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Discrete Wiener—Hopf operators on
spaces with Muckenhoupt weight

by

A BOTTCHER and M. SEYBOLD (Chemnitz)

Abstract. The discrete Wiener-Hopf operator generated by a function a(e'w) with
the Fourier series 3, - an e ig the operator T(a) induced by the Toeplitz matrix
(@j— k)7 7= O some weighted sequence space F(Z , w), We assume that w satisfies the
Muckenhoupt Ap condition and that o is a piecewise continuous function subject to some
natural multiplier condition. The last condition is in particular satisfied if a is of bounded
variation. Our main result is a Fredholm criterion and an index formula for T'{a). It im-
plies that the essential spectrum of T{a) results from the essential range of o by filling in
certain horns between the endpoints of each jump. The shape of these horns is determined
by the indices of powerlikeness of the weight w.

1. Introduction. The theories of discrete Wiener—Hopf operators on
£2(7Z..), of Wiener—Hopf integral operators on L?(R,.), and of Toeplitz op-
erators on the Hardy space H?(T) are equivalent. The situation trifurcates
dramatically when changing the exponent 2 to an exponent p € (1, 00)
or when equipping the spaces with a (Muckenhoupt) weight. Then we en-
counter three different theories, each with its own difficulties and techniques,
although, and this is something like a miracle, the final results are almost
the same.

‘We here consider operators with piecewise continuous symbols. The Fred-
holm theory of Toeplitz operators with piecewise continuous symbols on
H?(T, g) with a power weight ¢ has its roots in the work of Muskhelishvili,
Gakhov, Khvedelidze, Simonenko, Widom, Devinatz, Shamir, to mention
only a few principal figures, and it was raised to an impressive and beau-
tiful edifice by Gohberg and Krupnik in the late sixties and early seventies
(see [11] and the references therein). In the late eighties, Spitkovsky [17]
completed the Fredholm theory of Toeplitz operators with piecewise contin-
uous symbols on HP(T, ¢) in the case where g is an arbitrary Muckenhoupt
weight. Subsequently, Karlovich and one of the authors were able to accom-
plish the corresponding theory for the spaces HP(I', p) where I" is ‘an arbi-

2000 Mathematics Subject Classification: Primary 47B36.

[121]



122 A, Béttcher and M. S8eybold

trary Carleson (= Ahlfors-David) curve and g is an arbitrary Muckenhoupt
weight (see [1]). The circular arcs prevailing in the Gohberg-Krupnik the-
ory metamorphose into logarithmic spirals and eventually into logarithmic
leaves with a halo in the case of general curves and weights. A key technique
in Toeplitz theory is Wiener—Hopf factorization (in the sense of [16]).

Wiener—Hopf factorization is not applicable to Wiener-Hopf operators
on the spaces £°(Z,.,w) and LP{Ry,w). The pioneering work on such op-
erators was done by Duduchava [6]-[9] in the seventies. He established a
round Fredholm theory for both discrete and integral Wiener—Hopf oper-
ators with piecewise continuous symbols on £(Zy, (n+ 1)) and LP(Ry ),
and he elaborated the fundamentals of the techniques that are used up to
the present (and also in this paper). Schneider [15] extended the results to
I? spaces with arbitrary power weights. The books [9] and [14] are excellent
expositions of this topic (see also [3]).

Wiener—Hopf integral operators with piecewise continuous symbols were
studied on LP(R,,w) with a Muckenhoupt weight w by Spitkovsky and
one of the authors in [4]. The approach of {4] is as follows: localization
techniques reduce the problems to Wiener-Hopf operators with piecewise
constant symbols, these can be interpreted as singular integral operators
on LP(Ry,w), and the latter operators can be transformed into Toeplitz
operators on HP(T, p).

In the present paper we consider discrete Wiener—Hopf operators with
piecewise continuous symbols on P(Z,,w) in the case where w is an ar-
bitrary Muckenhoupt weight. Neither Wiener—Hopf factorization nor the
strategy mentioned in the previous paragraph is applicable to such opera-
tors. We will rather employ an ingenious formula of Duduchava (8] for the
inverse of T{4) where (@, is a certain canonical piecewise continuous func-
tion and will have recourse to some recent techniques developed in [1] to
tackle general Muckenhoupt weights.

Duduchava and Schneider showed that the essential spectra of Wiener—-
Hopf operators on #P(Z..,w) and L? (R, , w) contain certain circular arcs if w
is a power weight. In [4], it was observed that these circular arcs may blow up
to horns for integral operators on LP(R,,w) if w is a general Muckenhoupt
weight. We here prove the emergence of horns for discrete operators on
P(Z+,w) with a Muckenhoupt weight w. As already said, although our
techniques are (and must be) different from those used in the LP(Ry,w)
and HP(T, p) settings, the final results do all coincide in an astonishing
manner.

The paper is organized as follows. Section 2 contains the main results,
while Sections 3 to 6 are devoted to the proofs. Sections 3 and 4 deal with
some properties of Muckenhoupt weights, in Section 5 we consider discrete
Wiener-Hoepf operators with certain canonical symbols, and in Section § we
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employ localization techniques to extend the results of Section 5 to more

general piecewise continucus symbols. In Section 7 we establish an invert-
ibility criterion.

2. Main results. Throughout this paper we assume that 1 <p < oo. A
weight on Z = {0,1,...} is a sequence w = {w, }22, of positive numbers.
Given a weight w, we denote by £#(w) := ¢#(Z;,w) the Banach space of all

complex-valued sequences ¢ = {z,}22, such that

o
gy = (3 lenle) " < oo,

n=0

We write w € A, and say that w is a Muckenhoupt weight for £° if there
is a constant C < oo such that

(1) ﬁﬂ(éwﬁ) 1/p(§nw’:q) 1/q <‘C

for all m,n with 0 < m < n; here and in what follows, g is given by 1/p +
1/¢ = 1. Hunt, Muckenhoupt, and Wheeden [12] showed that the matrix

0 -1 -1/2 -1/3

10 -1 —1/2

(2) S,=|12 1 0o -1
/3 1/2 1 0

generates a bounded operator on £ (w) if and only if w € Ap.

Weights of the form {(n+ 1)}, are referred to as power weights. It is
readily seen that a power weight belongs to A, if and only if —1/p < A < 1/q.
Given a weight w = {wn}22., € Ap, we define

I{w) = {AeR: {wa(n+ 1)1} € 4}

THEOREM 2.1. For every w € Ap, the set I(w) is an open interval that
condains the origin and whose length is at most 1.

