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Stochastic convolution in separable Banach spaces
and the stochastic linear Cauchy problem

by

ZDZISEAW BRZEZNIAK (Hul) and JAN VAN NEERVEN (Delft)

Abstract. Let H be a separable real Hilbert space and let E be a separable real
Banach space. We develop a general theory of stochastic convolution of L{H, E)-valued
functions with respect to a cylindrical Wiener process { W }tefo,ry with Cameron—Martin
space H. This theory is applied to obtain necessary and sufficient conditions for the
exigtence of a weak solution of the stochastic abstract Cauchy problem

dX; = AXidt + Bawf (¢t e 0,77,

(ACP)
Xo =10 almost surely,

where 4 is the generator of a Cy-semigroup {8(f)}+>n of bounded linear operators on I
and B € L{H, E) is a bounded linear operator. We further show that whenever a weak
golution exists, it is unique, and given by a stochastic convolution

i
Xt=SS(t-s)B aw¥ .
4]

0. Introduction. Let H be a separable real Hilbert space and let E be
a separable real Banach space. In this paper we set up a theory of stochastic
convolution for £(H, E)-valued functions which enables us to study existence
and uniqueness of solutions to the stochastic abstract Cauchy problem

dX; = AXf, dt+ B dWi-H (t € [0: T]))

ACP
(ACP) Xo=0 almost surely.

Here A is the generator of a Cp-semigroup {S5(¢)}s>0 of bounded linear
operators on F, B € L(H, E) is a bounded linear operator, and {WH# }iepo, 7y
is a cylindrical Wiener process with Cameron—Martin space H.
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If E is a separable Hilbert space, it is well known that a weak solution of
(ACP) exists if and only if the positive self-adjoint operator Qr € L(E*, E)

defined by
T

Qrz* = | S(t)BB*S*(t)z" dt  (a* € E)

0
is of trace class (we do not identify £ and its dual B here). In this case the
weak solution is unique, and given by the It6 type convolution integral

t

X, ={8¢-s)Bawf (te(0,T).

0
A detailed account of the theory of the problem (ACP) in Hilbert spaces E
is presented in the recent book by Da Prato and Zabezyk [DZ].

Due to the lack of a satisfactory theory of stochastic integration in Ba-
nach spaces, it seems impossible to give a straightforward extension of this
theory to the case where E is a Banach space. For this, one needs additional
assumptions on E, such as 2-uniform smoothness (equivalently, martingale
type 2). This approach is worked out in [Nh], [Brl], [Br3] and the references
therein.

From these works it is well known that the solution of (ACP), if it exists,
is an E-valued Ornstein—Uhlenbeck process associated with S and B, i.e. a
centred Gaussian E-valued process {X:}rejo,z) with covariance given by

tha

B((Xs, 2"} Xs,u) = | [B*S*(t — w)a*, B*S™(s — wy* | du.

0
In certain special situations, vector-valued Ornstein-Uhlenbeck processes
have been studied by various methods and various authors; we mention
Antoniadis and Carmona [AC], Millet and Smolesski [MS] and Rickle [R&].
However, the problem of giving necessary and sufficient conditions in terms
of 8 and B for the existence of such a process in the general case has not
been addressed yet.

In this paper we show that it is possible to set up a theory of stochas-
tic convolution in arbitrary separable real Banach spaces E. Let us briefly
outline its main features. Suppose H is a separable real Hilbert space and
¢ :(0,T] — L(H, E) is an operator-valued function satisfying

T
Vit |% dt < 00,  Va™ € B,
0 .
We show that the formula
T
(Qra*,y") = | @*(0)e", S (' lndt  (2*,4" € BY)
0
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defines a positive symmetric operator Qr & L(F*, E). Knowing this, we
can consider the reproducing kernel Hilbert space (RKHS) Hy associated
with Q; this is a Hilbert subspace of E. Denoting the inclusion operator

Hy <+ E by ip, we have Qp = ipo i7. We prove the following result
(Theorem 2.6 and Proposition 2.8):

THEOREM 0.1, The following assertions are equivalent:

(i) There exists an E-valued centred Gaussian process {&t}iepo, ) with
covariance given by

tAS
01 B e & y) = | 18- wa*, & (s — u)y*] g du.
0

{ii} The inclusion iy : Hp — E is ~y-radonifying.

An E-valued centred Gaussian process with covariance given by (0.1)
will be called an Ornstein-Uhlenbeck process associated with @. Note that
the second condition is equivalent to Q being the covariance operator of a
centred Gaussian Borel measure on E.

Our second main result (Theorem 3.3) shows that it is possible to ob-
tain Ornstein—Uhlenbeck processes by convolution with a cylindrical Wiener
process {WH hgpo,:

THEOREM 0.2. Let {WE beelo,r be o cylindrical Wiener process with
Cameron—-Martin space H. If the inclusion ir : Hp — E is y-radoni-
fying, then there exists a predictable E-valued Ornstein—Uhlenbeck process
{Xi}eerom which satisfies

t
(X, ") = S (B(t —5)dWH,z*) a.s.
0
Up to o modification, this process is unigque.

(te[0,T), z* € E*).

The weak stochastic convolution on the right hand side is defined in an
cbvious way (cf. Section 3). This justifies the notation
t
X, =\o@ - syawl.
0
If A is the generator of a Cg-semigroup {S{t)}:>0 on E and B is a
bounded linear operator frem H into E, we can apply these results to the
operator-valued function &(t) = S(t) o B € L(H, E). This enables us to
derive necessary and sufficient conditions for the existence of weak sclutions
for the problem (ACP)} and study some of their properties. The results can
be summarized as follows.

THEOREM 0.3. The following assertions are equivalent:
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(i) The problem (ACP) has a weak solution {Xi}iep,ry on [0,7].
(ii) The inclusion ip : Hy — E is y-radonifying.
In this situation, the solution is unigue, and given by the stochastic convo-

lution
t

Xy =8t~ 9B aw]
0

(te[0,T)).

The process {Xi}iep,) has a version with almost surely square integrable
trojectories. If the semigroup generated by A is analytic, then {Xi}iepo,)
has a version with continuous trajectories.

Recalling that a positive symmetric operator on a Hilbert space E is of
trace class if and only if it is the covariance of a centred Gaussian measure
on E, we see that our results extend the known existence and uniqueness
results for Hilbert spaces mentioned above.

In the final section we apply our theory to the following stochastic heat
equation driven by a homogenous space-time Wiener process:

-aa—f(t,w)=AX(t,w)+%—T:(t,m) (t€[0,T)),
X(0,z) =0, X(0)=X(1)=0.

Some of the questions that led to our research were motivated by the
theory of Feynman path integrals and their close relationship to the theory
of integrals with respect to “Ornstein—Uhlenbeck measures”, i.e. Gaussian
measures on spaces of vector-valued functions arising as image measures cor-
responding to the Cameron—Martin spaces of vector-valued Gaussian pro-
cesses. It is known that certain equivalent norms on the Camercon—Martin
space lead to equivalent image measures (cf. [ABB]). In [BN] we apply the
results obtained in the present paper to study equivalence of this type of
Gaussian measures in the abstract framework considered here.

1. Preliminaries. In this section we briefly recall some well known
facts concerning (cylindrical) Gaussian measures, For more details we refer
to [VTC}, [Schwl], [Schw2], [Kuo].

Let £ be a real locally convex topological vector space, with topological
dual £, A subset C of £ is said to be a eylindrical set if it is of the form
C={ze&: ({zal),. .. {z.2,)) € B} for somen > 1, z},...,2, € &,
and a Borel set B C R". The set of all cylindrical subsets of £ is an algebra
of sets and is denoted by C(£). A centred cylindrical Gaussian measure on
£ is a finitely additive set function x on C(€) whose images under the maps

x v ({2, 21), ..., (z,2})) are o-additive Gaussian measures on R", or equiv- -
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alently, whose Images under the maps z — (x, 2’ } are g-additive Gaussian
measures on [R.

If 7 is another locally convex space, and if 7' : € -+ F is a continuous
linear transformation, then the image T'(u) := poT™~? of a centred cylindrical
Gaussian measure on £ is a centred cylindrical Gaussian measure on F.

