Linear functionals over the space of functions
continuous in an open interval
by
J. MUSIELAK and W. ORLICZ (Poznat)

1. Let C{a,b> be the Banach space of functions z(f) continuous
in the closed interval {a,b> with the norm
sup |2 (t)]
<aby
and C(a,b) the Banach space of functions #(#) continuous and bounded
in the open interval (a,b) with the norm

ljell = sup [2(2)].
(ab) -

Let us fix two sequences i,) a and t'' 45 such thattj<t'. We write

lalla= sup la(e)l, e =3 Sl dle,)=la—yl"

nn N=1
Then the set of all continuous funetions whose absolute value does
not exceed 1 in (a,b) formg, with the distance d(x,y), a Saks space ([4],
D. 240). We shall denote this space by K,(a,b). In these definitions of
spaces C(a,b) and K,(a,b) the values a and b may also be infinite.
The object of our note is to establish the general form of a linear
functional over the space K,(a,b) an to investigate the convergence
conditions for sequences of such functionals. The functional £ over
K,(a,b) is called linear if it is continwous with respect to the distance
d(z,y) and if for every real i;,2, the conditions @,,a,,4,2; 44,2, K, (a,b)
tmply &(hLg +2Aa2,) =4 &(2)) 43, & (@) .

In the space O(a,b) we can introduce the definition of the limit .

in the following way. The sequence {m,,} will be called (4)- oom)ergem to
if the functions a,(f) are uniformly bounded and [z, —x|*~0, i. e. @ (1)
—x(t) almost uniformly in (a,b). One can easily prove that for each linear
functional ‘& over K, (a,b) there exists a uniquely determined functional i
over C(a,b) linear with respect to the (I)-convergence and such that,
for every xeK,(a,b), n(x)=E&(x). We have llell” < lloc]l, Whence the fun-
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ctional 9 is also linear over O(a,b) with respect to {jzf. Thus we see that for
each linear functional & over K,(a,b) there exists a uniquely determined
linear functional # over C(a,b) such that ()= &(x) for weK(a,b).
For the purposes of our note we point out the difference between
the variation of a function in an open interval and in a closed one.
As the variation var y(¢) of the function defined in the open interval

(ab)
(a,b) we shall introduce the limit

Lim var y(t)
&0 (atebh—ed

if & and b are finite and the limit

lim var y(t)
et (/s 1/ey '
for a=—o0, b=oo. In a similar way we define variation in intervals

which are infinite on one side. This definition is obviously equivalent
to the following one. We take a partition = of the interval (a,b)

< < < <y <
and write

(_p—>a, t,—b as n—oc),

+oo0
m}'y(t)=sup_2 lyte) — ¥ (ta_d)l.

For sequences of uniformly bounded funections y,(¢) with uniformly
bounded variations in (a,b), the well known theorem of Helly on extract-
ing of subsequences remains true.

The variations in the open interval (@,b) and the closed one (a,b)
are connected by the following formula:

vary(t)= T(zam 1)+ |y (a)— y(a+ 0)|+ |y (B)—y (b—0)[,

<a,b>

a,b and vary(t) being finite.
{a,b)
We shall denote the Stieltjes integral in the eclassical sense, ¢.e. in
a closed interval {a@,b), by

b
Ja(t)dy(t)

and the Stieltjes integral in an open interval (a,b) by

b— b5y .
1) Je@®dy(ty= lm [ =()dy() .
© et &1,89—>0+ Gty
if @ and b are finite and by
too +1fen
Jx@®dy)= lim [ a(t)dy(t)
—eo £,60—0 —1/g

if they are infinite.
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In a similar way we define the Stieltjes integral in intervals infi-
nite on one side.

Assuming that z(¢) is continuous on the right in @ and continuous
on the left in b and that there exist limits y(¢-+0), y(6—0) and the in-
tegral (1), we have

b b-

2) [o)dy @)= [ x(t)dy(t)+2(®)y)—yb— 0))— @ (a) [y (@) —y(a+0)].
at

a

If #(f) is continuous and bounded in (a,b) and \(fa;l)‘;l/(t)<oo, then
«,b)

there exists the integral (1) and

bh—

L] w()dy()
a+

< sup e ()| vary (t).
(@b @b)

Tor Stieltjes integrals in an open interval the following theorem of
Helly is true:
If the functions y,(t) satisfy the following conditions:
(x) sup vary,(t) <oo, ’
n  (ab)
(B) for every e>0 there exist numbers b1,05¢ (a,b) such that for each n

var y,(t) <e and  var y,(H)<s,
(a,81) (32,0)

(y) there emists o Timit Him y,(8)=y () in (a,b),
N—>c0

then the function y(t) is of bounded variation n (a,b) and

— b—
lm [ o) dy,()= [ 20y )
n—>00 o+ at+

for every fumction x(t) continuous and bounded in (@,b). The ends a, b of
the interval (a,b) may be finite or infinite.