Thus, we can write I(w) = (—u,1 — ¥) with certain numbers p = @ (w)
and v = v(w) satisfying 0 < g < ¥ < 1. We call p and v the indices of
powerlikeness of w. Notice that if wn, = (n+ 1)*, then p = v = 1/p+X (which
indicates that it might be more appropriate to call p—1/p and v —1/p the
indices of powerlikeness; however, we here adopt the terminology introduced
in [1)). In a sense, the larger the gap between u and v is, the more a weight
differs from a power weight. The following result shows that there exist
Muckenhoupt weights with arbitrarily prescribed indices of powerlikeness.
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THEOREM 2.2. Let A, e, be real numbers and suppose n # 0. The weight
w given by
(3) Wy, =
belongs to Ap if and only if

(4) —1/p<A—lelv1+n? €A+ ]el/1+n? <1/

The indices of powerlikeness of w are

(5) p=1/p+r=lglV1+n?, v=1/p+Ar+lelv1+7%
In particular, given any numbers p, v satisfying 0 < u < v <1, there exists
o weight of the form (3) such that (4) and (5) hold.

Given a weight w = {w,}5%, on Z, we denote by £#(Z,w) the Banach
space of all complex-valued sequences 2 = {z,}5% ., for which

= /
| #!erz, ) == ( > Iwnlpwfnl)l " <o
n=—o00

thus, we identify w with its continuation to an even weight on all of Z.

If X and Y are Banach spaces, we let £{X,Y) and KX(X,Y) denote the
bounded and compact linear operators from X to Y, respectively. As usual,
we put L(X, X) =: L(X), (X, X) =: L(X).

Let T be the complex unit circle. For a € L™ := L°(T), we denote
by {an}2._ ., the sequence of the Fourier coefficients of a,

(n + e))ﬁ-esin(n log{login+e)))

1 2m

— iny —ind

n = oo S a{e'e d#,

and we let I.{a) and T(a) stand for the Laurent and Toeplitz matrices gen-
erated by a:

L(a’) = (aj"k)fk=—oo) T(a') = (a'j—k)fk=0-
It is well known that L(a) generates a bounded operator on £2(Z). We

let M, . denote the set of all @ € L> for which there exists a constant
Cp,w,a < 00 such that

1L{a)2| 22wy < Cppallzllerzuy  for all z € £2(Z) N LF(Z, w).

Clearly, if o € My, then L{a) and also T'(a), the compression of L{a)
to £F(w), induce bounded operators on €°(Z,w) and £P(w), respectively.
The operator T'(a) is referred to as the discrete Wiener-Hopf operator with
the symbol a. The set M, ., is a Banach algebra with pointwise algebraic
operations and the norm

(6) 1allp.2w = 1L ()l cier iz
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In the case where wy, =1 for all n, we abbreviate £7(Z, w), £# (w), My, || - il

to £2(Z),£°, My, || - ||p, respectively. Finally, we remark that ||0,i|QO a.lways
denotes the L* norm of a; since || L{a)| g2 (z)) = |/allco, (6) for £2(Z) gives
the equality {lalj2 = ||al|co-

A function @ : T — T is said to be of bounded variation, a € BV, if
the function @ : [0,27] — C, 6 — a(e?) is of bounded variation, that is,
V(a) := sup Y7, |a(e"¥+2) - a(e®®)| < oo, the supremum taken over all
partitions 0 £ 81 <y < ... < Byyq1 < 2m.

Let PC stand for the closed algebra of all bounded piecewise continuous
functions of T into C. Thus, ¢ € PC if and only if a is bounded and has
finite one-sided limits (¢t + 0) := lim. 010 a(tei*) at every point ¢ € T. It
is easily seen that BV C PC.

The Stechkin inequality states that if w € A, then there is a constant
Cpw < o0 depending only on p and w such that

(M) llallp, < Cpw(llalleo +V(a))

for all a € BV. In particular, BV C M, ,,. For spaces without weight, this
inequality goes back to Stechkin [18]. A full proof for the case of general
Muckenhoupt weights is in [2].

The algebra M, ,, is continuously embedded in L°°:
(8) lallo < fiallpw foralla € Mp.

Indeed, taking into account that the adjoint of L(a) on £#(Z,w) is the op-
erator L{a@) on £4(Z,w™ '), and defining the operator V by (Vf)n := f—n,
we get
9  Ha)|zer@w) = IL@c@s@w—) = VL@V | 2o @

= || L)l cqes zw=1))
whence, by the Stein—-Weiss interpolation theorem,

lalloo = [1(@) 2@y < NE@NE e 2w 1 E@E oz
= L) oy | B o 2,y = Nl

Denote by PCp, the closure of BV in Mj, .. Estimate (8) implies that
PC, C PG, ie., functions in PCy,, have finite one-sided limits everywhere
on T. Since My = L*°, we have PCy = PC.

Given a number & € (0,1) and two distinct peoints z,w € C, we put

Az, w;8) = {C cCh\{z,w}: arg%——__—l: & 276 + 2'frZ} U{z,w}.
A moment’s thought reveals that A(z, w; §) is a circular arc between 2z and w
that lies on the left (right, respectively) of the straight line passing through

first z and then w if 0 < & < 1/2 (1/2 < & < 1, respectively). For § = 1/2,
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A(z,w;8) is nothing but the line segment [z,1]. Notice that for arbitrary
§ € (0,1) the line segment [z, w)| is seen at the angle min{2x4§, 27 (1 — §)} at
the points of A(z,w,d). Given real numbers u, v satisfying 0 < p < v <1,
we define the horn H(z, w; u, v) by

U Alz,w; ).
‘SE[-”:”]
To cover the case z = w, we finally put H(z, z; &, v) = {z}.
Let 0 < p < v < 1. For ¢ € PC, the set

Q= U Hia(t — 0), a(t -+ 0); p, v)
teT

results from the (essential) range of a by filling in a well defined horn be-
tween the endpoints of each jump. For every & € [u,v], the set ass is a
closed continuous curve entirely contained in a, .. The counter-clockwise
orientation of T induces a natural orientation of the curves ass. If 0 ¢ a, .,
then 0 ¢ as 5 for every § € [u, 7], and the winding number of a5 about the
origin is well defined and independent of § € [y, v]. We denote this winding
number by wind a,, ..

An operator A € £(X) is said to be Fredholm if it is invertible modulo
compact operators. In that case the kernel and the cokernel dimnensions of A
are finite, and their difference is called the index of A and denoted by Ind A.

