On the metric theory of inhomogeneous diophantine
approximations
by
J. KURZWEIL (Praha)

Introduction. In this paper a problem of H. Steinhaus and some
related questions are solved. We introduce the following notations:

Let K Dbe the circle {3+-¢3=1 in the plane (£;,,). If 2 is a real number,
then by (=a2'=&(z) we denote the point in the plane ({;,{,) with the

coordinates (cos2xz, sin2xx). If ¢ and kb are real numbers, g<Ch, then the -

interval I[g,h] is the set of points #" where g<Cw<Ch. Obviously an ope-
ration of addition may be defined in the set K wunder which this set
bfacomes a group and the mapping & is a “natural” homomorphic map-
ping of the additive group of real numbers on the group K. Further
the Lebesgue measure » and a topology are defined on K in an obvious
way. (We suppose that u(I[g,h])=h—yg if 1>h—g>0 and specially that
ME)=1).

Let B be a non empty set the elements of which are sequences of
real numbers {b;}, i=1,2,3,..., fulfilling the following conditions:

@ b; >0, i=1,2,...,
2) by <bh,  i=1,2,...,
(3) 3B = oo

de=l

We define the set a(B):

A real number z (0 <<z <<1) belongs to the set «(B) if the f i
conditio 5 ot ¢ < 4 a(B) if the following
o ?i‘or every sequence {bi}eB almost every point ne X belongs to an
infinite number of intervals Iliw—Db;,iz+b;], i=1,2,3,...

@ This condition may be written in the equivalent form: if {b;}eB
en ’

8

s

#{

. kl[im_bi7iw+bi]) =1.
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Let the set B contain all sequences {bi} fulfilling conditions (1),
(2), (3). The set a(ﬁ) contains no ratiorial number. H. Steinhaus has
put forward the question whether all irrational numbers from the inter-
val (0,1) belong to the seta (B).

‘We shall answer this question in the terms of the theory of dio-
phantine approximations.

Let the function @(g) be defined for ¢>1, non.negative and non
increaging. A number @ is said to admit the approwimation ¢(q) if there
is an infinite sequence of pairs of integers (Pn;§n)s dni1> oy fulfilling the
inequality

[m '—Pn/in <‘P(Qn) .

It is known that every number z admits of the approximation
1/Y/5g.

Let the number y belong to the set ¥4 if 0<y<<1 and if there is
guch a number d,>>1 that the number y does not admit of the appro-
ximation ¢(d,q).

The problem of H. Steinhaus is solved by the following

THEOREM 1. a(fR)—_—Yl,qﬂ. .

It easily follows from this theorem that the set a(B) is non empty
and that its Lebesgue meagure is zero. On the other hand we shall prove
the following result:

Let the set B’ contain only one sequence {bi} fulfilling the conditions
(1), (2), (3) Then the Lebesgue measure of the set a(B')=a({b;}) is unity.

Further we give a generalization of theorem 1 by establishing the
relation

a (Bw(ll)) = YWI)

where B,,") is a suitable subset of the set B for a class of functions p(g).
Finally we generalize theorem 1 to the case of s linear forms with »

variables.
1. The proof of theorem 1. We have to prove that the measure
of the set

8

Z;I (1% — by, 2 4 b;]

1

i

k

is unity for every sequence {bi}eﬁ if and only if e Y.
We start from the following

1) For the definition of the set By see p. 94.
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LeuMA 1. If & ¥y, then there is such o sequence {6} ¢ B that the mea-

sure of the set
o0

11 S1tia—

byyim + b;]
is zero.

Proof. Let us suppose that s ¥ypm. Then there is such a positive
function g(q) that the function ¢’p(g) steadily tends to zero as ¢ increa-
ges to infinity and that the number  admits the approximation ¢(g).

Let (ps,q,) be a sequence of pairs of integers which fulfil the follow-
ing inequalities:

(4) o —ps/gsl <@(g), §=1,2,3,...,
(5) Gsp1>> 0> 0, s=1,2,3,...,
(6) 1/ o(g,) > 2%, s=1,2,3,...,
(7) Por1)/9(gs) <1/2,  §=1,2,3,...

We estimate the Lebesgue measure of a certain set.
Lemma 2. Let us fiw a positive integer n and o positive number b.
Then the following inequality holds:

p(ZTlio—b,in+0])<a2(b+npla)  s=1,2,3,...

From the obvious inequality
v — 3 /igs| <@(gs)
holding for suitable p;, we obtain, on multiplying it by i,
liw —pelgs| <ip(ge) <mp(gs) for i=1,2,...,m,

whence it follows that all points (iz) for ¢=1,2,...,n are contained

in the set

[
jé:I[j/Qs" ) fi/Qs'Jf'%W(q.e)]-

Hence and from the inclusion
kid . . q. 3
g;z [i@—b,iz+b] Cgl[a/qs —b—np(gs); §/¢s+b+np(g)]

we obtain the proof of lemma 2.
We return to the proof of lemma 1.
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Let us denote by ¢ the greatest integer less than or equal to
(1/p(g5))""*. According to (6) and {7) we have Gr1>g5. We put
b1=b2=...=bq;=((‘p(ql))llz’

bor1 =bgrya=1.. =bg = (plges))?  8=1,2,3,.

This sequence {bi} fulfils conditions (1), (2), (3) since we have

323 5 @>%[(¢<;+1) )llz—(wtlgz;))llz—l]'("’(q"“”m

s=1 J=1 g=qf+1
< ®(g541) ) 112)
= 1—(———— ; co.
S

Now we shall prove that the series

o (2%}
Su( D Ilis—b,iz+ b;])
s=1 d=gi+1

converges. We use lemma 2 and have
L%

fu( > Itio—byi0+ b))

s=1 g=gtl

< N DT — by 0+ ) < 3 s 2 (bugy €512 9(812)
§=1 i=1 8=1
22%-}-1 (l’ ®(gst1) + q’(@ls-y-l))
=1 Qs-;-l)

-——24Qs+1 I/‘P (gs41) 24 275 =

It easily follows that lemma 1 holds and specially that number =

does not belong to the seb a(ﬁ)‘
We proceed to the second part of theorem 1 and prove the inclusion

YI,@Ca(B)
First of all we shall prove the following

Temwa 3. If we ¥yyq and if { i}eB, then

u(n El[m byyim-+b;1)>0

k=1i=k
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Let us fix a number ze¥,,. According to the definition of the set
¥y, there is such a positive number ¢, that the inequality

(8) lo —p /g1 > culq’

holds for every pair of integers (p,q), ¢>0.
Lemma 3 is an easy consequence of the following
Levwa 4. If {b)eB, then the inequality

(9) y(_ kI[ix—b,';iw +bi])>ox/7, k=1,2,3,...,
=

holds (it will be remembered that ¢,<1//5).
Proof. We put
b} =min(e,/3i,b;), i=1,2,3,...,
and
bi="by for

=7 41,7 e, T, =1,2,3,...