We shall further need the following two known lemmata:

TEMMA 1. Tet us consider the class of continuous functions @(t), of
absolute value not exceeding 1 in (a,b), satisfying the following condition:
there exists a number 6>0 such that z(t)=0 for te(a,a+8)U (b—4,b).
If, for every function x(t) belonging to this class, we have

b
[ w®)dy ()= 0,
a+
the fumction y(t) being of bounded variation in (a,b), then there exists a
nuinber ¢ such that y(t)=c for every t at which y(i) is continuous on the
Tleft in (a,b).
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‘ Lemma 2. Let the functions y,(t) and y,(1) be of bounded variation
in (a,b) c.md let y1(t)=1y,(t) in a set dense in (a,b). Then, for every function
x(t) continuous and bounded in (a,b), we have

b (=
f’”(t)d?ll(t)zfx(t)dyz(t)-
a+ a+

2. THEOREM 1. The general form of a linear functional £ over K,(a,b) is
e
fa)= [ 2(W)dy (),
at
with y(t) satisfying the conditions:
(a) vary(t) < oo,
(a,0)
(b) y(¢) is continuous on the left in (a,b),
(©) Y(t)=0 (t is a fized point of the interval (t1,4')).

This represemtation is unigue, i.e. for every linear functional & over
Ky(a,b) there exists only one such function y (). The ends a, b of the in-
terval (a,b) may be finite or infinite.

Proof. The sufficiency of conditions (a)-(c) is clear and the uni-
queness follows from lemma 1.

Neces_sity. Let us extend the given linear functional & over K, (a,d)
to a funetional # over C({a,b) linear with respect to the (I)-convergence
and, for a given integer n, let ¢, denote a linear functional over C<t,,t, >
such that {,(x)=7(x) for every zeC(a,b) satisfying the condition
(3) wE)=0 for te(a,tl> ULL,b).

' T}len, by a theorem of Riesz, there exists a function 7, (t) of bounded
w_ra.rlatlon in {,t, >, continnous on the left in (%,,t,), and such that
Yu(ls)=0 (3, fixed) and that for every zeC(a,b) satisfying condition (3)
we have

P b—
n{®)= ‘:n(m)=tfw(t)d:'7n(t)= [ () dg, ().
i3 at

. We put here 7,(¢)=0 for te(a,t,) U (i, ,b).

Since n is an arbitrary integer, the application of lemma 1 gives
Tn () =Fnsa (t) for te (t,,2,)). If we pub y(t)=7,(t) for te (¢,,t,), we have
‘ "

(4) n(@)= [ o(t)dy(t)

at

for every weC(a,b) satisfying condition (3).
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Let us write o
y(t) for  te iyl

yat)=1y(n)  for te(a,tn),

gty for  te(ty,b).

Now we shall prove that lim var g, (t)<co. It suffices to notice that

n—oa (a,b)
sup f w(t)dy (1) =var y, (1)
zaEyab) (@)

The continuity on the left of ¥, (¢) implies the existence of a function
Z,(t) in C(a,b) satistying the following conditions: there exists a number
6,,>O such that 7,(t)=0 for te(a,a-+0,) U (b— 8,,0), |7, (1)< and

1

b
(@)1= J Z(t)dy ()] Var ya () — -7

Since the sequence |7(Z,)| is bounded,

var y (t)=lim vary,,(t) < oo.

(ab) n—oo (a,b)
Now, given zeC(a,b), let us take the continuous function

®(t) for tedlt,t,,
@, (t)=1 0 for te (a’$t1,u+1> U <t;w'+1a
linear in intervals (t,,1,%,) and (t,, AR

Then

b—
In(@n)— [ @
a+

b—

t)dy ( t)l«lf [ (8) — 2 () 1y (2)]

<2 suple(t)| [vary()+ vary(t)]—+0  as
(a,b) (a,t) (.9

On the other hand |jz,—a|'~>0, whence &(@,)—&(x). Since £(z,)=
=7(x,), We have
. .