H(z:w;ﬂi V) =

100t 100
5Qr 1 80
] ol
-50+ —50
~100 ~100
-160_ »~5‘0 0 50 100 —1(:)0 ~50 0 5‘0 160

The range of some a € PCp,.; vs. the essential spectrum of T'(a) in L{f*(w)). The indices
of powerlikeness of w determine the shape of the horns.

Here is our main result.

THEOREM 2.3. Let w € A, and let i < v be the indices of powerlikeness
of w. Let further a € PCy . The operator T'(a) is Fredholm on £ (w) if and
onty if 0 ¢ ay, .. In that case
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(10) IndT(a) = —wind a, ..

For the power weights w={(n + 1)*}22,, this is Duduchava’s theorem
[6], [8]. Note that in this case g = v = 1 /P + A and therefore the horns
degenerate to circular arcs.

The following result clears up the matter of invertibility.

ToEOREM 2.4. Let w € A, and @ € PCy,,. If T{a) is Fredholm of
index x on fP(w), then dunKerT(a) = max{x,0} and dim CokerT(a) =
max{—#,0}. In particular, the operator T'(a) is invertible if and only if it is
Fredholm of index zero.

3. Indices of powerlikeness. In this section we prove Theorem 2.1. To
do this, we need the following theorem, which states an important property
of Muckenhoupt weights,

THEOREM 3.1. If w € A, then there is an € = epy > 0 such that
w" € Ap forallre (1—¢,1+¢).

"This result is well known. Strémberg and Torchinsky [19, p. 11] state such
a result in an abstract context. A full and self-contained proof is also in [2];
that proof is an appropriate modification of the very clear proof given by
Garcia-Cuerva and Rubio de Francia [10] for Muckenhoupt weights on R®,

To prove Theorem 2.1, notice first that O clearly lies in T (w). Stein-Weiss
interpolation shows that I(w) is connected, and Theorem 3.1 implies that
I{w) is open. We are left with proving that the length of I{w) is at most 1.
Assume the contrary, that is, assume there is a A € R such that

{vn} = {wn(n + 1))‘} €Ay, {valn+1)}={w,(n+ 1)1} e A,

Using the Muckenhoupt inequalities (1} for {v,} and {v,(n+1)} and taking
into account Hélder’s inequality, we obtain

00 > C?
= ( : ¢ )1/19( <) /q(é(’” 1)””i)1/p(é(k+ 1)—'11;,;‘1)1/
= nlg(é ) ( k:-|-1) % )/Q(i(kH)pvz)l/p(z“:vk_q)l/q

'n%( k+1)(z(k+”) : (n+1)2(n+2)zkil

which is a contradiction.
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4. Horns of prescribed shape. This section is devoted to the proof

of Theorem 2.2.
Let I" stand for the half-line R, = {0,00) or for the upper half-circle
= {t € C: [t| =1, Imt > 0}. Let further v : I" — (D,00) be a
continuous function. We write v € A(I") if

1 1/p l/q
s v(t)? |dt] v(t) ™| de] < oo,
Tg? ?;IU) ( F('§',£) ) ( 1"(5‘,3) )

where I'{7,8) :={t e': |t — 7| < &}.
Throughout this section we assume that w : [0,00) — (0, 00) is a function
of the form

w(z) = expF(z), F(z)= f(loglog(z+ e)}log(z + €)

where § € C[0,0c) N C[0,00) and f and f' are bounded on (0, o0).
For z € R, let [z] be the largest integer that is not greater than z, let J;
be the segment [[z], [z] + 1], and define

wo(z) = mm wly), wilz)= ﬁ%}:w(y)
LeEMMA 4.1. There is o constant C < oo depending only on w such that
wn (z)/wo(z) £ C  for all z € [0,00).
Proof For every & € [0,00), there are a, 3,7 € J; such that
wolz) = wie), wils)=w(B), wla)=w(8)+v'(y)(a-~H)

Consequently,
wolz) _ wle) _wif)xwle—F) ., . 0] w'(y)|
wi(z)  w(B) w(F) yer w()
1 — max |2®) ((f'{oglog(y +¢)) | f(loglog(y + e))
=1 w(ﬁ)( yte - y+e )’
o e Il o

- x+e [x]+e 3
for all sufficiently large z, say for # > N. The assertion now follows with

_ wi0) w(l)  wV)
¢= m"’“{?” wo(orwou)"“’wo(m}' "

The following lemma allows us to pass from Z; to Ry.

LeMma 4.2. We have
{wln) il € 4p & we Ap(Ry).
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Proof Let m,n € Z, and m < n. With € from Lemma 4.1 we get

s (2 w) (St )

k=m
n— Tln~+~ 1 ( i ’wl(k)‘”) w( Zn: wo(k)—q) &
k=
=~ ;_{_ 1 (n-il—lwl(m)p da:) 1/11(”—50-1 o (5) dw) 1/q
=5 ;H'l(nirl Cruanl )pdm)llp( { Clun(e) qdm) :
o2 ntl il

< m( S w(x)? d:c)l/P( S w(z)™? dx)l/q.

Hence, if w € A,(Ry) then {w(n)} € 4,.
In order to prove the reverse implication, let 6,6 € By and a < &. If
a<b<a+1and [a] =[b], we have

1 1/q

b—a

(’iw(:c)" dac) Updw(m)“‘*dw)

1 P o
—— (b~ a)Pwn (fa]) (0 - o) wo(la]) ¢

Ifa<b<a+1land [a]+1=[b], then wo([a]) < w([b]) < wi(la]), whence

1 (Ew(a:)p dm) up(iw(m)_q dm) e

b—a

<

< max{w1 ([a]), w1([8])}
~ min{wo([a]), wol[b])}

max{ Cn(fa]), Cro (B} wilH) ,
< i O Ty ([a), O Fan (B} =

- w([b])
Finally, if e + 1 < b then
b] — [a]+1 < b+1““+1m1+ 2 <3
b—a b—a b—a

and thus
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b

b—ijaj ( § w(z)* d-’»“) " ( § w(z) ™9 dm) t/a

a

<3 i . ([b]S-H wi{z)? dm) v ( [b]SJrl wo(z) ™9 dw) M
(a] [a]
]
:bia [Xb]:wl k)P) ([iwg )”q
k=a] k=[a]
cz (¢l 1/q
~—bh—a kg[;] k)p) (k=[a] wik )
9 {b] / (2]
SWQL%;—I(J“;M k)p)l p(g )

This shows that w € A,(R.) whenever {w(n)} € Ay, »
We now pass to the half-circle Ty,
LEmMMA 4.3, Define p: Ty — (0,00) by

o(t) = w(it-l- 1) |t = 1|22/,

t—1

Then
we Ay(Ry) & o€ AT,

This is a standard result. A proof is in [4, pp. 265-266], for example.