Apparently we have

IN&E

© 0

L. " 1 ’
bi—oo, §bi>75bi=:oo.
i=1 =1 =8

) Let us suppose that there is such an index k, that inequality (9)
is false; consequently we have

o
A0 p( JTlio—blio +B) <elT,  j=fojotl,y  TO>Toyt1.

The set
7’ -
DI im— ¥, iw 4+ b}]
i=ky )

is the sum of a finite system .of disjoint intervals. On replacing b; by 2b;

each of the above-mentioned intervals will be 1
. t i )
fold, i.e. we shall have engthened a6 most two

2
1 21 [iw — 2b s + 27) < 20,7

i=ky

Let IL;,, be the set of indices 4 fulfilling the conditions

J : mi4+1 a . n .
T<igTH, 2 L[4 — 2b] i + 2571,

(iz) &
=%y

icm
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It follows from (8) that the number of the points (im), i=1,2,..., 7+,
which are contained in an interval I{y—d, y-d] is not greater than
2d- 7t je,+-1%).

As the set

i
ST iz — 20 i + 207
i=ky
again is the sum of disjoint intervals the number of which does not ex-
ceed 7 and as
23
(X Ilia — 20,10 + 287]) < 26,7,
g

therefore the number of the indices ¢ which fulfil the conditions

1<i<TY,  deLyy,,

is not greater than
26 1 g3
T €y
Since the number of all indices i satisfying T'<i<7+! is 6-7, there-
fore the set Iy, has at least 3-77 elements. Further we have

2441 4
Ekl[m—bg,mrb:]—%I[m—bg,iﬂbg]:}% I[iz — b yiw -+ b]].
i=ky i=ko teLjty

Each two of the intervals appearing on the right side are disjoint.
Tor if any two intervals I[iz—b;,iz-+b;] and Ilo—b; Jo+b7], ©,leLsy,
is£l, were not disjoint, there would exist a number y such that the interval

I[y —cpf3- T,y +6,/3- 7]
would contain both points, (iz)’ and (lz)’. We have
by = b} = bl < 6, f3- T
But in virtue of footnote %) the interval

Iy — exf3- T,y + g f3- 7]

2) Let us denote by o the number of the points (ix)’, i=1,2,...,7+1, which are
contained in the interval I[y—d, y-+d]. It follows that there are two indices 4j,%2,
0<iy< ig<<T+1 such that the points (i12), (i3%)’ belong to the interval I [t,t+2d/(c—1}].
The point ({iy —i1)®) belongs to the interval I[t—i12,t— 12+ 2d/(c— 1)1C
CI[—2d/(c—1),2d/(c—1)]. That means that there is such an integer s that
| (lg—11) m—8]|<2d /(0 — 1), |z —8/(ia—11)]<2d/(6— 1) (ia—11). According to (8) we get

2d/(6—1) lia—i1)>eollia—in)?, o~ 1<(2d/eg) (i — 1)< (24 fez) T,
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may contain at most one point (kz), k=1,2,...,7*. Thus we get
il

w( 3 Iliw — by yiw + by)

t=ko

74
> ul Y Ilio—bf,io + 4] + 3 w(lliz—b i+ b]])

i=To teLjry
78
>u( Y Ilio—byio +b7]) + 3 20},
sy % G6 Ly
Obviously we have
71+1
> 2bi= Y 2237 2bpa="T+ b= 3 b.
telpr 16 Lfry T Tf4-1
Therefore
o
u(ZI[im—b;’,iw+b;f])+ o)
i=ly teLisy
P 41
>y(,21[iw—bz,iw+bz])+ S .
i=ky 1',='7’+1

As the last inequality holds for j=j,,j,+1,5,+2,...
vies J'b; diverges, we find that

d=1

and as the se-

1
/»(Zrm—b;-’, z‘m+b;-'1)>az/7

i=to

for large j and the contradiction of inequality (10) completes the proof
of lemma 4.

In order to complete the proof of the theorém 1 we shall need the
following

Levva 5 Let us suppose that U and V are subsets of K, that the mea-
sure u of U 4s positive and that V is dense in K. Let the set W=UpV
contain all points w=u+v where uel, veV. Then w(W)=1.

Let U, and V, be sets of real numbers. Let the Lebesgue measure
of the set U, be positive and let the set ¥, be dense (in ;). Then the get
U@V, contains almost all real numbers. This follows from the known
iﬁ :(}:ta’isaikfnogz]a% IfOi];tB of the set U, are points of outer dengity for

) apter IV ily fi b
rapping & thot ,lemmz p hol’d s§.10) and we easily find by means of the

Now we are ready to co

the following mplete the proof of theorem 1 by proving

Inhomogeneous diophantine approwimations 91
Levuma 6, If #e¥y, and if [b)eB, then

:“(ﬁ fI[im—bi,iw+ bi]):'l-

k=1 1=k

~Proof. Let us fix a sequence {bi}eﬁ. From the condition b,,,<b,
it can be seen that if

Ee[] Y I[im— b, iz -+ b1,
k=li=k
then also
&E—(sw)'e [] D Iliw—by,in+b] for s=0,1,2,...
k=li=k

Applying lemma 5 for
U= [] 3Iliw— b;yiz+ b,
k=1i=k

(which can be done on account of lemmsa 3 and the fact that V, defined
above, is a set dense for irrational »), we immediately obtain

V={(—sz)}, s=0,1,2,...

Al Sirpio— b, o+ 03) 1.
fk=1i=k

Remark. From a general theorem due to Khintchine [2] it fol-
lows at once that the Lebesgue measure of the set ¥, is zero. J. arnik [1]
(or Kurzweil [3], §6) investigated this set by means of the Hausdorff
measure and found that the Hausdortf dimension of the set ¥y is unity.

2, In this section we pass to the following

TeEOREM 2. Let ws suppose that {b;} eB. Then the Lébesgue measure
of the set a({b;}) is one. ; :

Let us fix a sequence {b;}eB. It is easy to find a sequence {bi}e B

fulfilling the conditions
(11) Lim (b;/b;) =0,

(12) bi<1/8i, i=1,2,3,...

