Sur quelques équations intégro-différentielles

par

J. MIKUSINSKI (Varsovie)

1. Supposons que les fonctions \(p(t) \) et \(q(t) \) soient continues dans l’intervalle \(0 \leq t \leq T \) et que l’une au moins des deux ne s’anulle pas identiquement dans le voisinage de \(t = 0 \). Supposons de plus qu’une fonction de deux variables \(z_1(t, r) \) soit continue sur le triangle

\[
\mathcal{T} = \left\{ 0 < \frac{r}{A} \leq \frac{t}{A} + \frac{T}{T} \leq 1 \right\},
\]

ainsi que sa dérivée partielle \(z_1(t, r) \). Ceci posé on a le théorème suivant:

Si \(z(x, t) \) satisfait à l’équation

\[
\int_0^T p(t - r) z_1(t, r) \, dr = \int_0^T q(t - r) z_2(t, r) \, dr,
\]

avec la condition initiale \(z(0, r) = 0 \) pour \(0 \leq r \leq T \) et \(z(\lambda, t) = 0 \) identiquement sur le triangle \(\mathcal{T} \).

Ce théorème, démontré dans un travail antérieur [1], subsiste lorsqu’on remplace l’équation (1) par une quelconque des équations suivantes:

\[
\begin{align*}
\int_0^T p(t - r) z_1(t, r) \, dr &= x(t, t), \\
\int_0^T q(t - r) z_2(t, r) \, dr &= z(t, t), \\
\int_0^T z(t - r) \, dr &= z(t, t).
\end{align*}
\]

(Dans les cas (2) et (3) la supposition que \(p(t) \) ou \(q(t) \) soit non identiquement nulle au voisinage de \(t = 0 \) devient superficiale.) Les démonstrations du théorème pour (2) et (3) sont analogues et n’exigent que des modifications évidentes. On peut, d’ailleurs, obtenir les théorèmes pour (2) et (3) directement du théorème précédent; en effet, en intégrant l’équation (2) par rapport à \(t \), on a

\[
\int_0^T p(t - r) \, dr = \int_0^T q(t - r) \, dr,
\]

où \(p_1(t) = \int_0^T p(t) \, dr \) et \(q_1(t) = \int_0^T q(t) \, dr \); pareillement, l’intégration de (3) conduit à la même équation (4) avec \(p_2(t) = \int_0^T p(t) \, dr \) et \(q_2(t) = \int_0^T q(t) \, dr \).

Le théorème précédent devient en général faux (voir l’exemple à la fin de [1]) lorsqu’on remplace le triangle \(\mathcal{T} \) par le rectangle

\[
\mathcal{R} = \left\{ 0 < \frac{r}{A} \leq t \leq T \right\}.
\]

Nous montrons cependant dans cette note qu’il reste vrai pour l’équation (3); de plus, il le reste encore pour les équations (1) et (2), si l’on impose aux fonctions \(p(t) \) et \(q(t) \) des restrictions convenables.

2. Supposons que les fonctions \(p(t) \) et \(q(t) \) soient sommables sur l’intervalle \([0, T]\). Supposons de plus que la fonction \(z_1(t) \) et sa dérivée \(z_2(t) \) soient continues sur \(\mathcal{R} \) et que \(z(0, t) = 0 \). Ceci posé, on a les théorèmes suivants:

(I) Si \(z_1(t) \) satisfait à l’équation (3), on a \(z(\lambda, t) = 0 \) identiquement sur \(\mathcal{R} \).

(II) Si \(p(t) \leq 0 \) et \(z_1(t) \) satisfait à l’équation (2), on a \(z(\lambda, t) = 0 \) identiquement sur \(\mathcal{R} \).

(III) Si \(p(t) > 0 \) et \(z_1(t) \) satisfait à l’équation (1) ou à l’équation (2), on a \(z(\lambda, t) = 0 \) identiquement sur \(\mathcal{R} \).

(IV) Si les fonctions \(p(t) \) et \(q(t) \) sont absolument continues sur \([0, T]\), \(p(t) \geq 0 \), et si \(z_1(t) \) satisfait à l’équation (1) ou à l’équation (2), on a \(z(\lambda, t) = 0 \) identiquement sur \(\mathcal{R} \).

La méthode de démonstration de ces théorèmes sera tout-à-fait différente de celle pour le triangle. Nous employerons cependant une modification de la méthode dont nous nous sommes servis pour démontrer la non-existence des fonctions \(e^{-\alpha \xi} \) (\(\alpha > 1 \)) du calcul opérationnel (voir [3], en particulier p. 215-218). En particulier nous nous appuyerons sur le lemme suivant:\n
1) Ce lemme est un corollaire immédiat du lemme 2 de l’article (3).
Le lemme. Si les fonctions \(f(t) \) et \(g(t) \) (réelles ou complexes) sont sommables dans l'intervalle \([0,T]\) et si
\[
h(t) = \int_0^t \frac{g(r)}{h(r)} dr,
\]
on a pour \(\sigma \geq 0 \)
\[
\left| \int_0^t e^{-\sigma f(t)} dt \int_0^t e^{-\sigma g(t)} g(t) dt - \int_0^t e^{-\sigma h(t)} h(t) dt \right| \leq e^{-\sigma t} \int_0^t \frac{f(t)}{h(t)} dt \int_0^t g(t) dt.
\]
Posons
\[
X(\lambda, \sigma) = \int_0^t e^{\lambda e^{\sigma h(t)}} dt,
Y(\lambda, \sigma) = \int_0^t e^{\lambda e^{\sigma h(t)}} dt,
P(\lambda, \sigma) = \int_0^t e^{-\lambda e^{\sigma g(t)}} dt,
Q(\lambda, \sigma) = \int_0^t e^{-\lambda e^{\sigma g(t)}} dt,
\]
où \(T(\lambda) \) est une fonction continue et décroissante sur l'intervalle \([0, A]\), dérivée dans \([0, A]\) et telle que \(T(0) = T, T(\lambda) = 0 \).