Let H be a real Hilbert space. By vx we denote the standard centred
cylindrical Gaussien measure on H, ie. the centred cylindrical Gaussian

measure on H whose image under every map g — (ig, h1lm,..., |9 hnlz),
with {h1,...,hs} orthonormal in H, is the standard Gaussian measure
on R™,

A continuous linear operator Q € L{£',£) is called positive if (Qz',z")
> 0 for all &' € &', and symmetric if {Qz',y') = (Qy',z') for all ' € £
and 3’ € &£'. With every positive symmetric operator @ € £(£',E) one can
associate a real Hilbert space Hg in the following way. On the range of @
one has a well defined inner product [,z given by

[@2',Qy]:=(Qz"y) (.4 €&).

Denote by Hg the Hilbert space completion of range @ with respect to this
inner product; this Hilbert space is called the reproducing kernel Hilbert
space (RKHS) associated with Q. If £ is quasi-complete, then the inclusion,
mapping from range ¢ into £ has a continuous extension to an injective
linear map i : Hg — £. In this way, the pair (i, Hg) becomes a Hilbert
subspace of £. Moreover, upon identifying Hg with its dual in the natural
way, we then have the operator identity @ = i04’. In Section 2 these results
will be applied to the (quasi-complete) product space & = FI%7T], with £ a
separable real Banach space.

Conversely, if (i, H) is a real Hilbert subspace of £ (i.e. 7 is a continuous
injective linear map from some real Hilbert space H into £), then @ :=
iod € L{E,£) is positive and symmetric, and its RKHS equals H.

The relationship between centred cylindrical Gaussian measures and pos-

itive symmetric operators in described in the following well known result
[VT'C, Chapter III].

PropoSITION 1.1. Let £ be a real locally conver topological vector space.

(1) Let H be a real Hilbert space and let T € L(H,E). The image eylin-
drical measure p = T(ym) i5 a centred cylindrical Goussian measure on &
whose Fourier transform is given by

[ explitn, ") (o) = exp(~ (T o1 5)) (o <€),
£

The RKHS Hg associated with the positive symmetric operator @ = T'oT" ¢
L(E',E) equals the range of T, which is o Hilbert space under the inner
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product
[TgsTh]HQ = [Pg1 Ph’]Hi

with P the orthogonal projection in I onto (ker T)*, the orthogonal com-
plement in H of the kernel of T'. Moreover, as @ map from (ker T)* onto
Hgq, the operator T' is an 1sometry.

(i) If & is quasi-complete and Q € L{E',E) is positive and symmet-
ric, and if w is a centred cylindrical Gaussian measure on £ with Fourier
transform

1
Jexpli(e, ) duto) = erp (3 (@5) ) (&' € )
£
then u = i(ve), where H is the RKHS of Q and i: H «— £ is the natural
embedding.

Let € be a real locally convex topological vector space. A measure p on
the o-algebra o(C(£)) generated by the algebra C{(£) is called a (centred)
Gaussian measure on £ if for all o’ € £' the image measure {(u,z’) =
po(z')"" is a (centred) Gaussian Borel measure on R. If I is a real Hilbert
space, a continuous linear operator T’ € £L(H, £) is said to be y-radonifying
if the image cylindrical measure T'(vg) has a (necessarily unique) countably
additive extension to a Gaussian measure on £. Note that in general the
o-algebra o(C(£)) is much smaller than the Borel o-algebra of £.

The following three examples of v-radonifying operators will be of im-
portance:

o If 4 is a centred Gaussian measure on £ with RKHS H, then the
inclusion map ¢ : H < € is y-radonifying, and we have i(vg) = p.

e If H and £ are Hilbert spaces, then T' € L£{H,£) is vy-radonifying if
and only if T is a Hilbert—Schmidt operator.

e If G and H are Hilbert spaces and S € L{G,H) and T € L(H,E)
are continuous linear operators, then 1" c § is y-radonifying whenever T is
v-radonifying [Bax], [Ram]|.

As is comunon, the dual of a Banach space E will be denoted by £* rather
than E'. We will frequently use sequential weak*-approximation arguments
in dual Banach spaces. One has to be careful with this, because a weak™-
dense Uinear subspace in the dual E* of a Banach space E need not be
wealk™-sequentially dense, even if E is separable. A counterexample is given
in [Di]. We get around this in the following way.

ProposITION 1.2. Let E be a separable real Banach space and let ¥ be

a linear subspace of E* which 1s both weak®-dense and weak*-sequentially
closed. Then Y = E*,
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Proof. The closed unit ball Bg~ is weak*-compact, hence certainly
weak*-sequentially closed. It follows that Bg« MY is weak*-sequentially
closed. Because the weak*-topology of By« is metrizable, Bg- NY is ac-
tually weak*-closed. Hence by the Krein-Shmulyan theorem [DS, Theorem

V.5.7], Y is weak*-closed. Since by assumption ¥ is also weak*-dense, we
infer that Y = E*. =

As a corollary we record:

CoROLLARY 1.3, Let u be Borel probability measure on o separable real
Banach space E, and suppose there is o weak™-dense linear subspace Y of
E* such thot the image measures (p, z*) are Gaussian for oll z* € Y. Then
v is o Gaussion measure.

Proof By Zorn’s Lemma there exists a maximal linear subspace ¥’ of
E* with the property that (i, z*} is Gaussian for all z* € Y. Since obviously
Y* C Y’ we see that Y’ is weak*-dense.

Let Y denote the weak®-sequential closure of ¥'. Let £* € Y be arbi-
trary and suppose that weak*-limy,..o 2}, = z* in E* for some sequence (x7;,)
in Y'. By the dominated convergence theorem, for the Fourier transforms
we have

i a3)(©) = Jim § expltlna2)) duts)
= | exp(it(y, ") duly) = (n,s")"(€), VEeR
E
As is well known [Nv, Lemme 1.5, this implies that (z,z*) is Gaussian.

We have shown that (u,z*) is Gaussian for all z* € Y. By the maxi-
mality of ¥’ we must have Y"" = Y’, and therefore Y’ is weak*-sequentially
closed. Proposition 1.2 now finishes the proof. m

2. The canonical Ornstein-Uhlenbeck process. Throughout the
rest of this paper, H is a separable real Hilbert space and E is a separable
real Bamach space. Suppose ¢ : (0,7] — L(H, E) is an operator-valued
function on (0,7 with the property that for all z* € E*, ¢ — &" (t}z* is a
strongly measurable H-valued function satisfying

T

[ lle* @)z 1% dt < oo

0
By a standard argument, the mapping B* — L*((0,T]; H) given by 2 +»
#*(-)2* is closed, hence bounded by the closed graph theorem. The space
of all such @ can be made into a normed linear space, which we denote by
L3({0,T]; H, E), by defining the norm of & to be the operator norm of &*
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regarded as an element of £{E*, L*((0,T1; H)):
T

I orinm = s ((§ (§ 1" @1 a).

For the rest of this section we fix # € L2((0,T]; H, E}.

LEMMA 2.1. For all z* € E* the function &(-)8*(-)a™ is a strongly mea-
surable E-valued function on (0,T).

Proof Fix z* € E*. Choose an orthonormal basis (hy) in H. Then, for
all t € (0,T] and y* € E¥,

(@) (t)z",y") = [@" ()", &*()y"]m = Z[¢* £)3", bl [B*(£)Y", n] 1,

which is measurable as a function of ¢t. This shows that &(-)&*(-}z* is weakly
measurable. Since by assumption E is separable, Pettis’s measurability the-
orern [DU, Chapter 2] implies that this function is actually strongly mea-
surable. =

PROPOSITION 2.2. For all z* € E* and t € (0,7 there erists a unique
element Qyx™ € E satisfying
t
(Qux*,y") = S(@(s)@*(s)m*,y*) ds, Yy*&E".
0
The linear operators @y from E* to E obtained in this way are bounded,
positive and symmetric.