Let us denote by § the square 0<{w<<1, 0<y<<1 in the plane (z,¥),
and let us put

Upm= B [ly —ne—m|{<b,], m,n whole, n positive,
T @)

an}:
Mg

V.= 2 Un,m} n=1,2,3,..., W= Var

M= —00 s

I
-

1

n=8
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U;,m=(E [ly — ne —m|<b,, m,n whole, n positive,
(z,Y)

Upms Wr=[] 3 V,.

o 8=1 n=8

1
Vo=
m

g

We start from the following

Lemma 7. To every positive integer N, there is such a positive integer N
that

e (Sr\( ) V;)) >1/8%).

n=Ngp
Consequently u,(S ~W')>1/8.
Proof. We ghall use the estimation.
N , N B
A S A ED RO AR SRCI A )
n=Ng n=N, No<i<bgN

Let us denote by K the set K= & [0<<e<1]. Apparently
(@)

pa(8 V,;,) = lp (K ~ U;»,o) = 2b;z7
We shall prove that
Ua(8AV; AV)<8 b by,

n=1,2,3,...

jF#k, j=1,2,..., k=1,2,...
We start from the. observation that
ﬂz(S”V:;ﬁVI,c)'—‘(K"\UIIc,o)"V;; j<k,
which may easily be verified. The set K~ U,’c’.,an congists of k—j pa-

rallelograms. The measure od each of th 1
e ; ese parallelograms i b
4b;b,/(k—j). We obtain hence ! grams 18 edual fo

ba(8 AV AVL) = (k — ) 4bjby [k — ) = 4b; by,

Now we rewrite inequality (13) in the form

N N
B8 3 V)22 3 b—4 BES o T\
P22 3 0= (2 5 ).

2=Ny n=N;
n=No

As b,<1/8, we can choose the index N in such a way that

N
3/8<2 3 b, < 5/8.
n=N,

It follows that
N
s (Sn Zj‘v V;) >3/8 —(3/8)">1/8,
n=No
and the proof of lemmsa 7 ig complete.

%) By uz; we denote the Lebesgue measure in the plane

icm
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Next we prove

LEMMA 8. uy(S~AW)=1

This proposition will be proved in the following way: if (z,y)eW’,
then there is a sequence of pairs of integers g,,,p, fulfilling the conditions

1< U< ny1y Iy'—q'nm'“pnl <b§’1..’

Let us choose a positive integer s. According to (11) the inequalities

]y — Gpn® — pnl < bq,./sy ]s:‘/ — QST — Spﬂ.l < bq,‘

hold for all large n and that means that the point (sz,sy) belongs to the
set W. ) :
Let us denote by O[z,¥,,d] (d>0) the square 2, —d< o<, 4,
Yo—A<y<y,+4 in the plane (z,y). Let us choose a number &, 0<é<l.
Ags the meagsure of the set W’ is positive, there is such a square
C[@y,%0,1/2s] (s being a positive integer) that

s (W'~ O[5, 1/281) > 88
Then we have
pa(W ~ O s2y,8%,1/2]) > 6,

and, as the point (z+4u, #+0) belongs to the set W if the point (#,¥)

belongs to the set W and if u and v are integers, it follows that

1 (WA 8)>8. As 6 (0<8<1) is arbitrary, we have u,(W~S)=1.
Theorem 2 is an easy consequence of lemma 8. For 0<<w<1 let us

put i
4,=B0<y<1, (z,9)eW]
v

Then we have the following equivalence: wea({h,}) if and only if
pr(4z)=1% and the proof of theorem 2 is complete.

3. The purpose of this section is to establish the relation a(B,q)=
=Y, 4 . .
quq%e shall need some facts about continuous fractions. It is known
that every irrational number z,0<x<1, can be developed into a regular
continuous fraction

o= 1
1+ &; - N 1
ag—+ ...

4) 7t the linear Liebesgue measure.
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(@; are positive integers, 4=1,2,3,...) in a unique way. If

;1
m_1
g% &+ -

2 . . 1

=

%

(p:,q; relatively prime integers, g; positive, ¢=1,2,3,...), then the partial

denominators ¢; fulfil the following relations:

(14) Qi1 = Qg1+ i1y 1=0,1,2,...

(we put ¢_,==0, ¢,==1); and the following inequality holds:

(15) ggi + ) < 12— pefal < 1/ts 10y 7=1,2,3,...

TFinally it is well known that all rational numbers which approxi-
mate well a given irrational number 2 are contained in the sequence of
the partial fractions of number x. More exactly

(16)  if jw—r/s|<1/2s* where »,s (s>0) are integers, then 7/s=p,/q;
for a suitable 4.

‘We suppose through this section that the function @(g) is defined

for ¢>1 and fulfils the following conditions:

(1n

(18)

the function ¢-p(g) does not increase,
0<ggg)<t for g=1.

) Let us define the set B,q. A sequence {b;) eB belongs to the set B,
if a.nd only if there is a function d(g) defined for ¢>1, 8(¢)>1, 8(g)-—+oo
steadily as g—oco and a sequence of positive integers & < t, <ty <<...,

ti+1>1/t1'¢(ti6(tv;))7 1=1,2,3,...,
such that the series
(=]
(19) gl tduttuston
diverges. Here [¢] is the greatest integer less than or equal to q.
We state
THEOREM 3. a(Byy) = Y -

We start from the following
Lemma 9. If {b;} e By, and ye¥ g, then

#{I1 3 ITiy —byyiy +3,])> 0.

k=1li=k

icm°®
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Proof. Let us fix a sequence {bi}qu,m and a numberye Y . Let
the function 6(g) and the sequence |t;} correspond to the sequence {b;}
according to the definition of the set B,y).

We put 6'(¢) = (6(¢))”* and
bi="by= ... =b'wpeumatn = Diunstioem:
b= byppusegn 10T [L/tama@(te18(te_1)}] <4 < [1/tp(t0(t))], s =2,3,4,...,
and using the conditions (18) and (17) we get

1 10" (t;)

- >48(), 1=1,2,...
ti‘P(tia(tq:)) = U (’b)’ % 12, ,

(tia (ti))2 @(t0 (ti))
1 -1
= )
45(9) (95(a)) ~ 99" (@) (a5’ (9))
‘We multiply the last inequality by é(g) and get
1 >=6(q) L
w(@@)” il @)

Lemma 9 will be proved if we prove the inequality

g=1.

(20)

g=>1.

(21) w([1 3 Ty —biyty + b)) >1/32.

Let pylq; (1=1,2,3,...) be the partial fractions of number y. Accor-
ding to the definition of the set ¥, and according to' inequality (15)
there is such a number ¢,>>1 that

(22) G1< 1/g:p (0, ) for i=1,2,3,...
Let us fix an integer s, fulfilling the conditions
(28) 8 () >0yt >y e >64  6(t,)>32.

Let us define a sequence of indices {4,}, s=5,, S+1,..., by means of
the condition

(24.1) CGo1<te <y S=80;8+1,...

