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A linear completely continuous operator is already continuous;
this follows immediately from the above lemma.

A closed linear subspace NCX is said to be an ¢nvariant subspace
of Uit U(N)CN. N is a proper invariant subspace if (0)#N 5 X.

TrEOREM. Let U be a linear completely continuous operator which
maps the locally convex linear topological space X into itself. There emist
proper invariant subspaces of U.

Proof. On the basis of the above lemma we construct an auxiliary
Banach space as follows.

Let |z be the pseudonorm chosen above. We divide the space X
into classes and we say that oz, and uz, belong to the sume elass X if [wy —uwy| = 0.
The set of all elements zeX such that |z|==0 constitutes the zero class.
We denote by X* the quotient space obtained, which is a linear normed
space with the norm [f|=z|. The transformation U detines a transforma-
tion p=8(r) in the space X*, where met, yep and y=U(w). It follows
from the lemma that £ is a linear completely continuous transformation.

‘We denote by X’ the completion of the space .X*. X’ is a Banach space.
The transformation ¥ can be extended to the whole space X’. It can
eagily be verified that the range of this extension is contained in X™.

By the theorem of N. Aronszajn and K. T. Smith [2] there exists
a proper invariant subspace N of &. Denote by N, the intersection of the
sets N and X*. My=NX" is a linear set. Since $(M)C X* and U(N)C N,
we have H€(MN)CN,, hence U(M)CN,. Denote by N, the union of all
elements of all classes belonging to Ny, ¢. e. weN, if there exists a clags
teN, such that wep. N, is evidently a linear set. It can immediately
be verified that U(N,)CN,. Since the operator U is continuous we
need only to take (in X) the closure N of ¥; and we find that N=N,
is a proper invariant subspace .of U. This completes the proof.
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On linear functional equations in (B,)-spaces
by
M. ALTMAN (Warszawa)

The well known classical Riesz-Schander [3,4] theory deals with
a very important class of linear transformations in Banach spaces. The
basic class of transformations considered in this theory consists of trans-
formations of the form H+4-U, where H is an isomorphism onto and U
is completely continuous. One of the principal properties of such & trans-
formation is that it may be represented as the sum of an isomorphism
onto and a finite-dimensional linear transformation. Hence every trans-
formation of this class has a finite nullity (7. e. the space of all cha-
racteristic elements is finite-dimensional).

The following natural question arises:

Is the powerful algebraic method of F. Riesz strongly connected
exclusively with the above class of transformations?

Is it possible to extend this method to a wider class of linear trans-
formations, including, for instance, also some transformations with
infinite nullity?

In the present paper an attempt is made to generalize the Riesz-
-Schauder theory in the above mentioned direction. The generalization
given here is extended to a class of linear transformations which includes
the subclass of all projections. )

Let X be a fixed (B,)-space (s.¢. a linear complete metric space
with a topology determined by a sequence of pseudo-norms (see [2]).

We shall say that a linear transformation T having its domain and
range in X possesses the property (R,) if there exists a non-negative inte-
ger u such that T¢+'(z)=0 implies T"(x)=0.

Notice that if a linear transformation T possesses property (R,),
then 7™(x)=0 implies T*(x)=0 for n>u. We shall say that a linear
transformation T is of finite order if it possesses property (R,) for some u.
The least non-negative integer u is called the order of the transformation T.
It T iy of order u then T"(x)=0 implies T*(x)=0 for n>u, and for n<<u
there exists an element zeX such that 7" (x)=0, but T"(z)+#0.
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Consider a class of linear (i.e. additive and continuous) transfor-
mations T of ¥ into itself which possess the following propertics:

1° the transformation 7' is of order u;

20 the transformation 7 is of order g, where 7 denotes the adjoint
of T;

3° the range of the transformation T* ig closed for k=1,2,...,p--1.

In the sequel I denotes the identical mapping of %X and L, the
range of the transformation I™.