Multipions les équations (1), (2) et (3) par \(e^{\lambda e^{\sigma h(t)}} \) et intégrons les de 0 à \(T(\lambda) \). Grâce au lemme précédent, nous sommes conduits, pour \(\sigma \geq 0 \), à l'inégalité
\[
P(\lambda, \sigma) Y(\lambda, \sigma) - Q(\lambda, \sigma) X(\lambda, \sigma) \leq M(\lambda),
\]
où \(P(\lambda, \sigma) = 1 \) dans le cas de (3) et \(Q(\lambda, \sigma) = 1 \) dans le cas de (2); \(M(\lambda) \) est une fonction continue dans \([0, A]\), qui dépend pas de \(\sigma \).

Il est facile de vérifier que
\[
X(\lambda, \sigma) = T(\lambda) X(\lambda, \sigma) + Y(\lambda, \sigma);
\]
on a donc
\[
B(\lambda, \sigma)|X(\lambda, \sigma)| \leq M(\lambda) + |P(\lambda, \sigma)| |T(\lambda) X(\lambda, \sigma)| - Q(\lambda, \sigma),
\]
où \(B(\lambda, \sigma) = |P(\lambda, \sigma)| T(\lambda) + |Q(\lambda, \sigma)| \).

Soit \(\lambda_0, \sigma_0 \) un point quelconque à l'intérieur de \(\mathcal{C} \). Nous démontrons qu'il est possible, dans les conditions des théorèmes (I) et (II), de choisir la fonction \(T(\lambda) \) de manière que \(T(\lambda_0) > 0 \) et qu'il existe un nombre positif \(\sigma \) tel que
\[
B(\lambda, \sigma) > 1 \quad \text{pour} \quad \sigma > \sigma_0 \quad \text{et} \quad 0 \leq \lambda < \lambda_0.
\]

Dans le cas du théorème (I) choisissons \(T(\lambda) \) d'une manière quelconque, pourvu que \(T(\lambda_0) > 0 \) et \(-M < T(\lambda) < -\mu < 0 \) pour \(0 < \lambda < A \).

Alors on a \(B(\lambda, \sigma) > 0 \) - \(Q(\lambda, \sigma) \). Comme
\[
|Q(\lambda, \sigma)| \leq \int_0^t |q(t)| dt = Q,
\]
on a (6) pour \(\sigma_0 \) assez grand.
En vertu de (7) et (9) on a
\[
S(\lambda, \sigma) \leq \left(\frac{\sigma - q}{\sigma} \right)^{-1} < 1 \quad \text{pour} \quad \sigma > \sigma_0,
\]
pourvu que \(\sigma_0\) soit assez grand.

Fixons arbitrairement \(\sigma > \sigma_0\) et désignons, comme précédemment, par \(\lambda_0\) le point où le module de \(X(\lambda, \sigma)\) atteint son maximum. On a \(X(\lambda_0, \sigma) = 0\) et, par conséquent,
\[
|X(\lambda, \sigma)| \leq |X(\lambda_0, \sigma)| \leq M(\lambda_0) + |x(\lambda_0, T(\lambda_0))| \quad \text{pour} \quad \sigma > \sigma_0,
\]
ce qui conduit à l’inégalité (8).

En écrivant l’inégalité (8) explicitement,
\[
\int_\omega e^{\tau_0 - \psi(\lambda, t)} \, dt \leq N,
\]
on conclut d’après des théorèmes des moments (2) et (4) que \(x(\lambda, t) = 0\) identiquement dans le domaine \(0 \leq \lambda \leq \Lambda, \quad 0 \leq t \leq T(\lambda)\), qui contient en particulier le point \(\lambda_0\). Or, ce point a été fixé arbitrairement dans le rectangle \(\mathcal{R}\), on a donc \(x(\lambda, t) = 0\) dans \(\mathcal{R}\) et, en vertu de la continuité de \(x(\lambda, t)\), on a encore \(x(\lambda, t) = 0\) sur le rectangle \(\mathcal{R}\) avec sa frontière.

Les théorèmes (I), (II) et (III) se trouvent donc établis.

Occupons-nous enfin du théorème (IV). Alors il y a une fonction \(r(\tau)\) satisfaisant à l’équation
\[
\int_\tau^t p(t - \tau) r(\tau) \, d\tau = q(t).
\]
En effet, cette équation est équivalente avec l’équation dérivée
\[
p(0) r(t) + \int_0^t p'(t - \tau) r(\tau) \, d\tau = q'(t),
\]
dont la théorie est bien connue. D’après le théorème de Titchmarsh sur le produit de composition, on tire de (1)
\[
x(\lambda, t) = \int \tau \, d\tau x(\lambda, \tau) \quad (0 \leq \lambda \leq \Lambda, \quad 0 \leq t \leq T),
\]
ce qui nous ramène au cas du théorème (I).

Travaux cités