Proof Fixt € (0,T]. Define Qsz* € E* by

t t

[(8(5)8" (5)2%,y") ds = | [#*(s)a™, " (s)y"lmds (v € B").
0 0

Note that this integral is finite by Hélder’s inequality and.the integrability
assumption on ¢. By the boundedness of the map z* + &*{-)z* from E~
imto L2((0,T); H), the resulting linear operator @; : E* — E** is bounded.
We must prove that @ is actually E-valued.

Fix = € E* arbitrary. We claim that §:z* acts weak®™-continuously on
the closed unit ball Bz« of E*. By the Krein—Shmulyan theorem, this implies
that Qsx* belongs to F, and the proof will be complete.

Assume, for a contradiction, that the claim is not true. Since E is sepa-
rable, the closed unit ball of E* is weak*-sequentially compact, and we can
find an € > 0 and a sequence (yi) in Bg+ that weak*-converges to some
y* & Bp+ such that

(2.1) (U5 Qe®) — (", Qez™) Z e (n 2 0).

(y*a th*)

icm

Stochastic convolution 51

For each s, the adjoint operator ¢*(s) is weak*-continuous from E* into H,
and hence weak”-to-weakly continuous. Therefore, lim,, $*(s)y;; = &*(s)y*
weakly in H for all s € (0,7], and '

(22) lim (@(s)8"(s)o",u2) = lim [&*(a)2", " (s)u

= [&"(s)z", 8" (s)y" ] = (B(s)B" (s)z", y")-

The boundedness of (y}) in E* implies that the function sequence ($*(-)yy)
is bounded in L2((0,%]; H). Since L2((0,]; H) is reflexive, upon passing
to a subsequence we may assume that ($*(-)y}) is weakly convergent in
L2((0,%]; H) to some limit function f. As &*(-)z* € L2((0,t]; H), we then
have o

t t
(2.3) dim [ (@(s)8(s)2", ) ds = | [8" (s)2*, f(5)]m ds.

0 0
The weak convergence $*(-)y: — f implies further that there exist convex

combinations
K,
* *
z’ﬂ. - : :Ak,n‘yk

lo=n
such that &*()z* — f strongly in L*((0,£], H). Passing, if necessary, to a
further subsequence of (27), we even have ®*(c)z} — f(c) strongly in H
for almost all o € (0,%). For any o with this property,

(2.4) lim (3(0)8"(0)z", 27) = [#" (o)™, f(0) m

On the other hand, because we take zX in the convex hull of {y} : k > n},
by (2.2) we have

Lim (B(s)8(s)2", 27,) = (B(s)"(s)e",¥7)
for all s € (0,%]. From this and (2.4) it follows that
& (0)2", f(0)]m = (B(o)F"(0)2™, ")

for almost all o € (0,#]. Combining the above with (2.3) we obtain
t

Jim (ys, Q) = lim {(@(0)9" (0)z" w7} dor
0
=8 (0)o", foYim do

= | (8(0)8* (0)a*, y") do = (7, @sa”).

0 s o (D G

But this contradicts (2.1). m
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Proposition 2.2 shows that for all ¢ € (0,7] we have a well defined
bounded linear operator Q; € L(E* E), which can be represented as a
Pettis integral by

t

Qiz™ = S@(s)f_ﬁ*(s)m* ds (z* € E*).

0
Clearly, @Q; is positive and symmetric; we denote by (4, Hy) its RKHS (cf.
Section 1 for the definition). If 0 < s < ¢ < T, then for all z* € E* we
have ||@sz*| 7, < [|@Qiz*| ., which implies that there is a natural inclusion
H, — H; (cf. [Nel], where it is shown that this inclusion is in fact a con-
traction).

Just as in Lemma 2.1 one proves:

LEMMA 2.3, For all t € (0,T] and z* € E* the function s = &(t ~
3)®*(s)x* is a strongly measurable E-valued function on (0,t].

For each t € (0,7] we let H; = H¥ denote the closure in L2((0,T7; H)
of itg linear subspace {x0,4®"()z" : z* € E*}.
LEMMA 2.4. For each t € (0,T] there exists a unique bounded linear
operator Iy, : Hy — H, which satisfies
t
[I@,t(x(g,t]@'* (')f):'i:y*]ﬂs = S (¢(t — S)QS*(S)T’*: y*> dS, Vm*:y* € E*.
0
Proof. By the Cauchy-Schwarz inequality and the identity

™ |7 = Ux0,02" )y o200
we have
i

|§(@(t - )8 (s)a",y") ds|
o]
t

= ‘ S (@ (s)z*, " (t — s)y*|u ds
0

< xa® (" |22 (o, ixio,0 8™ (Y™ 22 (00, 73 10)

= [0, 8" (2" |l |53y | o -
It follows that the map
t
iry* = §(B(t — )" (s)2*,y*) ds
0
defines a bounded linear functional on H; of norm < [[x (04 (-)8* (-)* [In,-
By the Riesz representation theorem, this functional can be identified with
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an element of Hy; we will denote it by Is:(x(04®* (-)z*). In this way we
obtain a bounded linear operator Is; of norm < 1 from the linear span of
{x(0,y®*(-)x* : 2" € E*} into H,. Since this span is dense in H;, the result
is proved. n

From the identity
(2 o Ip,1)(x(0,0 8" ()2*), ¥") = (a2 (x(0,09" ()="), i7" | 1.

(@t — )@ ()z*)(s),y) ds
0

f

and a continuity argument we see that ¢; 0l ; can be represented as a Pettis
integral by
t

(rolsp)g =Bt —s)g(s)ds (g&He).
0
Noting that f — Xx(o,qSf defines a contraction from Hy onto Hy, we can
define a continuous linear operator I : Hr — E®T] by
0, t=0,
(e f)e) = {( o Lns)(xoaf) t€@©T]

THEOREM 2.5. If the embedding ir : Hr — E is y-radonifying, then so
is the operator Ip : Hy — EOT], '

(f € HT).

Proof We noted earlier that for each 0 < t < T there is a natural in-
clugion iy ¢ Hy — Hr. Composing this with the inclusion i7 : Hqp — E we
obtain a factorization i; = iy ody . Since ir is y-radonifying by assumption,
it follows that each of the inclusions #; is y-radonifying.

Let v = vg 1= Ig(yr,) denote the image cylindrical measure on £
under Ip of the standard cylindrical Gaussian measure Yy of Hr. Let
5, » BI%TI - E denote the point evaluation at £, and let vy = d(v) be
the corresponding image cylindrical measure on E. By Proposition 1.1 the
covariance operator Ry € L(E*, E) of v; is given by B = ér o0 Ip © I 0 41
For 4* € E* and f = $*(-)z* € Hr we have

[0,77]

= @ (t — )" flrr-
Therefore,
(2.5) (I o 8)y™ = x0.9F" (¢ — W™
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and for all z*,y* € E* we obtain
(Rez*,y*) = [(Ig 0 8)a", (T 0 8}y i

= X" (t — )7, x 00 ®" (t — )y Inr

t
= {(@(s)8* (s)z",y") ds = (Quz",¥")-
0
But @, is the covariance operator of the Gaussian Borel measure py =
i¢(vm,), and it thus follows that 1 = (4 as cylindrical measures on E. We
conclude that v, extends to a centred Gaussian Borel measure on E.