Muckenhoupt weights on bounded simple Carleson curves can be studied
with the help of the machinery developed in [1]. The following theorem is an
immediate consequence of Theorems 1.13 and 2.33 and Lemma 2.35 of [1].

THEOREM 4.4. Suppose ¢ : Ty — (0, 00) is a weight of the form
Q(t) = eG(Et_ll): te T—!—;
with a function G & C(0,2) N CY0,2] such that »G'(r) is bounded for v in
(0,2]. Then
(a) the upper limit &,(z) := limsup,_o(G(zr) — G(r)) is finite for each
z € (0, 00);

(b) the limits of 0} :=limg o (P, (z)/log z), Bo):i=lMy oo (P,(x)/log 2)
erist and —oo < a(p) < Ble) < o0;
(c) we have

0€ A4(T1) & -1/p < afe) < Ble) < 1/g.
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We apply Theorem 4.4 to the weight ¢ introduced in Lemma 4.3. If
t€ Ty and [t - 1) =r, then i(t +1)/(t — 1) = /4/r> — 1, and hence p(t) =
w{y/4/r% — 1)r1 =2/ = ¢80 with G(r) = F(\/4/r2 = 1) + (1 — 2/p)logr.

LEMMA 4.5. We have
Pox) = lim sup(F(R/z) - F(R)) + (1 - 2/p) log z.
Proof. Obviously,
%, (@) = limsup(F(v/4/(zr)? = 1) — F(v/4/r* = 1)) + (1 - 2/p) log =
= Imsup(F(v/R?/2? —1) ~ F(VR? ~ 1)) + (1 - 2/p) log s,
and since F(\/R3/z2 1) - F \/1_2_2‘:_ 1) equals

F(/R?/z? - 1) — F(R/z) + F(R) — F(+/R? - 1) + F(R/z) — F(R),
it suffices to prove that
(11) Jm (F(vy? = 1) ~ F(y)) = 0.
Because

Ply) - PV —T) = P&y~ VI — 1) = %

with /4 ~ 1 < ¢ <y and
F(E)| < “f'”m Ml 170 + 11 £l

Tere = Y ’
it is clear that (11) holds. ]
LeEMMA 4.6. If f € G?(0,00) and f, f', f" are bounded on (0, 00), then

i su _ [ —M(f)logz for z € (0,1],
1?_?001’(F(R/’"} F(R)) = { ~m(fllogz  for z € [1,00),

where
m(f) = i inf (s (y) + fi),  M{f)= limsup(f(y) + £y}
Thig can be verified by the arguments of the proof of [1, Proposition 1.19].
Lemmas 4.5 and 4.6 yield that
ale)=—-M(f)+1-2/p, Ble)=-m(f)+1-2/p.
We therefore deduce from Theorem 4.4(c) that ¢ € 4,(T) if and only if
—1/p< —M(f)+1-2/p<-m(f)+1-2/p<1/q,
which is equivalent to the condition
(12) ~1/p<m(f) < M(f) < 1/q.
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LemMA 4.7. If f(z) = A+ esin(nz) and n # 0, then
m(fy=A—lelv/1+n%,  M({f)=2r+[evV1+7%

Thus, by (12} and Lemma 4.7, the weight ¢ corresponding to f(z) =
X+ e sin{ne) belongs to A,(T,.) if and only if (4) holds. Lemmas 4.2 and 4.3
complete the proof of Theorem 2.2,

5. Local representatives. In this section we prove Theorem 2.3 for a
class of special symbols with a single jump.
For v € C and 7 € T, we define ¢ : T\ {7} - Cby

o, (t) = exp(iy arg(—t/7)),

the argument taken in (—,x]. It is easily seen that ¢, - is C°° on T\ {r}
and that ¢ - (7—0) = €™ and @, - (7+0) = ¢”™7. The Fourier coefficients
of ¢, are

sin(my) ,n
(13) (rr)n=14 Tn—"7)

(-1

Also, for v € C, we denote by {1 — 2)7 the branch given by

for n #£ v,

for n = .

(1-2)7 = exp(vlog|l — 2] +ivarg(l — z)), arg(l—z2) € (—m,7l,
we define £y -, y,r 1 T\ {7} — Cby
bpr(B)=(1—7/8)", my-(8) =(1—t/7)7,
and we let T'(£, ), T (1) stand for the Toeplitz matrices
T(g’r,f) = ((g‘v,'r)j—k)fk=ou T(’?‘y,f) = ((nv,r)j—k);??kno
with
_[ (=) fornzo, - (—%)n("’) for n = 0,
(§yir)-n {0 " for n < 0, (Nyyrdn = 0 " for 7 < 0.
Notice that &y - and .. belong to L*{(T) if and only if Rey > ~1, in which
case the numbers (£y,7)n and (1, -)n are the Fourler coefficients of these
functions.
Finally, for v € C, put

. - +n
M, = diag(ui")2,, Y = (7 N )

It is not difficult to see that if K is a compact subset of C\ {~1,-2,...},
then there is a constant ¢x € (0,00) depending only on K such that

(14) et (n+ 1) < D] < cxe(n + 1)Re7
for all n > 0 and all v € K (see, e.g., [3, Lemma 6.21]).
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In x_;vhat follows, we think of 7 € T as being fixed and therefore we
abbreviate @, -, &y 7, y,r 10 9y, £y, 1y, respectively.

THEOREM 5.1 (Duduchava). If o € C\ Z, then
(15) T("?—Q)T(g«z) = PaMaT(‘P—a)M-m Iyi= -La“‘:
sin(mre)
in the sense that all entries of the infinite matrices are well defined and that
corresponding entries are equol.

This theorem was established by Duduchava in [6], [8]. We remark that
(15) is in fact a set of identities involving binomial coefficients. In {3, The-
orem. 6.20], this set of identities is proved by expanding a hypergeometric
function into a power series in two different ways.

COROLLARY 5.2. Let o € C\ Z and put
(16) Agy = T MyT (0 o) M_a.

We have AT (pa) = I for Rea > —1 and T(pq)A, =1 for Rea < 1 in
the sense that the entries of the infinite matrices are well defined and that
corresponding entries coincide.