We have i,>1, §=8),5-+1,..., and according to (17), (22) and (23)
we geb
1 ¢ 1

W< < < — Y T
fnS Qi,—-l‘P(cy'Q'i.—l) = tafp(cy‘ts) =8 (ts)tstp(taa (ts)) = ts‘P(ts‘s (t.s))

(24.2)
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Let us suppose that inequality (21) is false. Then there is such g
k,>2 that

k
(25.1) ﬂ(.ZIG‘I[iy—bg,z‘y+bé])<1/32 for  k=ky,ky+1,...
. - =k

Let us estimate the measure of the set
Mgl .. ,. Whgltas' )
D= gk I[iy— b}, iy+ 5] — I liy — b3, iy 4 b;]
i=lp i=kq
for s=s,,8,4+1,..., where the integer s, fulfills the conditions 8,228
4, >4k, v
We have
Y= P [Ty +ry I11<L)(gs,,.)*.
Hence .
(25.2) 3 = P, + 7 (mod 1),
Iri|<1/4Qz’,+1 ’ 75:1’27-"1[%”1/4],
pi#p; for is£j, as the numbers p, 1@, are relativel i
. numk w10 i y prime, and the
flumber. of the points (iy)’, z=k0,k‘,+l,...,[q¢‘+1/4] which are contained
in the interval I[u—d, u-d] does not exceed
(25.3) 2g;,,,-2d+15).
The set

0<p;< Giiy

Wil )
2 Iliy~b,iy+ b7
t=lky
1(;1 the sum of a fi.nite. system of disjoint intervals. If we replace b; by 2b;,
then each of these intervals grows at most twice and consequently '
[L/kp(tad ()1
(25.4) 2 I{iy—2b;,4y+ 2b;])<1/16.

=%y

Let L, ,,s= s . 11
conditions 5118 =81,8+1,842,..., be the set of indices i fulfilling the

k< i< gy, /4],
The set

Dttt
(iy) Z, L [iy—2b;,4y 4 2b;].
= o
Dol ()]
Iliy— 20,4y + 2b;]

1%,

®) This easily follows by means of th
: e Schubfachprinzi d fr
the fact that () e I[u—4d, w+-d)] is equivalent to prineid from (33.2) and from

- U= APy + i <<utd
< —
U 0<cu—d, u+4d<<l. The case that U—d<0 or u+d>1 is also very simple.

icm°®
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congists of disjoint intervals the number of which does not exeeed

(25.5) 1/t (t58 (t))] — o+ 1.
Using (25:3), (25.4) and (25.5) we find that the number of the elements
of the set L, ; is not less than
Qi 14— T —2s,,, /16— (1[tap(8:8" (t)) —~Fo+1) =i, ., [B—1 [t (80" (8s)) — 1.
According to (20) we have
1 < 1 1
tp(tsd (%)) 0 (k) tep(tsd(2s)
Using the last inequality (23) we get
1 1 1
Ll )] 82 hplhetn)’
and according to the definition of the sequence #, and according to (24.1)
we get
(25.6) 1/tep (6’ (1)) < t64/32 < ¢, /32-
Tt follows that the number of the elements of the set I, is not
less than

Gy [8— iy [32—1=85,,, [16+(g5,,, [32—1),

" and finally it follows from the third inequality (23) and from (25.6) that

the number of the elements of the set L, is greater than ¢, [16.
Let us now distinguish two cases:
1° bg’%l>1/4q¢'+I for a suitable §>3,.
Then we have
Ty —1/4¢;,,,»7y+1/4;,,,]<Ds;  j6Lgs,
and these intervals are mutually disjoint. It follows that
D> 1 1 _ 1
ul s)/'l'g [ 200, =33

which contradicts inequality (25.1).

20 bé,m <l/4q;,, for s=s,8+1,...
In this cage the inclusion
I[jy—b,’-,jy—{—b}]C‘Ds, jELs-H: 81=81,8+1,...,

Studia Mathematica XV
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holds and these intervals are again mutually disjoint. As g;, >t,.,, it
follows that

u(Dg)= 2 b;iﬂ_l /16 =lots b[l/trrl’i(lﬂ-la(lﬂ1))]/16

according to (24.2); as the series (19) diverges and as the sets D, and D,
are disjoint for s,7s;, we again get a contradiction of inequality (25.1).
Thus lemma 9 is proved.

The inclusion ¥,,Ca(B,q) is an easy consequence of the following

Levia 10. If {b}e B, and if yeX¥,q, then
/x(k[_Y1 _Z;I[iy— biy 9y +b;])=1.
Proof. Let us choose a

Ee[] 3 Iliy —by, ty+b;].

k=1 i=k

o,

As the sequence {5;} is non-inereasing, we easily verify that

E—Gyye [T I~y — by, li— i)y 5]
k=j+1 i=k
Ckl:_]li;;al[iy‘bii'iy‘}‘bft]y §=1,2,3,...

Number y is irrational as it does not admit the approxinia,tion
T(d”-q) for a suitable d,>1. Consequently the set o of all points (—jy)
j=1,2,3,..., is dense in K. We apply lemma 5 with

’
k4

V=dJ, U=]] JI[iy—b,iy+b]=W,

k=11i=k
and the proof of lemma 10 is complete.
The converse inclusion a(Bg) C Y, is a consequence of the following

Lemwa 11. If weX,y, then there 4s a sequence {bs} fulpiliing the

conditions
20 {t} e By,
27 wéa({by)).

Proof. As z6¥,,, there is such a function A(q) defined for g1,

A(g).aoo steadily as ¢ »oco, that the number 2 admits the approxi-
mation ¢{g(g)).
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Let us choose a function §'(¢g) which is defined for g>1 and fulfils
the conditions

(29) Mozfa) =1, g=f19), ¢>1,
(30) B'(q@)>co steadily as g oo,
(31) A@)[B'(q)~>co  steadily as  g->oo,
(32) ‘ ¢/p'lg)>oc0 With g—>co.

