icm[©]

A linear completely continuous operator is already continuous; this follows immediately from the above lemma.

A closed linear subspace $N \subset X$ is said to be an *invariant subspace* of U if $U(N) \subset N$. N is a proper invariant subspace if $(0) \neq N \neq X$.

THEOREM. Let U be a linear completely continuous operator which maps the locally convex linear topological space X into itself. There exist proper invariant subspaces of U.

Proof. On the basis of the above lemma we construct an auxiliary Banach space as follows.

Let |x| be the pseudonorm chosen above. We divide the space X into classes and we say that x_1 and x_2 belong to the same class X if $|x_1-x_2|=0$. The set of all elements $x \in X$ such that |x|=0 constitutes the zero class. We denote by X^* the quotient space obtained, which is a linear normed space with the norm $|\mathfrak{x}|=|x|$. The transformation U defines a transformation $\mathfrak{y}=\mathfrak{U}(\mathfrak{x})$ in the space X^* , where $x \in \mathfrak{x}$, $y \in \mathfrak{y}$ and y = U(x). It follows from the lemma that \mathfrak{U} is a linear completely continuous transformation.

We denote by X' the completion of the space X^* . X' is a Banach space. The transformation $\mathfrak U$ can be extended to the whole space X'. It can easily be verified that the range of this extension is contained in X^* .

By the theorem of N. Aronszajn and K. T. Smith [2] there exists a proper invariant subspace $\mathfrak N$ of $\mathfrak U$. Denote by $\mathfrak N_1$ the intersection of the sets $\mathfrak N$ and X^* . $\mathfrak N_1=\mathfrak N X^*$ is a linear set. Since $\mathfrak U(\mathfrak N)\subset X^*$ and $\mathfrak U(\mathfrak N)\subset \mathfrak N$, we have $\mathfrak U(\mathfrak N)\subset \mathfrak N_1$, hence $\mathfrak U(\mathfrak N)_1\subset \mathfrak N_1$. Denote by N_1 the union of all elements of all classes belonging to $\mathfrak N_1$, i. e. $x\in N_1$ if there exists a class $x\in \mathfrak N_1$ such that $x\in x$. N_1 is evidently a linear set. It can immediately be verified that $U(N_1)\subset N_1$. Since the operator U is continuous we need only to take (in X) the closure X of X_1 and we find that $X=\overline{N}_1$ is a proper invariant subspace of U. This completes the proof.

References

[1] M. Altman, On linear functional equations in locally convex linear topological spaces, Stud. Math. 13 (1953), p. 194-207.

[2] N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954), p. 345-350.

Reçu par la Rédaction le 26.1.1955

On linear functional equations in (B_0) -spaces

b;

M. ALTMAN (Warszawa)

The well known classical Riesz-Schauder [3,4] theory deals with a very important class of linear transformations in Banach spaces. The basic class of transformations considered in this theory consists of transformations of the form H+U, where H is an isomorphism onto and U is completely continuous. One of the principal properties of such a transformation is that it may be represented as the sum of an isomorphism onto and a finite-dimensional linear transformation. Hence every transformation of this class has a finite nullity (i.e. the space of all characteristic elements is finite-dimensional).

The following natural question arises:

Is the powerful algebraic method of F. Riesz strongly connected exclusively with the above class of transformations?

Is it possible to extend this method to a wider class of linear transformations, including, for instance, also some transformations with infinite nullity?

In the present paper an attempt is made to generalize the Riesz-Schauder theory in the above mentioned direction. The generalization given here is extended to a class of linear transformations which includes the subclass of all projections.

Let \mathfrak{X} be a fixed (B_0) -space (i. e. a linear complete metric space with a topology determined by a sequence of pseudo-norms (see [2]).

We shall say that a linear transformation T having its domain and range in \mathfrak{X} possesses the property (\mathbf{R}_{μ}) if there exists a non-negative integer μ such that $T^{\mu+1}(x)=0$ implies $T^{\mu}(x)=0$.

