁgp(s,ﬂé 0) <%P(efk¢0)P(§Jk=O)QP(&;(» <1/4.

Thus for every division of the interval 7 with |I|<(é into I,,I,...,I, the
following inequality holds:

D g, #0) <4/5.

fr=21

We have thus obtained the following inequality for the upper Burkill
integral : :
(6) [Ples#0)<4fs  for  |II<O.
: T


GUEST


330 M. Fisz and K. Urbanik
Since the inequality

.'SI;EO P( f]k¢0
k=1

evidently holds, we find that the function P(&r# 0) is monotone increa-
ging. Consequently the upper Burkill integral

[P(&s#0)

N

is an additive function of an interval (ef. [6], p. 243, or [8], p. 16). From
the last velation and from (6) the assertion of the lemma is obtained.

Proof of the theorem. From assumptions (i) and (ii) it follows
(Doob [1], ITI, §4, VIIIL, § 7) that &; has an infinitely divisible distribu-
tion, having a characteristic function given by Lévy’s formula

ZIZ
oA

(M logg(s,) —iy(T)s— .

+ f( —1—>m6

where y(I) and ¢*(I) are constants, M (@,I) and N(»,I) are non-decrea-
sing functions (of the argument ) in the intervals (~o0,0) and (0,00)
respectively, and where the relations

s

iM(@,1)+ ( —1—
J i

)dN(as 1),

0 1
M(—o0,I)=N(c0,)=0,  [a*dM(z,I)+ [a"dN (z,])<oo
-1 0

hold.
As formula (7) depends only on values of functions M(xz,I) and

N (2,I) in continuity points, we shall consider these functions for = bemg
continuity points.

Now let the interval I be a sum of non-overlapping intervals I,
Ipaye . yInn. We shall denote by F,,, (x) the distribution function P(&g,, < @)
Assumptmn (ii) implies that for each ¢>0 the relation

max P(|éz,,| > &0
1hgn

holds as max|{l,|—>0. The following equality is thus evidently true:

1gk<sn

b= byt et b,
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Let us now observe that, according to a known theorem of Gnedenko
([2], § 26), the constant o*(I) and the funetions M(x,I) and N (z,I)
can be determined from the following formulae as max|I,;|->0:

1<k<n
n
(8 ) =lmlm Y| [ @dF(z)— , 2
(8) 1) = lim i’ g[llf () (Jﬂmdlﬂnk(w))],
n
(9) M(,I) =lim Y Fu(z) (2<0),
. N=00 Jr—1
[ !
(10) N(w, 1) =lim Y (Fyla)—1) (2> 0).
W00 pal

From formula (8) the inequality

(1) < lim & hmz (€7, % 0) < lim#? fP ;5;&0)

=04 n—o0 ] =04 T

is obtained, and thus — in virtue of the lemma — the equality
(11) A (I)=0
holds

Formulae (1), (9) and (10) imply that for x5~ 0 the function Q(z,I)
is integrable in the sense of Burkill and the equalities

(12) { 7 M(z,I) for x<0,
T Qo d)= for x>0.
From the inequality
(13) | S e n|< [P0 o a0,
i 1

from the lemma and from formula (12) it follows that the functions M (z,I)
and N (z,I) are of bounded variation (of the argument ). Thus, taking
into acecount formulae (11) and (12), we can write formula (7) in the fol-
lowing way:

(14) log (s, T) = ipo (D)3 + [ (6*°=1)d, [ @7},
. 20 I
where
€T
(15) ) =y(D— [ == ds Q)
e mil—{—m _;{
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For 7>0 such that —r and v are continuity points of M (x,I) and
N (x,I) respectively let us write ‘

o

0 3 T
y(, D) =y (D + f—ﬁ_—ﬂM(mJH—le av (@, I)—
J

o R
Y (. ,lef———vaNuI.
*f1+m2dM(w, ) , s WD)

Thus, taking into account formula (12), we get

]
@) D=y [ [0t [y [ew.
I I

> 0<|E|<T

In virtue of a theorem of Gnedenko (see [2], pp. 90, 91 and 132) the
following equality is obtained:

(17 im ) [ edFy(@)=y(z,I) for >0,
N0 =] x| <7
as max|l|—0.
1gk<sn

We get further from (13)

n

tim ) [ 0dFy (@) <t [ P& 0),
I

N0 p1 2| <T

| [ I—%dzlfcm,en[

0<zT

<] f@tr - [@0,0)] 2| [2(=0,0~ [@(—=.)|
I I by 1 .
<4rIfP(sJ¢ 0)

These relations and formulae (16) and (17) give the inequality
o -
z|> I I

In the same way the inequality

i%dwlfg(m,J)\<4rlf—P(fJ%0)

o<l
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ig obtained. Finally, from the last two relations and from formula (15)
the inequality .

yo(D) <97 [ P(&; #0)

I

follows; since v may be arbitrarily small this relation and the lemma imply
the equality y,(I)=0.

The assertion of the theorem follows at once from formula (14) and
from the last equality.