Proof Suppose first that Rea = 0. Then £i, and 7., belong to
the Hardy spaces H>(T) and H*>(T), respectively. The matrices T o),
T{é+a), T(Mxa), M+, all induce bounded operators on 2, and the identity
Yo = £_aMe implies that T(pa) = T({—a)T(na). This equality in conjunc-
tion with Theorem 5.1 gives

(17) T(QDQ)AQ = T('f—a)T('r]a)T(ﬁ—a)T(ga) =I.
In order to extend (17) to Reax < 1, it suffices to prove that the entries of

T(pa) are well defined analytic functions in H :'= {&a € C\Z: Rea < 1}.
We have

(18) (T(pa)Ac)ik = 3 (0a)j-nL s (- adn-ri ™,
n=0

and since |(¢e)n| = O(1/n) and || = O(nRe=) uniformly with respect
to compact subsets of H (recall (13) and (14)), we get

|(¢a)j—n“£1a)(90—a)n—k| = O(nRea_2)
uniformly with respect to compact subsets of H. As Rea — 2 < —1 for
o« € H, it follows that the series on the right of (18} defines an analytic
function. The case Rea > —1 can be treated analogously. m

Corollary 5.2 shows that, at least for —1 < Rea < 1, A, may be inter-
preted as a formal inverse of T'(¢,). In order to understand the conditions
under which A, is really the inverse of T(p,), we need to know when the
operator T'(p_q) is bounded on £7(w). By (7), this is the case if w € A,,.
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The following result shows that the converse is also true. Notice that by
(13) the matrix T'(y) induces a bounded operator on £{(w) if and only if
so does the matrix T' = (Ti1)77 With

1
—— fork—-1- 0,
(19) Ta=4 k-1l ths
0 fork—1—~v=0.

THREOREM 5.3. Let v € C\ Z. If the matriz given by (19) generates a
bounded operator on £7(w), then w € Ay,

Proof For v = 0, this theorem was proved in {12]. Our proof is a
modification cf that proof.

Let a = Re~, b = Imry, and denote by @ the smallest natural number
which is greater than |a|. Fix m,n € Z+ so that m <n. If

(20) n+taskLn+a-m, m=<l<n,

then.
Re(k—-1l—-y)=k—-l-a>k—-1l-la>k—-1-820,

whence k — I — v # 0. Put
n k1)
(21) T = Z wy e, A= Z wy ¥
l=rn I=m
where ¢; is the lth element of the standard basis of £°(w). We have
Zk—l— ZRek—z_7=
{=m

I=m
It is not difficult to see that there is a constant D > 0 that depends only
on a and b such that

T

|(Tz)x| =

k—Il-a > D
(k—l—a)3?+bt " k-l—a
for all k, ! subject to (20). Thus,

(20) (21) 1
HTz)x| > Z — > D

l=m

In—2m+a—a

Finally, one can show without difficulty that there exists a constant E > 0
depending only on a such that D/(2n — 2m +&—a) > E/(n—m+ 1). This
implies that

1

22 . > —_ -
(22) ()il 2 BA— .
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If T is bounded on £P(w), then there is a constant C' < oo such that
|Ty|l £ Cliyl for all y € £P(w). Consequently, given any d > 0, we have

Z wz) 1/p
k:|(Ty)x|2d

Letting d = EA/(n — m + 1) and y = = from (21), we deduce from (22)
and (21) that

< Cd™ Myl

2nd-G-m 1/p 1/p
(23) (X w)7<( ¥ w)
k=n+z k{(Tz)|>d
n m+1(2( pwz)
l=m
n—m+1/<~ _ NP
*O—Er(;%‘”z ‘)
~mt 1l _\"le
Analogously one can prove that
2n+d—m _
o (S e T
I=m l=n+d

with some constant F' > 0 depending only on 7.
Combining (23) and (24) we obtain

2n+a—m

2n+&—m
1 ( )1/1’( _q) 1/q
—_— w w
(n—m+1)? 1=;+a‘ : 1-—%—& l
"
1/p /¢ (2
~q
(o) (D) < g5
I=m I=m
By Hélder’s inequality,
2n-+a—m 1/p 2neb@—m 1/q 2nAeB—mm
Y o) (Y w2 Y 1=n-me
[=n+& l=n+a& l=n+a&
Thus,
1 (i P)l/P(i _q)1/q< a?
e w w < ==
n—m+1 l=m I l=m, i EF

LeMMA 5.4. Let w € A, and o € €. The operator T{ip,) is invertible on
£P(w) if and only if Rea € I(w). .
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Proof Let Rea € I(w) and let wgy == {wn (n + 1)*¢=}52,. From the
definition of I{w) we infer w, € A,. Hence T{p_o) € L{£F(w,)) by (7). Be-
cause of (14), we have M, € L(#7 (wq), £F(w)) and M_,, € L{&(w), £F(w,)).
Thus,

Ao = TaMoT(9_o) Mg € LUEP(w), £2(w)) = L{£(w)).

As I(lw) C (=1, 1) by Theorem 2.1, we deduce from Corollary 5.2 that T'(¢,)
is invertible on £P(w) provided o ¢ Z. If o € Z, then the relation Rea € J(w)
gives that & = 0, which implies that T'(,) = I is invertible.

Conversely, assume that T'(p,) is invertible on #(w) and denote the
inverse by B,. Suppose first that Rea > 0. Then #°(w,) is continuously
embedded in #P(w) and hence M_, € L(#(w),#(w)). Put w_p =
{wn (n +1)"R2}2 . By (7) and (14), T(p-a) € L{#(w)) and M, €
L (w), ##{w_,)). Consequently,

(25) Ao = TaMoT(p—o)M_a € LU (w), P (w_g)).

If z € £P(w) is finitely supported, then T'(p,)Baz = %, and Corollary 5.2
(we exclude the trivial case where o € Z) in conjunction with (25) therefore
implies that An2 = Ao T(q)BoT = Bgx. Hence, 4, € L{(#P(w)).

Rewriting (16) in the form T(p_,) = I'T*M; A, M~} and taking into
consideration that M7l € L{£P(w), #P(w,)) and M} € L(£P(wy), £ (w))
by (14), we arrive at the conclusion that T{p.,) € L{#P{w,)). Now Theo-
rem 5.3 shows that necessarily w, € A,, which means Rea € I(w).