E@)=[a()dy(t).
o+
Remark 1. The connection hetween the general form of a linear
functional over C{a,b> and K,(a,b) gives equality (2). Then, in the
subspace of functions z(t) in ((a,b> having the limits 2(a +0)=x(b—0)==
=0, the general form of & linear functional is given by (4). However,

icm

. Linear functionals 221

it is easily seen that in the space O(a,b) the general form of & linear
functional is not given by (4). Let us consider, in C(a,b), the subspace
of functions z(t) having the limit x(b—0) and let us define the linear fune-
tional f(x)=x(b—0) over this subspace. This funectional, extended to
O(a,b), cannot be written in the form (4).

Remark 2. It is easy to prove that the morm of a functional
in C(a,b) linear with respect to the (I)-convergence, given by formula (4),
is equal to

linll = vary (z),
(a,b)
the function y(f) satisfying the conditions (a)-(c)
Remark 3. Theorem 1 obviously implies the following necessary
and sufficient condition of weak convergence of a sequence =z, eK,(a,b)
to weKg(a,b): @,(t)—=x(t) for each te(a,b).

3. Now we shall prove the following theorem on the convergence
of sequences of linear functionals over K,(a,b), generalizing theorem 2
in [4], p. 213:
THEOREM 2. The sequence of linear functionals over Ky (a,b)
b—

[ a(t)dy, (),

at

n(@) =

Ya(t) satisfying the conditions (a)-
zeKg(a,b

(o) sup vary,(t) < oo,
7 (ab)

(c) of theorem 1, is convergent for every
) (hence for every xeC(a,b)) if and onla/ if

(B) for every &>0 there exist numbers &,,6,¢ (a,b) such that for each n

vary,(t)<e and vary,(t) <e,
(a,8) (22,0)

(y) there exists a function y(t) of bounded variation in (a,b) such that for
an arbitrary subsequence Y, (1) there exist an enumerable set A and
@ subsequence Yy, (t) convergent to y(t) for te(a,b) —A.

The conditions (a) (y) being satisfied, we have
= f

The ends a, b of the interval (a,b) may be finite or infinite.

Proof. Sufficiency. Applying (y) and Helly’s theorem, we extract
from an arbitrary subsequence ¥, (f) a subsequence y%(t)»y( (t)—
=y(t) in (a,b)—A, 4 being enumerable. By the conditions (&), (B)

(5) lim &, (x

n—>00

2(t)dy (t)
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can apply Helly’s theorem on Stieltjes integrals. We get

b—
tnfa) > [ 202703

hence, by lemma 2, .

£ (@) [T (DAY (),
a+
which proves the convergence and formula (5).
Necessity. The convergence of the sequence & (@) for ze K (a,b)
implies its convergence for all w0 (a,b). The Gonverger.xc'e of the sequence
of functionals u,(z)==E&,(2) over O (@,b) gives the condition SﬂI’HWU < o0,

i. e., by remark 2 to theorem 1, the condition («).
Now let us take an arbitrary sequence d,e(a,b), 810, and let us
consider in C(d,,d) a function x,(¢), |, (1) |<1, such that

b= 1

L f 0 (1) By ()] 2 VAT Y (1) — .

but (8n,) n

Choosing 6, <6, such that var g,(¢)<i/n and defining the con-
. Cbasbad

tinuous funection ‘
@, (t) for 1€ (8yyb),
T, (1) = 0 for te (a,0,),

linear in the interval {8y,6,,
we get

b— 9
|En(@) =| J Fald)dyn (0] > VB Y (t) =~
a+ [Ch) i
Since [|Z*—0, & ()0 ([4], p. 209, theorem B). Hence we have
get the second part of condition (B). The first part may be proved in a
gimilar way.
Now let two sequences of indices, {n;} and {m)}, be given. Applying
(«) and Helly’s extraction-theorem we find subsequences {n;} and {my,)
such that ynm(t)ey(t) and ym‘k(t)»y(t) in (a,b). This and the conver-
gence of the sequence &,(x) imply that for arbitrary zeK,(a,b) wehave
b— b—

[ @ dy )= [ o)y ().

at at+
Hence, by lemma 1, 7 (t)=y(t) at all points of the simultaneous continuity
of both functions, i.e. at (a,b)—A, A being enumerable. This proves
condition (y).
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Remark 1. Condition (y) can be replaced by others. Supposing that
(«) and (B) are satistied we easily get the equivalence of (y) to each of
the following conditions ([1], p. 148-155):

(y') the sequence y,(f) converges asymptotically in (a,b) to a funetion
y(t) of bounded variation in (a,bd);

(y'") there exists a function y(f) of bounded variation in (a,b) such
that

b
:im !lyn(t) —y(®)dt =0;

1rr

(y""") there exists a function y(f) of bounded variation in (a,b) such

that for each (a,B)C(a,b)

B B
lim [y, () dt = [y(t)dt.