Now suppose 0 £ & < ... < tp < T are fixed and consider the
canonical projection g t.1 ¢ EOTL 5 En f = (f(t1),. .., f(ta)). Let
Yty tnd *= 8ity,..ia} () By a result of Dudley, Feldman and Le Cam
[DFL, Lemma 5], the fact that each 4, extends to a centred Gaussian Borel
measure on F implies that vy, 6.1 extends to a centred Gaussian Borel
measure on E™. By the Kolmogorov consistency theorem the projective limit
of these measures exists and defines a probability measure ¥ on the product
o-algebra B(ET]) of EIOT]. But since this measure is completely deter-
mined by its finite marginals vy, ¢,y it follows that ¥ = v. This proves
that » extends to a Gaussian measure on (BT, B(ECT])),

Suppose the embedding ir : Hy < E is y-radonifying and let vg =
Is(y#r). By Theorem 2.5, this is a Gaussian measure on (BIOT] B(EI0T])),
On the resulting probability space (2, 7, P) = (EOT], B(EIT]), vg) we con-
sider the canonical process £ = {:}repo,7) defined by point evaluation:

&(w) =w(t) (te[0,T))

THEOREM 2.6. Suppose the embedding iy : Hy — FE is y-radonifying.
The canonical process {&:}iepp,z) 1 an E-valued Gaussian process with co-
variance

tAs

B{(&, 2", y™) = | [8*(t — w)a™, 8" (s — u)y"]u du.
0

Proof. We compute, using (2.5) and Proposition 1.1,

E((ftzm*xgs:y*}) = [Ifé(m* @ 5t)1 Iéi(y* @ 53)]?11'
= (I3 0 6)2", (I3 0 8)y" vty
ths
= S [B*(t — wyz*, (s —u)y* g du. =
0
DEFINITION 2.7. An E-valued stochastic process {X}1¢(o,7) Will be called
an Ornstein—Uhlenbeck process associated with the operator-valued function
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& ¢ L?((0,T}; H, E) if it is centred Gaussian with covariance given by
thAs
E({(X,, s"){( X, ")) = S (8" (t — w)z*, $" (3 — w)y™| & du.
0

The canonical process {£; }1¢jo,7) of Theorem 2.6 will be called the canonical
Ornatein—Uhlenbeck process associated with @.

‘We close this section with the following converse of Theorem 2.6:

PROPOSITION 2.8. Suppose { X }seio,1) 8 an Ornstein-Uhlenbeck process
with respect to a function ® ¢ L2((0,T); H, E). Then the inclusion mapping
ip 1 Hp < E i3 y-radonifying.

Proof. Let gy denote the distribution of the E-valued random vari-
able Xr. Then urp is a centred Gaussian Borel measure on E whose covari-
ance operator Ry € L(E*, E) satisfies

T
(Rpz*, @) =E((Xp,2*)?) = | 0" (T —w)2", 8*(T —w)z"]q du= (Qrz",z").
0
This implies that Qr = Ry, from which we infer that Q7 is the covariance
operator of up. On the other hand, Q7 = ir 04} is the covariance cperator
of the image cylindrical measure iz (ym, ). Since a cylindrical measure is
uniquely determined by its covariance operator, it follows that it (yas) = pr
as cylindrical measures. This implies that ¢ (yx, ) has a o-additive extension
to a Bore]l measure on E, and thus ig is y-radonifying. m

3. Stochastic convolution. As before, we let E be a separable real
Banach space and H a separable real Hilbert space.

In this section we shall investigate under what conditions it is pos-
sible to define a stochastic convolution of an operator-valued function @ :
(0,T] — L(H, E) with respect to a cylindrical Wiener process {WE} e
with Cameron-Martin space H. We start with a definition.

DEFINITION 3.1. Let (£2,F, {Fi}eep,r), P) be a filtered probability space.
A cylindrical Wiener process with Cameron—Martin space H is a family
{W# }iei0,47 of bounded linear operators from H into L?(P) with the fol-
lowing properties:

(i) For all h € H, {WEh} e, is a real-valued Brownian motion
adapted to the filtration {F: }rep,77-

(ii) For all t,s € [0,T] and h,g € H we have

E(WEZh-Wig) = (tAs)[h gla-

Instead of W h we will usually write [Wi, h].
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Consider an operator-valued function ¢ € L*((0,7]; H, F) (we recall
that this space has been defined at the beginning of Section 2) and let
{W# }1epo,r) be a cylindrical Wiener process with Cameron-Martin space H.
We briefly outline how to define, for all z* € E*, a stochastic It6 type integral
Sg (B(s) dWH  z*). If $(5) = X(tp,1,](8)U for some fixed U € L(H,E), we

put
T

{(@(s)aw ], a") = WH, U*g*] — W, U]
0

Extending this definition by linearity, we obtain a stochastic integral for
L(H, E)-valued step functions. For such a step function @ it is straightfor-
ward to verify that

T
(3.1) ]E{ ( S (B(s) dWE, ;,;*))2} = Hgﬁ*(-)m*“ie((o,&“];y).
0

The construction is completed by the following observation:

LEMMA 3.2. For each & € L2({(0,T]; H, E) and z* € E* there exists a
sequence of step functions ($y) in L2((0,77; H, E) such that

Jim 187()a" = &L0)e" o e = O
Proof. Let H' be the closed linear subspace in H generated by the set

{®*(t)z* : t € (0,T]}. Choose a sequence {¢,,) in L*((0,T}; H') consisting
of step functions of the form

N
¢al) = E X(tn gt s42) () @ 5
=1

such that limy 0 ¢n () = &*(-)o* almost surely and in L2((0, T]; H'). There

is no loss in generality to assume that each h; ; is in the linear span of
(&*(t)a* : ¢ € (0,T]}, say hl,; = Ypni P*(tn,k)z*. Defining Uy =

Sord B(bng0), and

Np
ds'ﬂ() = Zx(fn,j;tn.j+1] () @ Un,j’

=1
we have & (-)o™ = ¢,(-) and the lemma follows. m
Fort € (0,T] and & € L*((0,T]; H, E) we have x(0,94® € L*((0,T); H, E).
This allows us to define
¢ T

{ @) aW %) = | (x(0,(8)B(s) AWE, 2*).
0 0
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For the rest of this section we fix ¢ € L2((0,T); H, E) and a cylindrical

Wiener process {W# e, with Cameron—Martin space H. As before, we
let
T

Qrz* = Sﬁ(s)@*(s)m* ds

and denote by Hy the RKHS associated with Qr; for the natural embedding
map i : Hy — E we then have Qp = i o 4%,

‘THEOREM 3.3. If the inclusion ir : Hy «— E is y-radonifying, then there
exists o predictable E-volued process {Xi}iep 7, adapted to the filtration
{Filieo, ), such that for all z* € B* and t € [0, T] we have

t
(3.2) (Xe, 2*) = S (B(t—s)dWE z*)  as.
0
Up to a modification this process is unique. For oll z*,y* € E* and 0 <
s,t < T we have
tAs
(33)  E({(Xez") (X y") = | [8"(¢ ~ w)z™, " (s — )]z du,
0

i.e., the process {Xt}tE[O,T] is an Ornstein-Uhlenbeck process associated
with &.

Proof. Uniqueness up to a modification is obvious from the Hahn-
Banach theorem and the separability of E.

Let j : E — F be a continuous dense embedding of E into a separable
real Hilbert space F. As is well known, such a pair (7, E) always exists (for
instance, let (z}} be a weak*-dense sequence in the dual unit ball Bg-, let
{An) be a summable sequence of strictly positive real numbers and define
E to be the completion of E with respect to the inner product [x,y] B =
St A (@, T (v, @h); of. [Kuo, p. 154]).

For t € (0,T) define &(t) € L(H, E) by

B(t) 1= j o B(1).

It is immediate that & ¢ L2((0,T]; H, B). For t € (0,T) let §; € L(E*, E)
be defined by

o

Qia* == | B(s)8"(s)&" ds.
0
‘We have Q"t = jo@@soj*. Let (?T, I?IT) denote the RKHS assgciated with, @T.
The map kg : @TE* -+ Qrz* extends to an isometry from Hr onto Hr, and
we have ip = j 0 ip o kr. It follows that ér is -radonifying (cf. Section 1).
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The space E being a Hilbert space, we may define an E-valued process
{Xt}te 0,7 by the Hilbert space-valued stochastic Itd convolution integral
t
X =8t —s)dw/]
0
(cf. [DZ, Chapter 4]); this process is predictable and adapted to the filtration
{Fiticiom

‘We denote by Ji; the distribution of the E~valued random variable X;.
This is a centred Gaussian Borel measure on E. By the theory of stochastic
convolutions in Hilbert spaces, {Xt}tE[O 1] is an Ornstein—Uhlenbeck process
associated with the function &; in particular, the covariance operator of [i;
equals Qt

By a theorem of Kuratowski [VTC, Chapter 1], jE is a Borel subset
of E. We are going to show that fi:(jF) = 1.