The proof is analogous in the case Rea < 0. »

LEMMA 5.5. Let w € Ay and a € C. We have
(26) Rea >0 = T(p.) is injective on ££(w),

27 Rea <0 = T*(pa) is injective on £2(w™1).

Proof Suppose Rea > 0. In the preceding proof we observed that
then (25) holds. Hence, if z € #(w) and T(¢,)z = 0, we deduce from
Corollary 5.2 (if o ¢ 7Z, otherwise things are clear) that z = A,T(0.)z
is the zero sequence in £ (w_,) and thus x = 0. This proves (26). The

implication (27) follows from (26) and the equality T* (¢,) = T'(@¢-5) where
@ is the complex conjugate of o =

We are now in a position to prove Theorem 2.3 for the operators T(i,).
Recall that
(Paduw = @a(T\ {7}) UH(™, ™™ u,v).

THEOREM 5.6. Let w € A, and let 0 < p < v < 1 be the indices

of powerlikeness of w. Let further « € C and k € Z. The following are
equivalent:
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(1) T(a) is Fredholm of index & on #P(w);
(i) Rea + & € I({w);
(iii) 0 & (¢a)y,. and wind(pa)uy = —&.

Proof. The equivalence (ii)¢»(iii) is plane geometry. We confine our-
selves to the proof of the equivalence (i) (ii).

Suppose Re a4 & € I{w). Then

T(Qﬁa) — {T((:D—K.)T(‘Pa—}—n) if & 2 Oa
T(pats)T(p-n) if k<0
Since T(pa+x) is invertible due to Lemma 5.4 and T(p_,) is Fredholm of
index x, we see that T'(,) is Fredholm of index .
Conversely, suppose (i, )} is Fredholm of index x. We have

_ [ T(pa)T(ex) ifx20,
T((Pa-{-n) - {T(:ZN))T(;‘ZQ) if 2 < 0:

and because T'((,) is Fredholm of index —&, we conclude that T(pg,) is
Fredbolm of index zero. Using (26) for Re e+ > 0 and (27) for Rea+x < 0,
we see that T'(¢a4,) must in fact be invertible. Lemma 5.4 therefore implies
that Rea + & € I{w). »

6. Localization. In this section we use localization techniques in order
to derive Theorem 2.3 from Theorem 5.6.

We first state the local principle of Gohberg and Krupnik. Let A be a
(complex) Banach algebra with identity ¢ and let 7 be an arbitrary set.
Suppose for each 7 € T we are given a set M, C A such that 0 ¢ M, and
such that for every fi, fo € M, thereisan f € M, satisfying f;f = ff; = f
(7 = 1,2). Furthermore, suppose that every collection {f,},c7 of elements
fr € M, contains a finite subcollection {f,} such that 37 £ is invertible
in A Put M = |} . M; and let Com M stand for the set of all @ € A
which commute with every element in M. Two elements a,b € A are said
to be M, -equivalent if infsepq, ||(a — B)fl| = infrem,. | f(a —b)|| = 0.

THEOREM 6.1 (Gohberg and Krupnik). If a € Com M aond if for every
T € T there exists an invertible element o, € A such that a and a, are
M -equivalent, then o itself is invertible.

A proof is in [11, Vol. I, Section 5.1] and [3, Theorem 1.31].

We apply this theorem to the Calkin algebra A4 = L{&(w))/K (P (w)).
Throughout this section we assume that w € Ay For A € L(£P(w)), we
abbreviate the coset A + K(¢°(w)) to A™. Let T =T, and for 7 € T, define
N, as the set of all functions f € CY(T) with the following properties:
0 < f <1 f=1in some open neighborhood U; of 7, f = 0 outside
some open neighborhood Wy of 7, f is monotone on W; \ Uy. Clearly,
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[|flleo = 1 and V(f) = 2 for every f € N,. Inequality (7) therefore shows
that T™(f) € A for all f € N,. Put M, = {T7(f) : f € N;}. To prove
that the family {M.}, cr meets the assumptions made above, we need a
few auxiliary results.

Let P be the collection of all trigonometric polynomials on T. If a € P,
then L{a} is a band matrix and hence P C My . We denote the closure
of P in My by Cpw. Notice that Cp = C := C(T).

LEMMA 6.2. We have CNBV C Cpo C C.

Proof. Recall that we assume w € A,

The inclusion Cp,, C C is immediate from (8). In order to prove the
inclusion ¢ N BV C Cpw, pick a € C N BV. One can show as in [13] or [3,
Lemma 2.44] that the Fejér-Cesdro means opa of any a € M,,, satisfy the
inequality
(28) lonallpw < llallp,w-

By Theorem 3.1, @ = w" € A, for some r > 1 sufficiently close to 1.
Since w = %7717 for some «y € (0, 1), the Stein—Weiss interpolation theorem
gives .
la — onallpw < |la— Una”glo,—m’y”a - Unﬂll;f,
and (28) together with (75 implies that

la - onallp.a < 2[allp.a < 2Cpa(lla] e +V(a)).

Thus, it suffices to prove that {|la — opall, — 0. It is clear that |ja ~ opal2 =
lle — onallee — 0. If p # 2, we can have recourse to the Riesz—Thorin
interpolation theorem to obtain

[la — onall, < la ~ onaliz™la — onall}
for some p € (1,2)U(2,00) and some § € (0, 1). Since, again by (28) and (7),
lle —anallp < 2]lafs < 2C5(l|a] e + Va)),
it follows that l|la — oqall, — 0. =
LEMMA 6.3. If a € My, and f € Cyp .y, then T™{(af) = T™(a)T™(f) =
T™(£)T" (a).

Proof. We have T(af) = T(a)T(f) + H(a)H(f) where H{a) and H(J)
are the Hankel matrices

. Ha) = (045+1)5k=0s ﬁ(f) == (f—~j—k—1)}"fk=u
(see, e.g., [3, Proposition 2.14]). Since H(a) is a part of L(a), we see that

H{a) induces a bounded operator on £°(w). (Recall that we assumed w €
Ap.) The operator H(f,) has finite rank for f, € P. As f € Cp ., is the
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Mp,w-limit of functions f,, € P and

() = B = 1H(f = £ < 1F = Fallpows

it results t.hat H(f) is compact on #7(w). This proves T"(af)=T"{a)T™(f)-
The equality T7(fa) = T™( F)T™(a) can be verified analogously. =

We can now prove that the sets M have the desired properties. Clearly,
0 & M,. For T’T(fl),T”(fz) € M,, we have f;f = ff; = f whenever
f € N has sufficiently small support. Lemmas 6.2 and 6.3 then give

TT(NT () =T™(NHT™(f;) = T™(f).

Now let {T™(f)}ret be a collection of elements T (fr) e M,. As T is

compact, there is a finite subcollection {f,, }72y such that
g:=fn+...+f, =e>0
Since g~ € CY(T) € C' N BV, we deduce from Lemmas 6.2 and 6.3 that
T™(g™ )T (g) = T™(9)T™ (g™ ") = T™(1),

which shows that T (g) is invertible.