TEEOREM 1. There exists a mon-negative integer v such that Ly=1IL,
for n>v and Ly, #L, for n<v. Moreover v=p=p, where n and g are
defined by properties 1° and 2°.

Proof. It follows from 2° and 3° that L,=L; lor x> p; otherwise
there would exist a linear functional f such that f(x)=0 for welL, and
f(@)50 for some element @, of Ly, 4. 6. T"(f)=0 and T%(f)0. Since
the equation 7T'(x)=y has for arbitrary yeL; a solution xeL;, therefore,
arguing a8 in the classical Riesz theory ([3], theorem 6, p. 85) we infer
by 1° that there exists only one solution in L. On the other hand, by the
same Riesz’ argument we conclude that the number » coincides with
that defined in property 1°

The element zeX i3 called a null-element if it is a golution of the
equation T*(z)=0. The element y of the form y=1"(x), where x'¢X,
is called a kernel-element. The following definitions are equivalent:

The element « is said to be a null-element if it fulfils all equations
T"(#)=0 beginning with a positive integer. The element ¥ is said to bhe
a kernel-élement if the equation y=T"(x) iz solvable for an arbitrary po-
sitive integer.

@, denotes the set of all null-elements of 7. L, denotes the set of all
kernel-elements of T.

TEROREM 2. Every element of X can be represented as the sum of a
null-element and a kernel-element in only one manner,

Proof. This results from theorem 1 and from 1° in exactly the same
way as in the case of the clagsical Riesz theory ([3], theorem 8, p. 87)

Tesorem 3. There ewists @ unique limear tramsformation 1O, which
maps every kernel-eloment into itself and every null-element into 0. T® maps
every element of X into a kernel-element and I—T maps every element
into a null-element. Moreover, T2 =70 gng 77O =707,

Proof. For every element seX we have, by theorem 2, v=m,+
+{(#—=), where z; is a kernel-element and z—m, is a null-element.

Denote by T the mapping @—2,. It is obvious that IO (@) =o
if @ is a kernel-element, 7™ (x)=0 it # is a null-element and, for every,"
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zeX, T9(z) is a kernel-element and (I—T®)X is a null-element. Since
the linear manifolds G, and I, are closed, it follows from theorem 2 that
the space X is a direct sum of the subspaces G, and L,. By a theorem
of Banach ([1], theorem 7, . 41) the transformation T©® is linear. By
theorem 2 it is sufficient to prove that TT®=TO®T for the null-elements
ard for the kernel-elements. The transformation 7' maps every kernel-
-element into a kernel-element and every null-element into a null-element,
hence TT(x)=T(x) and TOT (x)=T(x) if & is a kernel-element. If »
is a null-element, then TOT(x)=0 and TTO(z)=0.

THEOREM 4. The transformation I—T can be decomposed in one and
only one way into two components,

I“T=B1+Bzv

where: 1° By 18 a linear tramsformation which maps all null-elements into
0 and B, maps all Lernel-elements into 0; 2° B, coincides with I —1T for
kernel-elements and By coincides with I—T for null-elements; 3° for any ®,
B, (x) is a kernel-element and By(x) a null-element; B, and B; are ortho-
gonal, i. e. B;B;=B,B,=0.

Proof. Putting

By=TO(I—T) and B,=(I—T")(I~T)

we obviously get B,+B,=I—T. By theorem 3 we have TO(I—T)=
=I—-TTY and (I—TI—T)=(I—T)(I—T9). Since T maps
every null-element into 0, B, has the same property. The transformations
7 and T® map the kernel-elerhents into themselves, hence B, maps
every kernel-element into 0. Evidently, B, coincides with I—Z for kernel-
-elements and B, with I—T for null-elements. Property 3° vesults from
theorem 3.

- THEOREM B. The tramsformation T\=I—B, has an inverse, 4. e. there
exists a tramsformation Tr' defined on X such that TyTT'=T7'T,=I.
The equations T"(z)=0 and D"(x)=0, where D=I—DB,, have the same
solutions. The equations T™(x)=y and D"(z)=y with the same right-hand
sides either both have solutions or both have none.