Since by assumption the inclusion map iy : Hr < E is ~-radonifying,
the remark preceding Lemma 2.3 and the results mentioned in Section 1
show that for each t € (0,77 the inclusion map iy : Hy — E is y-radonifying
as well. Let v 1= 1(vm,) and let 7 := j{1n); these are centred Gaussian
Borel measures on E and E, respectively. The covariance operator R, of %)

is given by .

{18 (s)2" LB ()5 ds = (@, F").

0

(RZ*,F*) =

It follows that fﬁf = Qt. Since a centred Gaussian Borel measure is com-
pletely determined by its covariance, we conclude that 7y = [iy. But from
7y =j(1y) it follows that %(E) = v¢(E) = 1. This proves that fi:(jE) = 1.

As a consequence we have X, & 4 F almost surely. This allows us to define
an F,-measurable E-valued random variable X; by insisting that jX; = X;.
The resulting adapted process {Xt}te[o 77 is predictable.

The distribution g of X; is a probability Borel measure on E which
satisfies 7(pt) = fi. For all x* € E* of the form z* = j*Z* for some z* € Ex
we have {js, ") = {fis, Z*), the right hand side being a centred Gaussien
Borel measure on R. Because the subspace f *E* is weak*-dense in E*, the
measure u; 18 centred Gaussian by Corollary 1.3,

Next we prove (3.2). First note that for all #* = j*&* with * € E* we
have

(Xhm*) = (jzhi*> ==

i t

S (B(t ~ s) dWE &) = S (Bt — 8) AW, z*).

0 0

Therefore the subspace Y consisting of all z* € E* for which (3.2) holds is
weak*-dense. In order to prove that ¥ = E*, by Proposition 1.2 it sufficey
to check that Y is weak™-sequentially closed.
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Let (z},) be a sequence in ¥ converging to some z* € E* in the weal*-
topology. We will show that z* ¢ V.

First we note that for all £ € (0,7] we have km,_,o, $*(t)z?, = &* (t)z*
weakly in H. The sequence (%) being bounded, the sequencrze (@*()zx)
is bounded in L?((0,T]; H). Upon passing to a weakly convergent subs?a—
quence we may assume that lim, .., &*(-}a = f weakly for some f €
L*((0,T]; H). By a convex combination argument as in the proof of Propo-
sition 2.2, we find a sequence (y,) in ¥ such that lim,,_, . y* = z* weak* and
iMoo 45 (‘)yn = f strongly in L*((0, T]; H). Upon passing to a pointwise
a.e. convergent subsequence we conclude that

f=lim & ()t =8 (Ja*  ae.
Next we note that
t
= lim §, (Bt —s)dWEH,y7)  ae.

But by (3.1}, which in view of Lemma 3.2 extends to axbitrafy e L2((0,T};
H, B},

(3.4) (K, ) = nlExgo(Xt,ym

t

2
i B(] @0 —9)aW 55 -0")) = lim 12° (05—l o = O

n—os

Therefore,
t t

(35)  lim Vot~ s)awi yty =@t — s) dWF o*) 10 L2(P).
0 0

Upon passing once more to a pointwise a.e. convergent subsequence if nec-
essary, we conclude that (3.2) follows from (3.4) and (3.5).

It remains to show that (3.3) holds, i.e. that {X;}:e0,7) is an Ornstein—
Uhlenbeck process associated with &. First let 7*7* € 7*E* be fixed and let
Y denote the set of all »* € E* such that

tAs
(36)  E(Xy,2") (X0, 5T = | [t —w)2", 8" (s —v)j"F"ln du
0
holds for all ¢, 5 € [0, T7. Since {Xt}te[g 1) is an Ornstein—Uhlenbeck process
with values in B we have j*E* C Y and therefore Y is a weak*-dense
linear subspace of E*. By the dominated convergence theorem it is also
weak*-sequentially closed. Hence by Proposition 1.2, Y = E*.

Let Z denote the set of all y* € E* such that (3.3) holds for all z* € E*
and all t,s € [0,77. By what we already know, j*E* C Z and therefore Z
is a weak*-dense linear subspace of E*. Once more the dominated conver-
gence theorem shows that Z is also weak*-sequentially closed, and therefore
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Z = E*. This proves that {X;}s>0 is an Ornstein-Uhlenbeck process with
covariance given by (3.3). w

REMARK. By the Kolmogorov scheme, with the process {Xt}te[o 7] One
can associate a canonical process on the probability space (E0T] ), where
v is the measure obtained as the projective limit of the finite-dimensional
distributions of {X;}s¢[o,7)- In this way we just obtain the canonical process
{&:}iepp, of Section 2.

DEFINITION 3.4. The predictable E-valued process {X:}igpo,m) const-
ructed in Theorem 3.3 will be called the stochastic convolution of & with
respect to {WH };c(0,7); notation:

t
Xy =8t s)aw}.
0

4. Path regularity. In this section we discuss path regularity of the
stochastic convolution process
t
Xy =80t —s)dw ][
0
under the assumptions that {W;7 }eejo,7) 18 a cylindrical Wiener process
with Cameron—Martin space H and ¢ € L?((0,T); H, E) is such that the
embedding i1 : Hp — F is y-radonifying.

We begin with some preparations. As before, y; denotes the distribution
of X;; this is the centred Gaussian Borel measure on E whose covariance
operator is @;. The following inequality is a direct consequence of [Nk,
Lemma 28] and the observation that ||Q2*| g, < |@rz*| 7, whenever 0 <
t<T:

PROPOSITION 4.1. If 0 < £ < T, then

{llz)? dps(z) < § ll2|* dpr ().
. E E .
PROPOSITION 4.2. The process {X:}ie, has a strongly measurable
modification such that for almost all w € £2,
T
{Xe(w)? dt < oo,
0

Proof. The process {Xt}tEEO,Tl has a predictable, and therefore a pro-
gressively measurable, modification. Hence by Fubini’s theorem, the paths
of this modification are strongly measurable almost surely, and by Proposi-
tion 4.1 we have, for almost all w € £2,
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T
§ 1126 (w) 1P dt dP(w) = | § 11X {w)])* dP(w) dt
20 n

QL’-—ahﬁ QL.-—H-H

= | | Iall? duse(a) dt < T § el dar () < .
B B

Hence the non-negative extended-real-valued function w +— Sg | X s (e)||? dt
is integrable, and therefore almost surely finitely-valued. =

It is well known that if E is a Hilbert space, the stochastic convolution
process {X¢};>0 is mean square continuous (cf. [DZ, Theorem 5.2]). In the
Banach space case, {X;}icjo,7] is mean square continuous as well; for the
proof we refer to [BGN].

We shall now give a sufficient condition for the existence of a continuous
version for { X }iejo,7)-

PROPOSITION 4.3. Assume there exist 8§ € (0,1] and L > 0 such that for
all 0 €8 <t < T and z* € B we hove:

(M) §g 18" (wa[[§ du < Lt — 5)° |2,
(i) T2 167 (¢ — 5 + wo" — 8 (W du < L(t — 5)7|}a" .
Then the process {Xi}iep,r) has a continuous modification.

Proof Fix z* € E* and r > 0. Let {&};cpp,7) denote the canonical
Ornstein—Uhlenbeck process associated with &. Observing that X; — X, and
& — &, have the same distribution, we obtain

E[(X: — Xo,2%)[" = | [(Xe(w) — X, (w), 2%)|" dP(w)
2
=7 d{(z* @ (6: — &:)), v)(7)
R

1
— \ |75 (z* ® (4,
Recalling that I%(z* @ 6,) = x(0,yy @ (¢t — -)z*, for ¢ > s we have

| 23(z* @ (8 — 8:)) 1%
8 %
= {2*(t - w)a* — & (s — w)a” ||} du + | |€" (¢ — w)* |7 du.
0 8
Hence by (i) and (ii),
115 (2" ® (8 — 80)) |3 < 2Lit — s1° ]|
for all ¢, s € [0,T. It follows that '
(4.1) E|(X: — X, ") " < Mit — s/ |ja*|”

— SNy lr[" exp(—7?/2) dr.
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for some M > 0 and all ¢, s € [0,T). In particular,
E|{X; — Xo2™)|* < Mt —s|°

for all t,s € [0, 7] and z* € E* with |[z*|] < 1.