LemMA 6.4. Let v € T. If a,b € PCyy and a(r £0) = b(r £0), then
T7(a) and T™(b) are M., -equivalent.

Proof. By the definition of PGy, there are an,b, € BV such that
lle—an|lpw — 0and ||b—by |l — 0. We can clearly assume that a, (7+0) =
a(7 £ 0) and b7 £ 0) = b(T £ 0). From the definition of M,-equivalence
we see that if T"(a,) and T (b,) are M -equivalent for all n, then T (a)
and T7(b) are M,-equivalent as well. Hence, we may assume without loss
of generality that a,b € BV,

By Lemmas 6.2 and 6.3,

1T (@) = T=@NT™ () = I T™ ()T (a) — T (B < lI(a — ) fllpw
for all f € ;. Evidently, there are f, € A, such that
lite — b} fullz = (@ — &) falle — 0.
Proceeding as in the proof of Lemma 6.2, we obtain f|(a ~ b} f|lpw — 0. m
Here is Theorem. 2.3 for continuous symbols.

THEOREM 6.5. Let a € Cp vy The operator T(a) s Fredholm on £2(w) if
and only if a has no zeros on T. In that case

IndT(a) = —wind a.

Proof. Suppose a has no zeros on T. Lemma 6.3 tells us that 7" (a) €
Com M. By Lemma 6.4, T7(a) is M-equivalent to a(7)T™(1) for each
7 € T, and since a(7)T™(1) has the inverse (1/a(7))T7(1), we deduce from
Theorem 6.1 that T (a} is invertible, i.e., that T'{a) is Fredholm.
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We now prove the index formula. So suppose a has no zeros on T. For
any b € Cp ., T'(b) is Fredholm and Ind T'(b) = Ind T(a) whenever |la—bl|p
is sufficiently small. By the definition of Cp ., we may choose such a b € P,
and clearly, we may assume that b does not vanish and wind b = wind a. We
can write

b(z) = b-(2)2" b, (z) (2 €T\ {0})

with bi € P such that b_(2) # 0 for 1 < |z| <oo and by (2) # 0 for [z < 1.
It follows that T'(b) = T'(b_)T(td?)T(b,.), and since T(by) have the in-
verses T(bz"), we get [nd T(b) = Ind T(t"*4?) = —wind b. Consequently,
IndT(a) = Ind T(h) = —wind b = — wind a, which completes the proof of
the index formula.

Finally, assume a(7) = 0 for some 7 € T but T7(a) is invertible. Set
b(t) = t—7. By Lemma 6.4, 7™ (b) is M;-equivalent to the invertible element
T™(a) at t = T and M,-equivalent to the invertible element (¢ — r)T™ (1) at
t € T\{r}. As T"(b) € Com M by Lemma 6.3, we deduce from Theorem 6.1
that T'(b) must be Fredholm., It follows that T'(t—() is Fredholm of the same
index as T(b) for all { in some open neighborhood U C C of 7. However,
from the index formula already proved we see that there are (1,2 € U with
Ind T'(t — {;) = 0 but IndT(¢ — ¢2) = —1. This contradiction proves that a
cannot have zeros on T if T'(a) is Fredholm. m

Proof of Theorem 2.3. Lemnmas 6.2 and 6.3 imply that T7(a) € Com M.
We can therefore make use of Theorem 6.1.

Suppose 0 & a,... Then a(r & 0) # 0 for every 7 € T, and we can find
~ € C and d, € C\ {0} such that

(29) a(r —0) = d,e™" = dr @y, (T —0),
(30) a(r +0) = dre™™7 = dripy, (7 +0).

By Lemma 6.4, T™ (a) is M -equivalent to drT" (., ). From Theorem 5.6
we know that d.T7(g,, ) is invertible, and hence Theorern 6.1 yields the
invertibility of T (a).

Conversely, suppose 7™ (a) is invertible. We claim that then a(7£0) # 0
for all 7 € T. Indeed, assume there is a 7 € T such that a{r — 0} = 0
or a(7 + 0) == 0. Since a has at most countably many jumps and since
invertibility of T7(a) is stable under small perturbations, we can assume
that a vanishes at a point 7 at which it is continuous and that T (a) is
invertible. As in the proof of Theorem 6.5, this implies that T™ (¢t — 7) is
invertible, which was shown not to be invertible. Thus, we have proved our
claim.

Once a(T£0) # 0, there are v, € C and d, &€ C\{0} satisfying (29), (30).
Since T™ (9. ) is M;-equivalent to the invertible element d7'T™ (a) at t = 7
and to the invertible element ., ()77 (1) at t € T\ {7}, Theorem 6.1 can
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be used to conclude that T(p,, ) is Fredholm. From Theorem 5.6 and (29),
(30) we then deduce that

0 ¢ H(G(T - 0),0:(1" + 0);#’: U)-

We are left with the index formula. Suppose for a moment that o has
only a finite number of jumps, at 71,..., 7y, say, and that a € BV. Then
we Can Write & = @y Pyymy - - - Po,, 7 € With appropriate 71, ...,9m € €
and a function ¢ in € N BV. One can show as in {3, Proposition 6.29] that
T™(a) = T™(¢y,m) - T™ (0, 7., )T™ (), whence

m
IndT(a) =Y IndT(ps, .,) -+ Ind T(c).
J=1

Theorems 5.6 and 6.5 therefore give

Ind7(a) = — Zwind(np%fj Yup — wind c.
i=1

Because
wind(fg),, = wind fu, +wind g,

whenever f and g have no common jumps, we arrive at formula {10).

Finally, for arbitrary a € PC, ., we can find a, € BV with only finitely
many jumps such that ||@ — anlje < ||@ — anllpw — 0. As

IndT(an) — IndT(a), wind(an)u, — winda,,,

and as (10) is true with o replaced by a,, we see that (10) is valid for all
0 € PCpy. m

7. Kernel and cokernel dimensions. In this section we prove Theo-
rem 2.4,

Recall that w stands both for the weight {w,}32, on Z; and the weight
{w|n|}$;°=_w on Z.