Proof. First of all we shall show that 7, possesses a continuous in-
verse. By definition we have

P=T—By=I—(I-T)T".
Suppose that z is a solution of the equation T',(x)=0. Then we have
(I —TNg= —TTO(x). Since, by theorem 3, (I—T®)x is a null-element,

we bhave T(I—T®z=0, whence T**'T0"(x)=0, and, consequently,
we infer that T7©®(z) is a null-element, which is possible if and only if
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TO(g)=0, since TO(z) is a kernel-element. Consequently, we have
w=TO () —TTO(z)=0. Thus it is proved that the mapping T, is one-
-to-one.

We shall show that the range of 7; is the whole of X. Let » be an
arbitrary element of %. Since T (z) is a kernel-element, there exists
an element y satisfying the equation T%*'(y)=7"(x).

Put z=(I—T%x+T"(y). Then we have the equality

p= (I =Tz + TTO(2) = T4 (2).

In fact, (I—Tz=(I—T[I —TMNe+T")] = (I — TOPp =
= (I —T"z.

On the other hand, by theorem 3, we get

TTO2) = TTOUI — TO)w + T (y)] = TTO T (y) = TT" (y) = T (a).

The assertion concerning D results from the following identities:
(1) =Ty D"*=D"T},
(2) D"=(T1_1)"Tﬂ'.

Identity (1) follows from the identity

T=I—(B,+B;)=I—B,—B,+B,By= (I—B,)(I—B,)=T,D

by theorem 4.

Identity (2) is obtained by multiplying identity (1) by (T7h)™

TerOREM 6. The transformation T can be represented as the sum of
two linear transformations,

T=H+K,

where H possesses a continuous inverse and the range of K is the space G
of all null-elements of T. . ’
Prcﬂ)of. It follows immediately from theorems 3-5, if we set H =7 ==
;I—T()(I——T) and E=—B,=—(I—TO\I—T). If zel,, i. ¢. T"e=0,
en ’
= (I —~TO)g = (I~ TONI —T)0 =Byl + 7T +... 1Y g,

Remark 1. I'f T_==.I —U, where U is completely continuous, then,
a8 we know, @, is finite-dimensional, whence K is finite-dimensional
and T may be represented as the sum of linear operators

I-U=H-+K,

where transformation H possesses an inverse and X is finite-dimensional.
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Remark 2. In the cage where X is a locally convex linear topolo-
gical space all the above theorems remain true, provided that the con-
tinuity of the transformations 7, B,, B,, D, H and K being, however,
not guaranteed.

Notice that the “alternative of Fredholm” is also true for transfor-
mation 7. This follows from. theorem 3.

Since the range of 7' is closed, it follows that transformation T' is
normally solvable, i. e. the equation y=T(») has a solution if and only
if f(y)=0, for any linear functional f such that T(f)=0.

Finally let us observe that the linear equation T (f)=f, possesses
a solution if and only if
(3) folw)=0,
whenever x is & solution of the equation T (x)=0.

The-necessity of the condition is obvious. If condition (3) is fulfilled,
we can define a linear functional f as follows: if y=T(x) we set
f()=f,(x). By condition (3) the linear functional f is well defined on the
range of T, but can be extended to the whole of .

It remains to prove that the functional f defined above is linear
on the range of 7. But this follows from a theorem of Banach ([1], the-
orem 4, p.40).

In fact, if y,—y as n—>oo, where y=T(x), then there exists a se-
quence {,]C% such that @,~>x as n—oco and y,=T(2,), hence ) —~fy)
ag n—»oo.

Example. A very simple example which fulfils the above theory
is given by an arbitrary projection P defined on X. In this case we have,
evidently, u = p=v»=1. The representation theorem (Theorem 6) assu-
mes here the very simple form

P=I—-(I-P),
where H=I and K= — (I—P). It is clear that the range of I —P coincides
with the null-spaces of P.
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