To finish the proof we proceed as in [MS, Proposition 3.1] and check
that the assumptions of {Ca, Proposition 5] are satisfied. The existence of a
continuous modification then follows. For the reader’s convenience we give
the details.

First we consider the Gaussian process Xr = {{X7,%*)}ovcv indexed
by the closed unit ball U of E*. This process has weak™-continucus paths.

Putting
ths

[ 12" (6 - we*, (s ~ w)y*]a du,
0

It s 2", y%) =

for 0 <t < T we have

i

or__—.‘-g O by

It ta" —y* 2" —y*) = | 19" () (" — y™)|5 dv

18" (v)(z* — )il dv

= {(Qr{z* —¥") (=" = ¥"))
= E|(Xr, 2" - ")
This yields the first condition of [Ca, Proposition 5].
Since the function (t, s) — (M/2)(t? +s° —[t—s|?) is symmetric and pos-
itive definite, there exists a centred real-valued Gaussian process {¥; }eeo, 7]
with

E(Y.Ys) = %(té‘ + 8% — |t —5?).
Then
E|Y; — Y|* = M|t — s’
This process being Gaussian, we have
BY; — Y|P = Cplt — 5|°F

and by taking p large enough we see that it has a continuous modification.
By the computations above, for 0 € s <t < T and z* € U we have

It g o*, %) — 20(t, 5327, 2) + (s, 52", 27)
=E|(X; — X,,a")® < Mit— 5/ = BY; ~ Y.

This proves the second condition of [Ca, Proposition 5]. m
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In particular, it follows from this proposition that the process { X+ }iej0,1
has a continuous modification if there exists a constant M such that

|8(t) — S(s)| < Mt —s|, ¢,5€(0,7T)

REMARK 4.4. If the conditions (i) and (ii) in Proposition' 4.3 hold for a
single z* € E”, then {(Xy, 2*) }+¢[0,7] admits a continuous version. This fol-
lows upon taking r large in in (4.1) and applying the Kolmogorov—Chentsov
theorem. In particular, if there exists a constant M such that

|B(t)z* — B(s)z*|| < M|t —s|, t,s€(0,T),

then the process {(X;, z*)}1¢p0, 7] has a continuous modification.

5. Weak solutions of the stochastic Cauchy problem. In this sec-
tion we will apply our theory to the study of the following stochastic abstract
Cauchy problem:

dX; = AX;dt + BdWE
Xog=0 as.

Here A is the generator of a Cp-semigroup S = {S(t)}s>0 on a separable
real Banach space E, B is a bounded linear operator from a separable real
Hilbert space H into E, and {Wf }iep 1 is a cylmdnca.l Wiener process
with Cameron—Martin space H.
In this setting we may define an operator-valued function ¢ : (0,T] —
L{H, E) by
&)= S(t}e B (te (0,T]).

Clearly we have ¢ € L?((0,T]; H, E). The operators Q; &€ L(E*, E) are
given by
i
Qiz” = {8(s)Q5*(s)z*ds  (z~ € B, t€(0,T)),
0
where @@ = B o B*, This integral can be shown to exist in the sense of

Bochner [Nel], but this will not play a role in what follows. As before, we
let (i, Hp) denote the RKHS associated with Qr.

DEFINITION 5.1. A weak solution of (ACP) is a predictable E-valued
stochastic process {Xi}ieo,r such that for all 2* € D{A4*) the function
s (X4, A*z*) is almost surely integrable on [0, T] and

(5.1) (Xp,2*) = § (X,, A**) ds + W, B z*]  (t €[0,T)).
0
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REMARK. Although we do not assume that a weak solution {X:}se(0,7
has a (weakly) continuous version, it is an immediate consequence of our
definition and Definition 3.1 that the process {(X:, 2*)}iejo,7) does have a
continuous version for every z* € D(A*).

The proofs of our main results depend on the following extension result
for Cy-semigroups [Ne2l:

ProOPOSITION 5.2. There egists a sepamble real Hilbert space E a con-
tinuous and dense embedding §: E — E and a Cp-semigroup S on E such
that 5o 8(t) = §(t) o g for all £ > 0.

THEOREM 5.3, If the embedding ip : Hp — E ts y-radonifying, then the
process { Xi}sepo,m) defined by stochastic convolution,

t
X, =\8t—sBdWF (tc[0,T]),
0
is a weak solution of (ACP). This process has o strongly measurable modifi-

cation that satisfles
T

{IXe)f dt < oo
0
almost surely.

Proof. By Proposition 4.2, with #(¢) = S(¢)o B, the process { Xt e,
has a strongly measurable modification which satisfies So [ X:l2dt < oo
almost surely. B B

Let j : E — E denote the embedding of Proposition 5.2 and let S
denote the Cp-extension of 8 to E. By the theory of (ACP) in Hilbert spaces

[DZ, Chapter 5], the E-valued process {X;}e0.q defined by the Hilbert
space stochastic Itd convolution integral
T
X, = {5t - s)Baw¥,
0

where B = j o B, is a weak solution in E of the problem
dX, = AX,dt+ BawE (¢t <(0,T)),
Xg =0 a.s.

Here A is the generator of S. As we have seen in the proof of Theorem 3.3,
for all ¢ € [0, 7] we have X; = 1.X,.

For all 7* € D(A*) we have *7* & D(A*) and A*(*%) = §*(A*T*).
‘This implies that for all elements in v* € D(A*) of the form v* = j*v* for
some 7* € D(A*) we have
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t
(5.2) {(Xyy0*) = (X, 7") = | (X, AT*) ds + [WF, B*5*]
0

= (X, A"y ds + [WE, B*v*]  (te[0,T)).
]

Fix A € p(A). Let ¥ denote the set of all v* € E* such that (5.1) holds
for the element z* := (A — A*)~1v* € D(A*). By the above, Y is a linear
subspace of E* containing the weak*-dense subspace j*ﬁ*.

We will show next that Y is weak*-sequentially closed. Let (z%) be a
sequence in Y converging weak* to some z* € E*. Then the functional
¥ = (A — A%)71z} belongs to D(A*) and the sequence (y) converges
weak* to y* := (A — A*)"la*. Hence for all w we have

(5.3) Jim (Xa(w),vn) = (Xe(w),y7).
= AMA — A"z} — =¥ we see

Moreover, from A%y} = A*()\ — A*)"1 "
that (A*y;) converges weak* to A(A— 4*)*z* — z* = A*y*. By dominated
convergence, for all w € {2 we have

¢ ¢

(5.4) lim § (X, (w), A*y5) ds = | (X, (w), 4*y") ds.

n—00
Q

The weak*-to-weak continuity of B* implies that B*y} — B*y* weakly
in H. Since bounded linear operators are weakly continuous, it follows that

(5.5) 11m [W,,H,B*'y |=[WF,B*y*] weakly in L2(P).

On the other hand, combining (5.2) with (5.3) and (5.4) we deduce that for
all w € {2 the limit

lim W, B*y;] (w) = Y{w)
nN—eQ

exists, With a convex combination argument as in the proof of Proposi-
tion 2.2, together with (5.5) this shows that ¥ = [WH, B*y*] a.e. Hence for
almost all w € £2 we have

(5.6) Jim W, Bryp] (w) = W, B*y*] ().

By (5.2), (5.3}, (5.4), (5.6) and dominated convergence we finally obtain

(Xeyv™) = lim (X;,93) = lim (5 (X, A%y5) ds + WE, Bry3])

t .
= S (X-hA*y*) ds + [WtH)B*y*]
0
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almost everywhere. This shows that z* € ¥, and Y 1is weak*-sequentially
closed as claimed.
By Proposition 1.2, Y = E* and the proof is complete. »

REMARK. As we noted above, the fact that {X }rej0,77 is a weak solution
implies that for each z* € D(A*), the scalar process {(X, I*)}te[gﬂ"] hr?\,s
a continuous modification. This can also be seen from the observation in
Remark 4.4. Indeed, if z* € D{A*), the identity

¢
§*(t)z* —a* = | §*(s)A%z" ds
0
shows that the orbit t — S*(t)z* is Lipschitz continuous on the bounded
interval [0, 7.