LEmMA 7.1, If w € A,, then there is a constant C' € (0,00) depending
only on p and w such that Wnik/wn < C(|k|+ 1) for all n, ke Z

Proof. The shift operator U* defined on £7(Z, w) by (U*f)p = fa-r is
nothing but the Laurent operator generated by a(t) = t*, and (7) therefore
implies that |U*|| < C(|k|+1) with some constant C' € (0, co) that depends
only on p and w. Letting e, be the nth element of the standard basis of
£P(Z, w}, we obtain

wh = [URen[P < CP(Ik] + 1P len|l” = CP(lk} + 1)7w]. =
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The convolution f * g of two sequences f = {fn}nez and g = {gnnez is
formally defined by

(F*9n=2_fegn-r (nED)
kel
LEMMA 7.2. Let w € Ap. If y € £4(Z,w™?) and & € P(Z,w) then, for
every n € Z,
[y * @) € O (In] + 1) |ylleacz, w1 |zl o2 (z,00)
where C is the constent from Lemma 7.1.
Proof We have

—\e 1/p
[y * z)n| = |Zyk3’n—k‘ < (Z lye Ty, q) (Z |$n-k|pwz)
heZ kez kez
1/q 1/p
= (D twlwi?) (X llut)
heZ =

and since wn_.;/w = wi—n/w; £ C(|n|+ 1) by Lemma 7.1, we arrive at the
assertion.

Formula (9) shows that My = My ,—1 and that [a|pw = ||a]gw-1.

LEMMA 7.3. If w € Ay, a € My, y € £2(Z,w™t), z € £P(Z,w), then
(y*a)*x and y * (e *2) are well defined sequences and

(31) [(yxa)*z],=[y*(axz)]n forallnciZ
Proof. From Lemma 7.2 we infer that

(32) |y *a) xzln| < C(lnl + Dy * allsez,w-1) ]| e (z,m)

< C(lnl + Dol g - I1¥lles w2 |l ez m),
(33)  |lw*(a*2)|al < C(Inl + Dllyllee(z -1 lla * 2]l er 2,

< C(lnl + Dlylles @1 lallp,w|l@ ] oo (2,10)-
The equalities (31) are easily verified in case y and z have finite supports.
By virtue of (32) and (33), these equalities hold for all y € £4(Z,w™!) and
xefP(Z,w). m

A classical result by Coburn [5] and Simonenko [16] states that if a €

L*\{0}, then T'(a) has a trivial kernel or a dense range on £2. Duduchava [6],
{8] proved this result for « € M, \ {0} and T'(a) on £° (see also [3, Theo-

rems 2.38 and 6.6]). Under the additional assumption that a is invertible in
My, we are able to extend the result to operators on £ (w).

THEOREM 7.4. Let w € Ay and a € My,,. If o is invertible in the

Banach algebra My, then T(a) has o trivial kernel or a dense range on
£ (w).
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Proof. Assume the contrary, that is, assume there are zy & £(w)\ {0}
and y4 € £2(w~1) \ {0} such that T{a)z4 = 0 and T(@)ys = 0. Extend z
and y,. by zero to all of Z. Tt follows that

Loy =asay =12_, z_¢ #(Z,w), (z)n=0 forn>0,
and

L@y. =Vary, =y, y_€f(Zw™), (y-)n =0 forn >0,

where V' is defined by (V f), = f_,.. It is easily seen that V(f+g) =V f+Vyg.
Taking Lemma 7.3 into account, we get

Vy-sz, =V(Vasyr)raz, =(axVy,) sz,
= (Vys #a) %24 = Vyp + (a50.) = Vg va_.

Because (Vy_ *zy), =0forn <0 and (Vy, xz_), =0 for n > 0, we see
that (Vyy *2_)n = 0 for all n € Z. Consequently,

(@4 do(z-)-1=0,
#Fido(z-)—2 + (T )i(z- )1 =0,
#do(@e)—s + @hi(e-)ez + @ a(z-)1=0,...
Since y # 0, it results that (z_)_; = (z_)_z = (z_)_a=...= 0.
Hence z_ = 0, which implies that L{a)zy = 0. As L(a) has the in-
verse L(a™!), we arrive at the conclusion that z,. = 0. This contradicts our
assumption. »

Proof of Theorem £.4. Let a € PC,,, and suppose T(a) is Fredholm of
index x. Then a{r =0} # 0 for all 7 € T by virtue of Theorem 2.3. In
particular, a is invertible in L>°. We claim that a—* belongs to PCp .

In order to prove the claim, we employ Theorem 6.1 with A4 = PG,
and with {M, },cr replaced by the family {A; },er introduced in Section 6.
Simple modifications of the proof of Lemma 6.4 show that a,b € PC,, ,, are
Ne-equivalent if (and only if) a(r £ 0) = b(r & 0). Thus, with v, € C
and d- € C\ {0} given by (29) and (30), a is MV -equivalent to d.ip., .
The inverse of dripy, r is d7'¢_, , and therefore belongs to PCp,,. So
Theorem 6.1 implies that o is invertible in PCp, ., which cornpletes the proof
of our claim.

From Theorem 7.4 we now deduce that the (normally sclvable) opera-
tor T'(a) is injective or surjective. This gives all assertions of Theorem 2.4
immediately. m
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The stability of Markov operators on Polish spaces
by

TOMASZ SZAREK (Katowice)

Abstract. A sufficient condition for the asymptotic stability of Markov cperators
acting on measures defined on Polish spaces is presented.

1. Introduction. We study Markov operators defined on a Polish
space X. Our goal is to prove sufficient conditions for the asymptotic sta-
bility of such operators. The crucial point in proving stability is to show the
existence of an invariant measure. When Markov operators are defined on
a compact space, the proof of the existence goes as follows. First we con-
struct a positive, invariant functional defined on the space of all continuous
bounded functions f : X — R and then using the Riesz representation theo-
rem we define an invariant measure. This method was extended by A.. Lasota
and J. Yorke to the case when X is a locally compact and o-compact metric
space [8]. When X is a Polish space this idea breaks down, since a positive
functional may not correspond to a measure. Therefore we base on the con-
cept of tightness. The main idea taken from [8] is nonexpansiveness in the
Fortet-Mourier distance. It is known (for details see [1, 6, 7, 8, 9]) that a
broad spectrum of Markov processes do not increase the distance between
measures transported by the corresponding transition operators. For such
operators our results could be applied.

The organization of the paper is as follows. Section 2 contains some
notation from the theory of Markov operators. In Section 3 we give some
general conditions for asymptotic stability and discuss the condition for
nonexpansiveness of P.

2. Preliminaries. Let (X, p} be a Polish space, i.e. a separable, complete
metric space. Throughout this paper B(z,r)} stands for the open ball in X
with centre at x and radius r. For every set € C X we denote by diam &
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