Notice that if a linear transformation T possesses property (\mathbf{R}_{μ}) , then $T^{n}(x)=0$ implies $T^{\mu}(x)=0$ for $n>\mu$. We shall say that a linear transformation T is of *finite order* if it possesses property (\mathbf{R}_{μ}) for some μ . The least non-negative integer μ is called the *order* of the transformation T. If T is of order μ then $T^{n}(x)=0$ implies $T^{\mu}(x)=0$ for $n>\mu$, and for $n<\mu$ there exists an element $x\in \mathfrak{X}$ such that $T^{n+1}(x)=0$, but $T^{n}(x)\neq 0$.

Consider a class of linear (i. e. additive and continuous) transformations T of $\mathfrak X$ into itself which possess the following properties:

1° the transformation T is of order μ ;

2° the transformation \overline{T} is of order μ , where \overline{T} denotes the adjoint of T;

3° the range of the transformation T^k is closed for $k=1,2,\ldots,p+1$.

In the sequel I denotes the identical mapping of $\mathfrak X$ and L_n the range of the transformation T^n .

THEOREM 1. There exists a non-negative integer v such that $L_n = L_v$ for n > v and $L_{n+1} \neq L_n$ for n < v. Moreover $v = \mu = \mu$, where μ and μ are defined by properties 1° and 2° .

Proof. It follows from 2° and 3° that $L_n = L_{\overline{\mu}}$ for $n > \mu$; otherwise there would exist a linear functional f such that f(x) = 0 for $x \in L_n$ and $f(x_0) \neq 0$ for some element x_0 of $L_{\overline{\mu}}$, i.e. $\overline{T}^n(f) = 0$ and $\overline{T}^{\overline{\mu}}(f) \neq 0$. Since the equation T(x) = y has for arbitrary $y \in L_{\overline{\mu}}$ a solution $x \in L_{\overline{\mu}}$, therefore, arguing as in the classical Riesz theory ([3], theorem 6, p. 85) we infer by 1° that there exists only one solution in $L_{\overline{\mu}}$. On the other hand, by the same Riesz' argument we conclude that the number ν coincides with that defined in property 1° .

The element $x \in X$ is called a *null-element* if it is a solution of the equation T''(x) = 0. The element y of the form y = T''(x), where $x \in X$, is called a *kernel-element*. The following definitions are equivalent:

The element x is said to be a *null-element* if it fulfils all equations $T^n(x) = 0$ beginning with a positive integer. The element y is said to be a *kernel-element* if the equation $y = T^n(x)$ is solvable for an arbitrary positive integer.

 G_{\bullet} denotes the set of all null-elements of T. L_{\bullet} denotes the set of all kernel-elements of T.

THEOREM 2. Every element of X can be represented as the sum of a null-element and a kernel-element in only one manner.

Proof. This results from theorem 1 and from 1° in exactly the same way as in the case of the classical Riesz theory ([3], theorem 8, p. 87)

THEOREM 3. There exists a unique linear transformation $T^{(0)}$, which maps every kernel-element into itself and every null-element into 0. $T^{(0)}$ maps every element of $\mathfrak X$ into a kernel-element and $I-T^{(0)}$ maps every element into a null-element. Moreover, $T^{(0)2}=T^{(0)}$ and $TT^{(0)}=T^{(0)}T$.

Proof. For every element $x \in \mathfrak{X}$ we have, by theorem 2, $x=x_1+$ $+(x-x_1)$, where x_1 is a kernel-element and $x-x_1$ is a null-element.