Such a funection f'(¢) will be found in the following manner.
We find such a number s, that (1(2)/2(1)]**= 2 if 1(2)/A(1)>2; othex-
wise we put s;=1/2 and define

B0 = (oA, 1<g<2.
Having defined p’(2") we find such a number s,,, thab
(A@mh)ja ) =2
it A(2™1)/1(2")>2; otherwise we put s, ,;=1/2and define
B'(g)=p"(2")(A(g) /A (2",

We easily verify that the function A’(g) fulfils conditions (29)-(32).
Further we put

2n<q<2n+1,

alq/B'(4))
51 = 7 ’ 217
@D=Fwra) ©
8(q)= inf &(s), g¢g=1.
ALE< 00

As 8,(¢)>1 and 6,(g)—>co Wwith g->oco0, we get 4(¢)>=>1 and &(g)—>o0
steadily with g->co.
Finally we have

3g-8(0) < &g B(@) =

We put f(g)=(§'(9)"” and get
(33) Mg =B (a)-0(g B(a)-

Let p;/g; (¢=1,2,3,...) be the partial fractions of the number a.
According to inequality (1B), using the assumption that number
admits the approximation (p(qa(q)), and using (16) and (18), we find such

7‘
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a sequence of indices 4<Ci,<<y<... thab the following conditions are
fulfilled:

o0

B(¢:,) > 2, < oo,

,g‘:ﬁ (2:,)
S —— =1,2,3,...

bt S h @)

Let us define:
tn = [4:,6(4:,)
by=1/g;8(¢:), [1/'71‘P(t15(t1))],

by=1)g B(g)  for [ 19(ta18(-1)I<IS[L/tap (86 (4)]
: (n=2,3,...).

n=1,2,3,...,
i=1,2,...,

It is apparent that {b,}qu,(q) and we have to prove that
(34) wealb;).
We eagily find that
9’(‘11',.'1(%,.)) < 1
tn(p(tné (tn)) = Qm,.ﬁz(%,.)’
as according to (17) and (33) we have
(2, 4(2:)) < 8(6:,8(g,) . %, (2:,) (0, 4(g:) <«
b @ (tad (1) 4AM(¢,) Q«c,.ﬁ(%..)(s(!h,.ﬂ(!li,‘))qﬂ(!li,.‘s(fhnﬂ(%,.))) = 0,6 (4,
Relation (34) will be proved if we prove that the series
o U/ tagltnd(Ea))]

2

= F=14 [t pE-10(tn-1))]

(35)

ITjo—by,jo + b))
converges.
We use lemma 2 and have

& ( [/ typltad(ta))]
=2

I[jo — by,jz -+ b,
it )

', 1 1 &1
<a, 2(%/3(%)+tn¢(tna(tn))¢(q¢nl(qin>))<42 < oo

n=2 =2 /3 (Q'E,.)
according to (35). Thus the proof of lemma 11 is finighed and theorem 3
is completely proved.

Now we define the set Y, Let the function ¢(g) fulfil conditions
(17) and (18). Number y belongs to the set Y, if and only of there is
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such a positive number ¢,<{1 that number y does not admit the appro-
ximation ¢, @(q). As

¢ ¢, ¢ (¢
o9 (9)=—"q9(9) 2—’-’~-—¢(-—) = (~)
! q ¢ o ?
for g1, we have ¥, C¥ .
We state
THEOREM 4. Let the function ¢(q) fulfil conditions (17) and (18) and

- let us suppose that there is such o number 1>>0 that the inequality

. (36)

?(29) > lp(g)

holds for 1. Then Y =71, and according to theorem 3 we have a(B,q)=
=Y«,p(4)'

Proof. We have to prove that ¥,,0¥ .

Let us suppose that wEY',p(q). Then there iz such a function y(g),
1=y(9)>0, v(g)—~0 steadily with ¢ oo, that number z-admits the appro-
ximation y(g)@(q).

By means of condition (36) we easily find such a function i(g),
A(Q)=1, A(g)->oo steadily with g->oo, that the inequality

(87) ?(gA(e) = y(9)ela)

holds for ¢=>1.

Apparently we have I < 1. We put », =1 and find such a sequence
of real numbers v,<<v,<v,<... that y(v,)<I", »n=0,1,2,... Lebt (g)
be a non-decreasing function fulfilling conditions (1)=L, A(v,)=2""1,
n=1,2,3,... Then this function A(g) fulfils inequality (37), as v,—>co

 with n->co, and if v,<g<,,,, then

'p(0A(0) =0 (2") ZTp(9) = 7 (va)e(0) = ¥ (D (D)

It follows that number z admits the approximation ¢ (q}.(q)). Number
x does not belong to the set ¥,, and theorem 4 is proved.

Finally, we show that theorem 1 is a special case of theorem 3.

‘We have to show that

(38) Bya=B.

Let us fix a sequence {bi}eﬁ. We shall find a function 6(g), 6(q.)>1
for g1, 8(¢)->co steadily with g—>cc, and a sequence of positive inte-
gers f, <ty <ty << ... such that t,,,>1%, 6*(t,) and thab

b Dy srty = ©°
n=1
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As the series
o0 (=]
Z‘s”bwl(}s“zzzbi), 5=2,3,...,
n=1 4=

diverges, there iy such a sequence of indices 28,88 eeny §—>00
with ¢-+o0o0, that the series

D1g

(82" [

n=1

I

diverges.

We pub #,=(s,)" and find such a function o(q), 6(g)=1 for ¢=1,
8(g)—oo steadily with g->oo, that 8(t,)<(s,)"(n=1,2,3,...). It follows
that

=]

21 t D=0 {Pi}eBuees
n=

and finally f?CBl/qz .

4. In this section we shall generalise theorem 1 to the case of s linear
forms with » variables. We shall introduce the following notation.

Let B, be the additive group of real numbers, let K, be the one-di-
mensional toroidal group (which means that K, is the factor group E,/W,,
where W, is the additive group of whole numbers). Let &, be the natural
homomorphism of the group B, on the group K,. If #,¢%,, we put o=
=0, (m,),eK,. Tt & eK;, let us denote by v, (&) such a real number thab
O(p; (&))=4 and that —1/2<y(&)<1/2. We introduce the notion of
the norm ||£,|| of an element & ek : we pub [|&=|y; ()] Let

E,= B, xB;X...X H
‘K=K, xK;X...xEK,

(s times),
(s times).

If E=(&,&,..., &) e K, (& 6K, ,i=1,2,...5), we define the norm of
the element &

&l = mmax [I€.

.If £,meK, and if n iz an integer, we define &7 and né in an
obvious way. If neK,, 0<<d<<1/2, we define the ‘‘cube” C(n,d)

C'(md)==1£3§[56K37|]5—?7||<d]-

We denote by u the invariant complete measure on K, and we sup-
pose that this measure is normed by the condition u(K,)=1.