Theorem 5.3 admits the following converse:

THEOREM 5.4. Suppose (ACP) admits a weak solution {X,}1ei0,1- Th:en
the embedding ip : Hy — E is «y-radonifying and {X; }seo,7) 48 an Ornstein—
Uhlenbeck process.

Proof Letj: E — F and S be as in Proposition 5.2. By the results
of [BRS], E may be densely embedded into another separai:ule refl Hilbert
space F in such a way that S extends to a Co-semigroup S on E and the
embedding j : E — E is Hilbert-Schmidt. Let j := j o j.

The operator B := joB = jo B : H — E is Hilbert—Schmids, being the
composition of the bounded operator- B = j ¢ B and the Hilbert—Schmidt
operator j. It follows that § := B o B* is of trace class. Define the positive
selfadjoint operator Q7 on E by

T
Qrh = {5(s)Q5*(9)hds (R e B).
0
Then it easy to check (cf. [Nel]) that Qr is of trace class as well.

It now follows from the general theory of stochastic equations in Hilbert
spaces [DZ, Chapter 5] that the stochastic convolution process X; =
XB S(¢ — s)B dW¥ is the unique weak solution to the problem

dX, = AX.;dt+Bdw¥ (te[0,T)),
X. 0= 0 a.8.
But the process {jX;}te(p,7) is a weak solution of this problem as well, and
hence by uniqueness it follows that X; = j X, for all £ € [0, 7). We conclude

that {7X;}ee[o,7) is an E-valued Ornstein—Uhlenbeck process, this being true
for {X;}+eo,77. This implies that for all Z*,7" € E* and t, s € [0, T we have
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(6.7)  E((X:,5°7"), (Xs,5*7"))
= E((*XhE*): (X—s,"ﬂ*))
tAs
= | [B*5*(t — )", B*5* (s — w)§"| i du
0
tAS
= | [B*S*(t - w)(7*5*), B*5" (s — ) (7*7"))  du.
0
The linear subspace Y = {7*Z* : * ¢ E*} is weak*-dense in E*, j being a
dense embedding.

We claim that {X}sei0,7) is a Gaussian process. To see this, fix ¢t € [0, T
and let 4; and 7, be the distributions of X; and X, respectively. These
are Borel probability measures on F and F, respectively, and we have
B¢ = J(u:). Moreover, because { X t hrefo,7] 18 an Ornstein—Uhlenbeck process,
hence a Gaussian process, i, is a Gaussian measure. Hence for all y* = 7*T*
in the weak"-dense subspace ¥ of E*, the image measures {u:, y*) = (7, T*)
are Gaussian on R. By Corollary 1.3, this implies that p; is Gaussian, and
the claim is proved.

The process {X;}icpp,r) being Gaussian, the weak second moments
E({(X¢,2z*)?) are finite for all ¢ € [0,7] and 2* € E*. Departing from (5.7),
the proof that {X;}:cpo,7) is an Ornstein-Uhlenbeck process now proceeds
along the lines of the proof of Theorem 3.3. =

Concerning uniqueness of weak solutions, we have the following result:

THEOREM 5.5. Let X(¥) = {Xt(o)}ﬁ__-.[o,g«] and XM = {XM}ei0.0 be two
weak solutions of (ACP). Then X and XM) are versions of each other.

_ Proof. This follows immediately by embedding F into a Hilbert épace
E in the way described in the proof of Theorem 5.4 and the fact that the
corresponding uniqueness result for weak solutions holds in the Hilbert space
sefting. w

So far, we were concerned only with solutions on a finite time interval
[0, T]. By obvious modifications, the theory extends to the interval [0, co).
In particular, a weak global solution of (ACP) exists if and only if for all
T > 0 the associated inclusion mapping ir : Hp — F is y-radonifying; in
this case the solution is unique, and given by stochastic convolution.

Under this assumption, for each £ > 0 we let ¢ = 4;(vm,) denote the
corresponding centred Gaussian measure on FE; we further set pg = &g,
the Dirac measure concentrated at 0. For each ¢ > 0 we define a linear
contraction P(t) on the space By (E) of bounded real-valued Borel functions
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on K by the formula

P&)f(@) = | F(SWz+y)duely) (=€ B, f & Bul(E)).
E
From the identity
Qeps = Qs + S(H)Q.5"()
we see that
Pitgs = e * S(E) s

from which it easily follows that P(t + s) = P(t) o P(s) for all £,5 = 0.
Thus the family {P(t)}:»0 is a semigroup of contractions on By (E). This
semigroup has been studied in some detail in [Nel] from a functional-analytic
point of view. We conclude this section by showing that it arises as the

transition semigroup of the weak solution of the stochastic Cauchy problem
(ACP):

PROPOSITION 5.6. Let {X,}t>0 be a weak solution of the problem (ACP).
For all t € [0,T] we have, for all z € £,

P(t)f(z) = E(f (X1,2)):
where X 5 1= S{t)z + Xs.

Proof Fixt e [0,T] Recalling that . is the distribution of X, for all
z ¢ E we have

E(f(X10)) = | £ (Xea(w)) dB(w) = § F(SE)z + Xi(w)) dP(w)
2 n
= | f(8(t)z +v) dm(y) = P()f(2). m
E

‘We point out that the weak solution is always a Markov process. This
can be seen directly as in the proof of Proposition 5.6 or by using the fact
that this is true for the Hilbert space case and using the extension argument
of Theorem 5.5.

6. The analytic case. The results of the previous section do note take
into account possible regularization effects of the semigroup 8. We will now
present a result in this direction for the case where S is an analytic semi-
group. Roughly speaking it turns out that if 8 maps E into some smaller
space F, then under some natural assumptions the weak solution of (ACP)
is also F-valued.

THECREM 6.1, Suppose that F and E are separable real Banach spaces,
with F continuously embedded in E. Let Sg = {Sg(t)}i>0 be a Cp-semi-
group on E, with generator Ag such that Sg(t)E C F for all t > 0. Denote
by Sgr(t) the operator Sg(t) regarded as a bounded linear operator from
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E into F, and let Sr(t) denote the restriction of Sgr(t) to F. Let B be a
bounded linear operator from & separable real Hilbert space H into E, and let

(= Bo B* Let Qrp € L(F*,F) be the positive symmetric operator defined
by the Pettis integral

T
Qre* = | Ser()QS3p(t)e* dt  (z* € F*).
0
Let (iy, Hy) be the RKHS associated with Q. Assume that:

g) Fog each z* € F*, the function ¢ — B*Shp(t)z™ is strongly mea-
surabie an
T

(6.1) [ 1B*Spp(t)z*)13 dt < co.
0
(i) The semigroup Sp = {Sp(t)}i»o is an analytic Cy-semigroup on F,
with generaior Ap, and there exist A € p(Ap) and 6 € (0,1] such that
T

(6.2) VIO = Ar) Ser(t)2m,m 4t < oo
0

(iil) The embedding ip : Hr — F is y-radonifying.

Under these assumptions there is an F-valued stochastic process {X:}iero,m)
with covariance

(6.3)  E((Xy,z"}{X,,4™))

= | [B*Shp(t —uwz*, B*Spp(s —uwiy*lndu  (z".y" € F*).
0

This process has a continuous modification. As an E-valued process, it is a
weak solution to the stochastic abstract Cauchy problem

dX, = AgX,dt+BdWEF, te{0,T),

Xp=0.