Denote by $T^{(0)}$ the mapping $x \to x_1$. It is obvious that $T^{(0)}(x) = x$, if x is a kernel-element, $T^{(0)}(x) = 0$ if x is a null-element and, for every

 $x \in X$, $T^{(0)}(x)$ is a kernel-element and $(I-T^{(0)})X$ is a null-element. Since the linear manifolds G_* and L_* are closed, it follows from theorem 2 that the space X is a direct sum of the subspaces G_* and L_* . By a theorem of Banach ([1], theorem 7, p. 41) the transformation $T^{(0)}$ is linear. By theorem 2 it is sufficient to prove that $TT^{(0)}=T^{(0)}T$ for the null-elements and for the kernel-elements. The transformation T maps every kernel-element into a kernel-element and every null-element into a null-element, hence $TT^{(0)}(x)=T(x)$ and $T^{(0)}T(x)=T(x)$ if x is a kernel-element. If x is a null-element, then $T^{(0)}T(x)=0$ and $TT^{(0)}(x)=0$.

THEOREM 4. The transformation I-T can be decomposed in one and only one way into two components,

$$I - T = B_1 + B_2$$

where: 1° B_1 is a linear transformation which maps all null-elements into 0 and B_2 maps all kernel-elements into 0; 2° B_1 coincides with I-T for kernel-elements and B_2 coincides with I-T for null-elements; 3° for any x, $B_1(x)$ is a kernel-element and $B_2(x)$ a null-element; B_1 and B_2 are orthogonal, i. e. $B_1B_2=B_2B_1=0$.

Proof. Putting

$$B_1 = T^{(0)}(I - T)$$
 and $B_2 = (I - T^{(0)})(I - T)$

we obviously get $B_1+B_2=I-T$. By theorem 3 we have $T^{(0)}(I-T)==(I-T)T^{(0)}$ and $(I-T^{(0)})(I-T)=(I-T)(I-T^{(0)})$. Since $T^{(0)}$ maps every null-element into 0, B_1 has the same property. The transformations I and $T^{(0)}$ map the kernel-elements into themselves, hence B_2 maps every kernel-element into 0. Evidently, B_1 coincides with I-T for kernel-elements and B_2 with I-T for null-elements. Property 3° results from theorem 3.

• THEOREM 5. The transformation $T_1 = I - B_1$ has an inverse, i. e. there exists a transformation T_1^{-1} defined on $\mathfrak X$ such that $T_1T_1^{-1} = T_1^{-1}T_1 = I$. The equations $T^n(x) = 0$ and $D^n(x) = 0$, where $D = I - B_2$, have the same solutions. The equations $T^n(x) = y$ and $D^n(x) = y$ with the same right-hand sides either both have solutions or both have none.

Proof. First of all we shall show that T_1 possesses a continuous inverse. By definition we have

$$T_1 = I - B_1 = I - (I - T) T^{(0)}$$
.

Suppose that x is a solution of the equation $T_1(x)=0$. Then we have $(I-T^{(0)})x=-TT^{(0)}(x)$. Since, by theorem 3, $(I-T^{(0)})x$ is a null-element, we have $T^{\nu}(I-T^{(0)})x=0$, whence $T^{\nu+1}T^{(0)}(x)=0$, and, consequently, we infer that $T^{(0)}(x)$ is a null-element, which is possible if and only if

 $T^{(0)}(x)=0$, since $T^{(0)}(x)$ is a kernel-element. Consequently, we have $x=T^{(0)}(x)-TT^{(0)}(x)=0$. Thus it is proved that the mapping T_1 is one-to-one.

We shall show that the range of T_1 is the whole of \mathfrak{A} . Let x be an arbitrary element of \mathfrak{A} . Since $T^{(0)}(x)$ is a kernel-element, there exists an element y satisfying the equation $T^{p+1}(y) = T^{(0)}(x)$.

Put $z = (I - T^{(0)})x + T^{(0)}y$. Then we have the equality

$$x\!=(I-T^{(0)})z+TT^{(0)}(z)=T_1(z).$$

In fact, $(I-T^{(0)})z = (I-T^{(0)})[(I-T^{(0)})x+T''(y)] = (I-T^{(0)})^2x = (I-T^{(0)})x$.