Let (44), 1=1,2,...,8, j=1,2,...,m, be a matrix with s rows and n
columns (y; are real numbers). We form the system of linear forms
(39)

YuhHYult i G—0;  1=1,2,...,s

e _®
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Let the function ¢(t) be defined for #>1, non-negative and non-
-increasing. We say that system (39) admits the approzimation ¢(t), if for
every number @ there is a point with n-}-s integral coordinates (g;,¢s,
vevy@nyP1sPay- -+ Ds) SUCh that the inequalities

Winds+ Y+ oo+ Yl — Pil Sp( MAX lg;D),
7=1,2,...,0

(40)
max |g>Q, i=1,2,...;5
i=12,...,n
hold. Let
77(7] = (¢1(@/1J) s Dy (Yaq) s .,Ql(yu))eK&, i=1,2,...,m.
Then the system of inequalities (40) is equivalent to the inequality
(41) g7+ A g lI<p ( max gy,
7=12,...,%

and we say that the system of points (n®,4®,...,7) admits the approwi-

mation p(g), if for every number ¢ there is such a point with n integral

coordinates (gi,ds;.--,qn), MaxX |g/>@ that the inequality (41) holds.
J=12,...n

Tt is known that each system of points (n®,4®,...,n®) admits the
approximation ¢,,t~™° +where the positive number ¢, depends on n
and s only.

Let us denote by Y, the set whose elements are systems of points
(#",7®,...,4™) that do not admit the approximation ¢q~"® where ¢ is a
guitable positive number depending on the system (7D, 7 .. ™).

We denote by ¢ the point (¢,,0,...,4,) Where the numbers ¢; (i=
=1,2,...,n) are whole and put

gl = max |g.
=1,2,., 7

Let the set B, contain all generalized sequences {bqlqu,_mq"}, =
=...—1,0,1,...,¢,=...—1,0,1,..., gy=-:--,~—1,0,1,..., which fulfil the
conditions
(42) bql-‘ls.....lln > 07
(43) bql,qm...‘q" < bqll.q’g ,,,,, an if IIQ“?”QIH’ Q"—‘(QM;,---,Q;),
(44) 2 (bfiquam.,rb-)s =09,

where the sum rung over all points ¢ with » integral coordinates ¢y, s,
ceryllpy 00 L [ << 00, — 00 o< 00y OOy OO
According to this definition we have by g, . 0= by o it llali=llg'll
A system (n®,7®,...,7™) belongs to the set a(By) if for every sequence
{yl‘qﬂ,m_qn} ¢B,, almost every point £eE, belongs to an infinite number
of cubes
Clan™ + @n® + oo+ 4™ Dt .
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This is equivalent to the condition that

T 5 Olan®+an®+ ...

k=1 llgi=>%

+ an(n)7bql,qg,...,q,.]) =1

for every sequence {b g, ¢)eBys

Now we are rea.dy to state

THEOREM 5. a(B,;) = Y-

‘We shall prove the first part of theorem 5 if we prove the following

Lmwwa 12. If the system of points (E0,&®,...,EM) does not belong to
the set T, then there is such a sequence {byq, ..}eBy, that the measure
u of the set

T 5 Olat® + g0+ ...

E=1 |22k

+ g.8", bqu,(lg....,q”]
8 zero.

Proof: As the system (&7, £®,..., &) does not belong to the set ¥, ,,
there is such a sequence of points with = integral coordinates

(45) 0 =(g?,d,...,4D)
that
6N+ PO ... ¢ )| < ¢yl g?|[~"",

where ¢>0, ¢;—0 with j->oo.
Let us choose an integer N>[¢¥|| and a number b>0 and let us
estimate the measure of the set

H(Nb)= 3 O[q,8 + 6%+ ...
<N

Let us choose such an index § that |lg¥}|<N. Without loss.of generality
we may suppose that [|¢?]| = ¢%’. Then we have the inclusion )

(46.1) H(N,B)CYCI0EY + g 69+ + 4,6, b+ Nljgh| ¢, g?)| ]

Hg(j)”<”qu+l)‘|’ j=1:273""’

+ 6, 6%,0].

¢) The inclusion (46. 1) is a consequence of the fact that all points” ¢ E‘“ }-q &?
+.. +q§"", (q ,q - ,g ¢, lIgI<< N, belong to the set

(46.2) 200y, Em’i‘q £ -+ £, NHflwll"lo llg?li="1
where the sum runs over the same points q as in the 1nclusxon (406.1).

Le}; us fix a point q§‘1’+g ¥l g, 01K, and Jeb us suppose that
g =" —1. We find such an mtever m that lg’ +mq"’|<||q"’]|—1 As we have
agsumed that |g7| =g, it follows that jm|< N/|jg” [] The norm of the difference of
the points g’ 5“‘+q£‘2’+ o+ GE and (g +mg?)E 4 (g +mgf 6+ .o (g +mg e
doesq not exceed [m(\pc,”q‘"n"‘/‘<N||.;lr‘,”[| ¢ [[q"’“ e, and the inequalities iq —I—mq"’J
<lg”l -1 lg +mg?|<|g| + Im|llg"| < 2N, i=1,2,...,n, hold. That means that
the point ¢ 5‘“+q§‘2’+ —i—qﬂ&‘"‘ belongs to the set (46.2).

e ©
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where the sum runs over all points ¢ with n integral coordinates
@130z +r 0, Which fulfil the conditions

— <<l -1, —2N<g<2y, ..,

From inclusion (46.1) we get

—2N <¢q,<2N.

(463)  w{E(N,b) <21 (6N)" (b + Nlg®) ol
Let us suppose that
(47) 1>¢> 2000 0, §=1,2,...

Tf this condition is not fulfilled, we choose a suitable subsequence from
sequence (45)). We shall further suppose without loss of generality that
the numbers ¢ ¥™+9, j=1,2,3,..., are integers.

Let us detine byq, g, =1 if llg] < [lg¥]l- o7+
by ton.tn = Hqﬂ(j)“i— nlsc? et

gl o7 ¥+ = Ny,

if
Ny = llg" 2 4+ < gl < §=1,2,8,...

First of all we verify that the series (b, _.)° diverges (the sum
a

rung over all points ¢ with n integral coordinates). We have

00

2 (bql,qz..,.an )3 > Z Z (b(lvaBn-.,Qn)B
q

f=2 Nj-1<llgl<Ny

> 51 I B 4 1) = e+ 1)

5 ] g0 P

J=2

21_22 [1—(¢/¢;-1)

We have proved that the sequence {Pirs...cn) fulfils condition (44).

Tt is obvious from the definition of the sequence {byg,..e,} that condi-

tions (42) and (43) are also satified. Consequently the sequence 1
belongs to the set B,,. According to (46.3) and (47) we have

O[g 8" + g %+ ... + Gut®

U
i=2  Nja<lldl<Ny
oo
< 3 Bl )

< 3 2[1gM- (6] o "+ (g e 0 g

A=2

)

nsf(+9)] >§ [1—2"]=o0.
j=2

1,92« Qn])

(=]
< 36799+ g8l < 0o, g. €. d.
j=2


GUEST


106 J. Kurzweil

In order to prove the second part of theorem 5 we shall need some
lemmas. First of all we state the following

DeNsITY THEOREM. Almost all points of a measurable set ACK,
are points of outer density for A and almost all points of the complement
of the set A are poinis of dispersion of the sef A.