Proof. By (i), (iii), 2nd Theorem 3.3 applied to the L(H, F)-valued fun-

ction ¢+ Sgr(t) o B, there exists an F-valued process Ornstein-Uhlenbeck
process {Xi}sejo,r} With covariance given by (6.3) and we have

(6.4)

t
(Xy,2*) = {(Spr(t - s)BdW,2*) (t€[0,T), &* € F*).
0 .
We shall prove that the process {X:}sejo,7] has a continuous version. We
argue as in [MS, Remark 3.2]. Fix A € o(4r) and 8 € (0,1] as in assump-
tion (ii). For all z* € F™* we have
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|B*S5p(t — s+ u)z* — B*Sgp(u)z®|x
< 1 B*lee, == I8r(E — 8)Ser(x) — Ser(u)ll o,
< |B* ez myll="|l
x| (Sp(t = 8) — DA — 4r) || cem,m) | (A — AF)° Smr ()| o (B, p)

< Cliz*l|(t - 8)°ll(A — Ar)°Ser (W)l|2(E.F)-
Hence by (6.2),
VIB*S5p(t — s +wja* — B*Shp(u)e”||3 du
0
T
< 2|2t — )% | (% — 4F)* Sop(w)[km, ) du < 0o
0
By Proposition 4.3, it follows that the pracess {X;};>o has a continuous
modification.
Let j : F — E denote the inclusion mapping. It remains to check that the
E-valued process defined by X; = jX; (¢t € [0,T7]) is a weak solution of (6.4).
Let Z* € E* be given and let =* := j*Z*. Recalling that j o Spr(t) = g (t)

we have
t t

(Xe, 5 = (Xe,2") = {(Sr(t — 9)BAWE,2*) = | (Se(t - s)BaW ], 5).
0 0
Hence, by Theorem 5.3 and the uniqueness part of Theorem 3.3, {jft}te[o,T]
is a weak solution of (6.4). m
For ¥ = E this reduces to:

COROLLARY 6.2. If A generates an analytic semigroup, then the weak
solution {X;}iefo,m) admits a continuous version.

Consider the stochastic heat equation driven by spatio-ternporal white
noise:

O 0 = ax(t,m)+ 2(t,2), 120,
ot ot
(6'5) X(U,:L‘) =0,

X(£,0) = X(t,1) = 0.

As an application of Theorem 6.1 we will show that for any 5 € [0,1/2),
this problem has a unique weak solution with a continuous modification
taking values in the space of Holder continuous functions of exponent 8.
This result has been obtained by entirely different methods in [Br3]; see
also [Wa]. Extensions of this equation with more general types of noise have
been discussed in, e.g., [DS], [PZ] and [BP].
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By a weak solution of (6.5) we understand a weak solution to the problem

dXt = AXt + th, t 2 0,

6.6
(6.6) Xo =0,

where A is the Dirichlet Laplacian in E = L2[0,1] and {Wi}ticp 77 is a
cylindrical Wiener process with Cameron-Martin space H = E = L?[0,1].
For § € [0,1] let

c§10,1] = {u € ¢#[0,1] : u(0) = u(1) = 0},

where ¢?[0, 1] is the little Hblder space of all continuous functions f on [0, 1]
for which

I Fllesfo,ny = sup |f(t)|+ sup O = _
t€[0,1]

0gs<t<y  (E—$)8

and

6 =5l _ .

lim sup ——Fz3t =
510 |t,s&5 (t—s)P
THEOREM 6.3. The problem (6.5) has a unique global weak solution
{X:¢}i>0. For each t > 0 the random varioble X, takes values in c'g [0,1]

almost surely. As a cg [0, 1]-valued process, {X;}i»0 has a continuous modi-
fication.

Proof. For p € {1,00), let A, = A be the Laplacian on L?[0,1] with
Dirichlet boundary conditions, i.e. D(A4,) = Ha'?[0,1] N H2#[0,1], and let
S, denote the heat semigroup on LF[0, 1], i.e. the analytic Cp-semigroup on
L?[0,1] generated by A,.

Let T > 0 be arbitrary. As is well known (see e.g. [DZ]), the RKHS
corresponding to the selfadjoint operator Ry € £(L2[0,1]) defined by

T
Rrf={8j®)S:t)fdt  (f € L?[0,1])
0

equals Hy'?[0, 1. The inclusion Hy™?[0,1] = L{0, 1} is Hilbert~Schmidt and
hence ~-radonifying. Hence (6.5), and therefore (6.6), has a unique global
weak solution {X}>o.

Fix o € (0,1/4) and 2 < p < oo be such that 2a > 1/p. We are going
to check first that Theorem 6.1 applies, with H = E = L?[0,1], B: H — E
the identity operator, F' = Ha*?[0,1], and Sg = S,.

The restriction Szq p Of S, to HZ*?[0,1] is strongly continuous and an-
alytic on HZ*?[0,1]. Notice that, with the notation of Theorem 6.1, Sza,p
equals the semigroup Sp. Let Ay, , be its generator. Put 26 := 1/2—1/p and
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note that 2(c + 8) < 1 since we assume that o € (0,1/4). Choose 8 € (03 1]
so small that 2(c -+ 6 + 26) < 1. Suppressing subscripts, we then have, with
a suitable choice of 0 <7 < § + 8,

1S cez2po,1,L700,17) < CE77 (t € (0,1]),
“S(t)||£(LF[0,1],HS‘”'P[O’1}) <Ct™® {te (0,1]),
(= A20.,5)° S £ Lo 11,532 10,11) < cte?  (te (0,1])

The first of these estimates follows from

8@ fllzeep,y < CISE)Fll gaceraragy) < Ot f ey (6> 0),

and interpolation; here we use the fact that by assumption § + ¢ > 1/4,
so that H§(5+9)’2[0, 1] «» L°°[0,1] by the Sobolev embedding theorem. The
second and third estimates follow from general results about analytic semi-
groups.

The first two estimates show that assumption (i) of Theorem 6.1 holds.
From the first and third estimates we infer that

1 1
~2(c+6+6)

E ”(_AZ%P)BS@)H?:(L”[o,ll,fré“"’[o,l]) di < Cét (e dt < oo,

a

which shows that assumption (ii) of Theorem 6.1 is satisfied (cf. the remark
following the formulation of the theorem). By [Brl]} and a closed subspace
argument, the inclusion iga,p : Hy=[0,1] < Hi™F{0, 1] is v-radonifying; this
proves assumption (iii) of Theorem 6.1. Hence by Theorem 6.1 the weak
solution {X; }:>¢ of (6.5) has a modification that is a continuous H3*?[0, 1]-
valued process with covariance

tAs
E(<Xtr {10> (XS, ?,b>) = S [i;m,p’ssa,p(t - u)(pﬂi;a,p‘g;m,p(s - u)w]Hé'z[o,l} du
0
for all ¢,5 > 0 and @,% € (HZ*P[0,1])*.

Now fix B € [0,1/2). Choose @ € (0,1/4) and p > 2 in such a way
that 2a > 8 + 1/p. By the Sobolev embedding theorem we then have a
continuous inclusion Hz*?[0,1] — ¢£[0,1]. Combining this with the above,
we deduce that {X;}:>0 takes values in c’g [0,1], and that it is continuous as a
[0, 1]-valued process. u
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On the existence for the Caunchy-Neumann
problem for the Stokes system in the L,-framework

by

PIOTR BOGUSEAW MUCHA and
WOJCIECH ZAJACZKOWSKI (Warszawa)

Abstract. The existence for the Cauchy—Neumann problem for the Stokes system in
a bounded domain £2 C R® is proved in a class such that the velocity belongs to w2 ’l(ﬂ X
(0,T)), where r > 3. The proof is divided into three steps. First, the existence of solutions
is proved in a half-space for vanishing initial data by applying the Marcinkiewicz maltiplier
theorem. Next, we prove the existence of weak solutions in a bounded domain and then
we regularize them. Finally, the problem with nonvanishing initial data is considered.

1. Introduction. In a bounded domain 2 in R® with boundary S we
consider the initial-boundary value problem for the Stokes system:

ug — vAu + Vp = I,

divu =

(11) —1vu G,
i T(u,p)|sp = H,
ult=0 = Up,

where T(u,p) = {T(u,p)}ij=1,23 = {v(Biu; + Oju;) — pdi;} is the stress
tensor, u{z,t) = (u1(x,t),us(x, ), us(z,t)) the velocity vector, p(z,t) the
pressure, v > 0 the constant viscosity coefficient and 7 the exterior normal
vector to S.

To solve (1.1) we have to impose the following compatibility conditions
on the initial and boundary data:

div ug(z) = G(z,0),
ne T(uﬂzpﬂ)(m)ls = H(ﬁ?, 0)5

where pg is defined by % - T(ug,po) - % = H(0) - 7 on S. From (1.2); we get
the initial boundary condition pli=p = po.

(1.2)
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