On the other hand, by theorem 3, we get

$$TT^{(0)}(z) = TT^{(0)}[(I - T^{(0)})x + T^{"}(y)] = TT^{(0)}T^{"}(y) = TT^{"}(y) = T^{(0)}(x).$$

The assertion concerning D results from the following identities:

$$(1) T^n = T_1^n D^n = D^n T_1^n,$$

$$(2) D^n = (T_1^{-1})^n T^n.$$

Identity (1) follows from the identity

$$T=I-(B_1+B_2)=I-B_1-B_2+B_1B_2=(I-B_1)(I-B_2)=T_1D_1$$

by theorem 4.

Identity (2) is obtained by multiplying identity (1) by $(T_1^{-1})^n$.

THEOREM 6. The transformation T can be represented as the sum of two linear transformations.

$$T=H+K$$
,

where H possesses a continuous inverse and the range of K is the space G, of all null-elements of T.

Proof. It follows immediately from theorems 3-5, if we set $H=T_1==I-T^{(0)}(I-T)$ and $K=-B_2=-(I-T^{(0)})(I-T)$. If $x \in G_v$, i. e. $T^v x=0$, then

$$x = (I - T^{(0)})x = (I - T^{(0)})(I - T^{*})x = B_{2}(I + T + \dots + T^{*-1})x.$$

Remark 1. If T = I - U, where U is completely continuous, then, as we know, G, is finite-dimensional, whence K is finite-dimensional and T may be represented as the sum of linear operators

$$I-U=H+K$$

where transformation H possesses an inverse and K is finite-dimensional. This representation theorem plays a fundamental role in the Riesz-Schauder theory.

Remark 2. In the case where \mathfrak{X} is a locally convex linear topological space all the above theorems remain true, provided that the continuity of the transformations $T^{(0)}$, B_1 , B_2 , D, H and K being, however, not guaranteed.

Notice that the "alternative of Fredholm" is also true for transformation T. This follows from theorem 3.

Since the range of T is closed, it follows that transformation T is normally solvable, i. e. the equation y=T(x) has a solution if and only if f(y)=0, for any linear functional f such that $\overline{T}(f)=0$.

Finally let us observe that the linear equation $\overline{T}(f) = f_0$ possesses a solution if and only if

$$f_0(x) = 0,$$

whenever x is a solution of the equation T(x) = 0.

The necessity of the condition is obvious. If condition (3) is fulfilled, we can define a linear functional f as follows: if y=T(x) we set $f(y)=f_0(x)$. By condition (3) the linear functional f is well defined on the range of T, but can be extended to the whole of \mathfrak{X} .

It remains to prove that the functional f defined above is linear on the range of T. But this follows from a theorem of Banach ([1], theorem 4, p. 40).

In fact, if $y_n \rightarrow y$ as $n \rightarrow \infty$, where y = T(x), then there exists a sequence $\{x_n\} \subset \mathfrak{X}$ such that $x_n \rightarrow x$ as $n \rightarrow \infty$ and $y_n = T(x_n)$, hence $f(y_n) \rightarrow f(y)$ as $n \rightarrow \infty$.

Example. A very simple example which fulfils the above theory is given by an arbitrary projection P defined on X. In this case we have, evidently, $\mu=\mu=\nu=1$. The representation theorem (Theorem 6) assumes here the very simple form

$$P = I - (I - P),$$

where H=I and K=-(I-P). It is clear that the range of I-P coincides with the null-spaces of P.

References

[1] S. Banach, Théorie des opérations linéaires, Warszawa 1932.

[2] S. Mazur et W. Orlicz, Sur les espaces métriques linéaires (I), Stud. Math. 10 (1948), p. 184-208.

[3] F. Riesz, Über lineare Funktionalgleichungen, Acta Math. 41 (1918), p. 71-98.

[4] J. Schauder, Über lineare, vollstetige Funktionaloperationen, Stud. Math. 2 (1930), p. 183-196.

Recu par la Rédaction le 26. 1. 1955