This theorem holds in E, (Saks [4], Chapter IV, §10) and it is
apparent that it also holds in K.

From the Dengity Theorem we easily deduce the following

LeuMA 13. Let UCK,, VCK,, W=U®V (which means that the
set W contains all points { =&--n where £eU,neV).
If u(U)>0 and if the set V is dense in K,, then pw(W)=1.

As another consequence of the Density Theorem we ghall prove
the following

Leuma 14, If (q,9®, .., n™)eX, ,, then the set

(48) a0+ @+ g™
where q=(q1,9,...,4,) runs over all points with n integral coordinates
—00<L <00, —00<L L0, ..., —00L g, <00 48 dense in K,.

Proof. Let us fix a system (5®,7®,...
the points

(49) !Zl"?(lj +!lz"7(2) +...
where

1™)e¥, , and let us consider

+g, 7™

max |g]< 2"
f=12

and % is a positive integer which we shall choose later.

According to the definition of the set Y, there is such a positive
constant ¢ that the norm of the difference of any two different points of
set (49) is greater than

/2% >1 [orita
where ¢, is a suitable positive integer. Let

- =(B, (1,/2™), B, (1,/2™), . @y (52™)

where 1,,%,,...,%, and m are integers and let us consider the set of cubes
(50.1) O (2 eh,, 1 [pmerertl))

where t,,1,,...,% run over all integers

0<11<2kn+01’ 0 <12<2lm+cl , . 0 <ts<2kn+cl-
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Set (50.1) containg 2*"*+%° cubes which cover K, and as every cube
of this set contains at most one point of set (49), it follows that the num-
ber of the cubes of (50,1) which contain a point of set (49) exceeds 25",

If lemma 14 is false, then there is a cube C[£,1/2+!] that contains
no point of the set (48). (We may suppose that £=£} , where r,t,1,,

.,t, are positive integers).
. If ¢eK, and if m i3 a positive integer, we denote by £/2™ one of the
points {'e K, which fulfil the equation 2™ =¢.

If ACK, we denote by A/2™ the set of all points ¢ fulfilling the re-
lation 2™ ¢&'eA.

We eagily verify that

2-ﬂ10[§7i/27+] ]: 20[2'7”5""‘4’11:22,,

where the sum runs over all systems of integers f,t,...,
0<t,<2™, ..., 0<t,<<2™
As the points of set (48) form a group, the set

2-mO[E,1/2"H]

4y 1/27F7 ]

t,, 0t <2™,

contains no point of this set. Apparently each cube

Oy, 12", m=2,

containg a cube
0127 ™+ L, i 12710

It follows that mo point of K, is a point of dispersion for the set

fl 2—7n0[£’1/27+1]

m=1

and that
u( X omore 1=

Consequently there is such a positive integer %’ that
)4
(50.2) u( 3 27"CLE, 12 ) >1—27%
M=l
and that &' 4-r+1=nk-¢,+1 (Where the last.equation defines the number
% occurring in (49) and (50)).
It follows that the set

K
32 mO[E,1[20]
m=1

is a sum of the cubes of set (50.}).
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Let us denote by N the number of these cubes. According to (50.2)
we have the inequalities
N,2—(kn+61)8>1_2—013

and

.N} Z(Im-i-c;l)s__zkm'
As the get

kl
2270 [€,1/2m]

M=1

containg no point of set (48) we get a contradiction of the statement
that at least 2" cubes of set (50.1) contain a point of set (49).
Further we shall need the following d

LevyaA 15, Let us have
D=0[£0,b,]+ 0[N, by]+...+ O[M,b,1C K,

where &9, ED,
Let

PR, 1/42b,2b,2...2b,>0.

F=0[&0,20,]+ 0[9,2b,]+... 4 0[£M,28,).

Then we have u(F)<2°u(D).

Proof. We shall prove this lemma by means of induction. Lemma 15
is obviously true for k=1. Let this lemma hold for %—1 and let us define
the transformation T

T(6)=2(£—&M),  £eK,.

If Gis a subset of K, then by T(G) we mean the set of all points
T(&) where £e@. Let

(50.3) G=0[® b, ]— ’S‘lo[fw,bi].
=1
Apparently 1
(50.4) #{T (@)= 2°u(G).

We easily find that

k-1
szzl O[&,26]14+T(@)
It follows that

k-1
<u (,é 0169, 2;]) +  (T(6).

e ©
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According to the assumption that lemma 15 holds for k—1 and
according to (50.4) we get

k-1 '
w(F)<2% (121 CLED, b))+ 2°u(@).
Using (50.3) we get

p(F) < /t(ZC'[E”’ b1+6)=2"u(D)

and the proof of lemma 15 is complete.
After these preliminaries we return to the proof of the second part
of theorem 5. We shall prove the following

LevuA 16, If By, g €Bas and if ( (™0, n™)eX, ; then

ullT 2 Ol +an™+ + 6™ bogs,..0]) >0

k=1 |dizk
Proof. Let us fix a system (4%,7®,...,%)e¥, . According to our
assumptions this system does not admit the approximation ¢t~™* where
0<e<l. Let us choose a sequence {by,, .JeB,,. Let &k be a positive
integer which fulfily the inequality

(51) k> 202,
Let
D istttn =000 (s g, .2 1[4, (1/2) (21D ™),
bty n=bWo.0 1 FI<GI<E  (7=2,3,4,..),
bs'qu b;;o o I gk,

Z(bél,q%_ >k Z (b41 a2,. ql) )
a

lal>
Lemma 16 will be proved if we prove that for every i1

(52) ( 2 02, 71(1)4' 1 ’7(2) + -+ !Zn"l( qu....,qn])>2—5g08-
Let us suppose that there is such an integer t,=K", j,>1 that inequal-

ity (62) is false if t=t,.

@Oy -k oy 9
) @y — (2K 9y T K

a8 (K4 9) — (2R 4 0= (2K 9) — (2K O, j=0,1,2,...
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Let
= 2 Olon™+ (1277(2) +.t ?Zn’?(n) ) bm,az,...,a,.]
Ki=lgll>to
H;= 2 0[41?7(1)‘!" R S !Zn77(n)’2bq1,qg,..‘,q,.] (i=jo+1, jo+2,...).

W=ai>to o ]
We shall estimate the measure of the set @&y, —G;,j={i+1,j0+2,...

Let us denote by L;,, the set of points ¢==(¢;,4,...,%) (g integers) ful-
filling the conditions
>l >, an®+an®+..+ gun™eH;.