Remark 2. If the functions y,(¢) are non-decreasing, condition (y) in
theorem 2 can be replaced by the following condition ([2]):

(v*V) there exists a non-decreasing function y(f) such that Yn (B)—=>y (£) at
all points of continuity of y(3) in (a,b).

It is clear that then the functions y(¢) and 7 (i) in the necessity part

of the proof of theorem 2 have the same points of continuity and dis-
continuity.

4. The problems considered above may be generalized. Instead of
the Banach space C(a,b) of functions continuous and bounded in an
open interval («,b) one can consider the Banach space C(§) of functions
«(t) continuous and bounded in a certain fixed open set @ with the norm
Il =sgp | (t)]. Let G =={J(a,,b,), the intervals (a,,b,) being disjoint, and

let us take for each integer » two fixed sequences t,, a, and t,, 1 b, such
that #;,<t;,. Putb

l[#lln, = sup |2(2)]

Sl >
and arrange the numbers ||z|,, in a sequence [lzl, |||;,... Writing
20
. 1
ol = ) 5 ol
n=1

we can define the Saks space K (@) in the same way as the space K,(a,b).
The suitable (I)-convergence in C(@) is equivalent to the uniform boun-
dedness and almost uniform convergence of the sequence x,(?).
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The general form of a linear funectional over K, (@) is

by—

Ez) =2 [ 2@t)dy ),

v a4t
where the functions v,(t) satisfy econditions (a)-(c) of theorem 1 and
> var y,(t) < oo.
v (an,b) .

One may also establish the convergence conditions for sequences
of functionals over K,(@). We shall formulate the following theorem,
coustituting a generalization of theorem 1 in [4], p. 210:

Let y,(t) be a sequence of functions of bounded variation in {a,b>,
continuous on the left in (a,b) and continuous at a fixzed point lye (a,b),
Yn(to)=0. Then the sequence ‘

b
J () dyn(t)

a
is comvergent for each function x(f) comtinuous and bounded in <a,t)J
U (f0yb> of and only if
(«) sup var y,(t)<oo,
n  {ab)

s

(B) for every £>0 there exists a number §>0 such that for each m

var 9y, () <e,
{to—d,to+ 8
(y) fthere ewists @ function y (i) of bounded variation in {a,b) such that,
for an arbitrary subsequence yy (), there exists an enumerable set A
and a subsequence yn‘h(t) convergent to y(t) for tela,b>—A.
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Le calcul opérationnel d’intervalle fini
par
J. MIKUSINSKI (Warszawa)

1. Dans un travail antérieur [2], j'ai introduit des opérateurs de
Heaviside comme des fractions f/g, ol f et g sont des fonctions conti-
nues dans lintervalle 0<¢t o et la ,,division’ est entendue comme 1’0pé-
ration inverse au produit de composition. J’ai montré que I’ensemble
de ces opérateurs est plus riche que celui fourni par la transformation
de Laplace, ce qui permet & de nouvelles applications, en particulier
dans le domaine des équations & dérivées partielles (cf. [4]).

" Une théorie analogue pour lintervalle fini 0<t<T est le sujet de
cet article. Ce calcul embrassera done par exemple la fonction {tg(2: /nT)}
(0<t<T), qui n’est susceptible d’aucune interprétation dans le calcul
opérationnel d’intervalle infini. Le nouveau calcul permettra d’obtenir,
dans la théorie des équations & dérivées partielles, des théorémes plus
forts, comme nous le verrons dans la suite.

Le caleul opérationnel d’intervalle infini peut parfois étre remplacé
par la transformation de Laplace,

£f = fe*ia,

lorsqu’on se borne & des fonetions transformables. Ceci est possible grice
au théoréme fondamental de Borel disant que le produit de composition
fg de deux fonctions f et g se transforme en produit ordinaire:

1) L(fg) = Lf Ly.

11 est cependant important de remarquer qu’une dualité pareille d’inter-
prétation est impossible pour le calcul opérationnel d’intervalle fini,
car la transformation finie

T
L£f = Jef(5)

ne jouit plus de la propriété (1). La transformation de Laplace ne peut
done servir de base pour le calcul opérationnel d’intervalle fini, méme
lorsqu’on se borne & des fonctions transformables.

Studla Mathematica XV 15


GUEST