III. Remark. For 70 put

1) alo,) = tim LD
i

as I contracts to a fixed point t. Since for a fixed x5~ 0 the function of an
interval Q(x,I) is non-negative or mnon-positive (cf. the definition 1),
then, as Q (x,I) is integrable in the sense of Burkill, we find that it is a fune-
tion of restricted bounded variation (see [6], p. 246). Hence assumptions
(i) and (ii) imply that limit (18) exists almost everywhere and the func-
tion g(z,t) is integrable in the sense of Lebesgue with respect to ¢ (see
[67, p. 265, 2663 [3], p.17). Moreover the following equality holds:

[Q(@,0) = [ a(z,0dt+p(@, D),
I I

where x is for #50 a singular function of an interval (see [6], p. 265,
[4], D. 18). If the funetion @(x,I) is absolutely continuous, formula (2)
will take the form
logg(s,]) = [ (€~1)d,[ (@, ).
0 I

This remark (without proof) has been published in the Bulletin de
IAcad. Pol. des Sci., OL III, vol. III, 3, by the present authors. (There,
in theorem 1, the assumption that convergence (1) is uniform with respect
to z hag been omitted).

COROLLARIES. (o) In addition to (i) and (ii) let us assume that

(i) the increments & can assume only the values of a countable set
of real numbers 0,y ,@y,... (@7 0), which set is independent of the special
choice of I, :

Let

(19) W, (I) =P (& = ).
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We shall show that
2 [ Wald) for @<,

20 Qo) =] ==t
(20) If —ZIW“%(J) for «>0.
wye I
We shall prove (20) only for the case of 2<C0, gince in the case of
>0 the proof is quite similar.
TUsing the same notation as in the proof of the lemma, we get
from assumption (i) for x5~ 0 the inequality

n k-1
Pler=0)> Y Pleg, =) P(£5,=0) [ [ P(&,=0).
k=1 Pl

Heﬁce, taking into account formulae (3) and (5), we obtain for every
division I,,I,,...,I, of I such that |[I|<<¢ the inequality

5 n
P& =0) 5 ) Plén=2).

k=1
Finally, from assumption (iii) follows for »<C0
n ) ’n_‘ N n‘ o0
Nrg<a =Y YPlEn=a)< Y D Plen=0)+5 D Plé=a,)
=1 T <& k=1 r=1 k=1 PN
Tp<T

Let us now observe that in virtue of the lemma the upper Burkill
integrals .

Isz,(J) (r=1,2,...)

and the Burkill integral { Q(x,J) exist. Hence, taking into account (19),

we obtain for eaéh N, as max |I;| -0, the inequality
1<k<n

=11
Lp<®

As N oo, the last inequality implies the inequality

fewn< 3 [ Wal;

Ty<x I

N ~ oo
If Q@< D[ Wz,(J)+r§P(£z=m,>.

since the oppoéite inequality is evident, we get

[ewn= 3 [W..

2p<x I
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in the same way it can be shown that

[ Q@) =3 [We ().
I LB T
These two equalities give at once formula (20) for |I|<Cé and conse-
quently, the Burkill integral being an additive function, this formula
is true for arbitrary intervals I.
Then, in virtue of equality (20), formula (2) will take the form

log p(s, 1) = D) (¢ —1) [ We,(J).
Ki=1 I

This result has been obtained by Prékopa ([6], p.318).

(B) In addition to (i) and (ii) let us assume that the process is ho-
mogeneous, . e. thab

(iv) the distribution function P (&< m) depends only on |I| and .

From the assumed homogeneity it follows that limit (18) exists for
every ¢ (0<t<T) and does not depend on t. The convergence in (18) is
uniform with respect to t. Hence the limit

o QD)
Q(w)_&'ﬁr—{lo 1

‘(2 #£0)

exists and the equality
[Q@,) = g(@) |1

I

holds. In this case formula (2) will be of the form

logg(s,]) = |I| [ (¢*°—1)dg(@).
250
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A general bilinear vector integral
by

R. G. BARTLE (New Haven, Conn.)

Qince the time of the introduction of the Lebesgue integral, several
types of extensions and generalizations have been studied. We shall be
concerned with two such generalizations in the present paper.

The first extension is in the direction of integration when both the
function to be integrated and the measure take values in a relatively
general vector spacel). This paper considers the case that there is a con-
tinuous bilinear “multiplication” defined on the product of the vector
spaces in which the function and the measure take their values, the pro-
duct lying in a (possibly different) vector space. The integral discussed
here possesses many of the properties of the usual Lebesgue integral;
in particular, we show that the well-known Vitali and Bounded Conver-
gence theorems remain valid in this generality, while the natural exten-
sion of the Lebesgue Dominated Convergence theorem fails. The second
extension is in the direction of replacing the usual requirement of eoun-
table additivity of the measure by the assumption of finite additivity.
It was shown by Hildebrandt [20] and Fichtenholz and Kantoroviteh
[13] that this may be done for bounded functions, but some recent work
of Dunford and Schwartz [12] demonstrates that it is also possible for
unbounded functions, provided that almost everywhere convergence is
replaced by convergence in measure.

The structure of the present paper is as follows: sections 1 and 2 in-
troduce the basic terminology and elementary properties; gection 3,
the principal section, develops the general integral with respect to an addi-
five set function. In section 4 the assumption of countable additivity
is imposed and the main results of section 3 are recast in this light. Finally,
in seetion § comparisons are made with other integrals. It is found that
certain cases of the countably additive -integral presented here reduce
to (a) the Lebesgue integral, (b) the second Dunford [9] integral of vector
functions with respect to a scalar measure (which includes the Bochner

1) Such integrals arise naturally in the definition of the concept of work, and
in Ampdre’s law. )
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