Let us denote by J;,., the set of points GO+ g0+ g™
where K <|lgll<E+, j=f,-+1,j0+2,..-
If £,0'ed; ., then
g — &'l = e (287 1) 7.

It follows that the set C[&,b]~8;,, does not contain more than
(2be= (2K 1Yo 1)
elements.
Further let

H{=30[ginV+¢ 7" +...+ g™, 2b;1,{12,...;an]
where the sum runs over all points ¢=/(¢;,¢,-..,4,) (g; integers) fulfilling

the conditions

¥=lgl>%, 2b o (2K ),

’
41,92, ..,8n
and

HP=30lgn"+ 4.4+ g™, 2} g, 0]

‘where the sum yuns over all points g=(gy,,...,¢,) (¢; integers) fulfilling
the conditions:
W>\|Q|]>t05 2b(’llqﬁ,‘..,‘h<c(2k7+1)—n/8'

According to our assumption that inequality (52) is false we have
#(@)<27%¢". Using lemma 15 we get u(H{)<2%-27%-¢*=2"% ¢ and
pHP)<2 0",

The set H{ has the following property: if E¢H® then there iy such
a point 7(£)eK, that we have the relation

£e0[7(£),(1/8)c(2K+") e 1C HP.

It &9, e g, ~HD, then the cubes

oLz (£9,(1/8)0(2K+1)™"9),  O[(£®)(1/8)c(20+1)~Ie]

@ ©
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are necessarily disjoint. Consequently the number of the elements of the
seb J; . ~H does not exceed

2—4308(1/4)0(2kj+1)—’n/8)—8= on=2s, k(i-)-l)n‘

The set J;.;~HP apparently does not contain more than (2K 1)
elements. According to the inclusion

JHlnH,-CJ7+1H§1)+Jj+1nH§.2)
we find that the number of the points of the set J j+1~H; does not exceed
2n-zsk(i+1)n_l_(2ki+l)n'

It follows that the number of the elements of the set L, is greater
than

(2707._1)”—2(2707—{—- l)"— gn-28p0+1ln >k(f+1)n(2n__ 9 (3/]0)"’—-2"_25) >k(j+1)n
(according to (51)).

Ag the inclusion

G — 620 1421 Ol ™+ g™+ ...+ 0u 7™, b;lﬂ‘l,-..,Qn]

9aLys1

holds and as the inequality by, . < c(2[g])~™/2 implies that the cubes
that occur on the right side of this inclusion are mutually disjoint, we get.

M(G7'+1_Gf)> Z (b(:h,élz ..... q»)s

@eLyt1
F D g 5 -2 ”
= kD (bki+k,o,..,,o) ,22 ™ (bki‘rl,o ,,,,, of
ki<|lgli<ki+1
—0-=2n ’ s
=2 91,42,.“,q") N
ki<llgll<xi+1

As the series (b, ,.)° diverges, we get a contradiction, which
Q
proves inequality (52) and lemma 16.

Let us now finish the proof of the second part of theorem 5. We
shall prove the following

Lemma 17. If (4@ ,9®,..,n™)e Y, ; and if {ar0s,..00) € Brsy them
o

2 ¢ [9[1 77(1) + ¢ 7}(2)+ vt Qn’?‘n) 3 bql,qm,..,q,.:l) =1.
=1 |lgll=%

Proof, We fix a sequence {b;,,, ,}eB,,. We find such a sequence
L R 102,004/ X
{bélz%.--,h} EBn,s that
1)

5 -0 with |g[|>oo.

150,04+ ,In
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As the series Y'BY) . o, diverges for s=1,2,3,..., there is such
q

a sequence of positive integers 888K e ey
the series

§;—>o00 with {-»oc0, that

1)
‘; bsuqu‘qhsugu ‘a0
diverges. Let
b 2) b(l)

(NGNS O M AR T
It is apparent that {3}, .}eB,, and that
b2
1,92,-+sn =0
bm+q’1,r12+q'2,...,4n+q'u

if ¢’ is a fixed point and [g|>occ. Consequently we have

(H 20[9177(1)+ Qz’?m"l‘ ‘l“!ln’?(n bfn)qn, Lal)>0
=1 4] .
according to lemma 16.

Further if

e n 2 0[‘1177(1) + ¢ 7](2) +...+ qw("’ bt(nm, --,un] ’
k=1 |dl=*
then

E et e [T 2 Olan™ 4+ o™

k=1 {gi=k

Ql N0 .Qn] .

According to lemma 14 the set ¢;7™ + ¢34 +...+ ¢, 7™ where g runs
over all points with » integral coordinates is dense in K,, and we finish
the proof of lemma 17 applying lemma 13. As lemma-17 is equivalent
to the includion ¥,,Ca{B,,} theorem 5 is completely proved.
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Sur le mouvement plan d’un liquide visqueux compressible
par

A. KRZYWICKI (Wroclaw)

1. Je présente dans ce mémoire les formules qui expriment les com-
posantes de la force exercée sur un courbe § par un liquide visqueux,
compressible, entourant cette courbe. Ces formules sont une générali-
sation des résultats de W. Wolibner [2] concernant le cas du liquide vis-
queux incompressible’).

Soit 8§ une courbe plane, simple, fermée qui sans se déformer se
déplace parallélement 4 une droite avec une vitesse constante, égale
4 U dans un liquide visqueux, compressible, remplissant tout le plan
4 Dextérieur de 8. J’admets pour simplifier que 1a courbe S posséde par-
tout une tangente continue. Soit XY un systéme de coordonnées liées
a la courbe §, ayant I’axe X paralléle & la vitesse de §; soient u,v
les composantes de la vitesse du liquide par rapport au systéme immo-
bile X 17, paralléle au systéme XY; soient p,p,u,» la pression, la
densité et les coefficients de viscosité du liquide. J’admets que les forces
extérieures n’existent pas.

Les équations du mouvement et ’équation de continuité ont la forme

ou Bu op 00
(at +(u— U) 5&) —{;4‘"’%4—#4%7
o ) v op 00
(Bt + (u— U) 6y) -—5?/ +v51‘7+,u41'v,
1)
= + Slelu— Ul+ 3 (e®)=0,
du v Bzu u
ol ) @=-6—w -|”-a‘:l;, A%_W—“W‘

1y Cf [1]. P. Udeschini a démontré qu'il n’existe pas de mouvement permanent
d'un liquide visqueux, compressible, entourant un corps solide et y adhérant, qui se-
rait régulier & lintérienr du liquide et tel qu'a Iinfini serait satisfaite la condition
Hm 92 (v — v, ) = 0.
r—»00
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