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Non-similarity of Walsh and trigonometric systems

by
P. WOJTASZCZYK (Warszawa)

Abstract. We show that in Ly for p 3 2 the constants of equivalence between finite
initial segments of the Walsh and trigonometric systems have power type growth. We
also show that the Riemann ideal norms connected with those systems have power type
growth.

1. Introduction. There are numerous similarities between the trigono-
metric system and the Walsh system; both are bounded orthonormal bases
in Lz and both are characters of a compact abelian group. Many results
are parallel (cf. [4]). However it is also known (cf. [5]) that as bases in
Ly[0,1] they are not equivalent unless p = 2. In this note we are interested
in the “quantitative” estimates for this non-equivalence. The argument in
[5] gives only a “logarithmic” difference. Unfortunately we are unable to
provide exact estimates, but our results give a much stronger “power type”
non-equivalence. We also provide a power type non-equivalence in the lan-
guage of certain operator ideals. This complements some observations and
supports some conjectures made in [3].

We consider the classical Walsh system on the interval [0, 1] in the follow-
ing classical order called the Paley order. If an integer n=0,1,2,... can be
written as n =3 5o Pr2* with py = 0,1 (obviously this sum is finite) then
we take the nth Walsh function wr,(t) to be [Ti, rx(t)P*, where ro,7q,. ..
are the Rademacher functions. The Walsh system in this order is called the
Walsh--Paley system (cf. [4]).

We are interested in the comparison between norm convergence proper-
ties of Walsh series and trigonometric series. More precisely we are interested
in best constants K (p, N) and C'(p, N) in the following inequalities:

2V -1
(1) H Z aneina
n=0
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and
aN_q a1 ‘

(2) H Z Gntn| < K(p,N)” Z ane™| .
n=0 r n=0 P

. . : K ;
Recall that for a trigonometric polynomial f(a) = >, ., 02" we mean

by ||f|lp the quantity (s {27 |f()|? da) P so the trigonometric system
(™*) ez is a complete orthonormal system. The choice of dyadic sums is
motivated by the the existence in this case of a simple representation for
the kernels involved (cf. (8)). Clearly one can easily pass from estimates (1)
and (2) to analogous estimates for sums of arbitrary length. Let us consider
two sequences of operators

2N
(3) To(f)= 3 (fown)e™,

n=0

2N 1
(4) Sn{f)= Y {f. €™ uwn.

n=0
Then formally T% = Sy. Let Wy = span{w, : n=10,1,...,2Y — 1} and
Ty = span{e™® : n = 0,1,...,2" — 1}. The above spaces equipped with
the L, norm will be denoted by W%, and T%; respectively. Then clearly
C(p,N) = |Tn : W% — T%|| and K(p,N) = ||Snv : T, — W& ||. Since
W is norm one complemented in Ly, 1 < p < oo, and T%; is complemented
in L, by the Riesz projection whose norms are for 1 < P < 00 bounded
uniformly in N and in I; and L., are bounded by N {cf. [6], I, pp. 67 and
266), we infer that

(5) Clp, N) = [T : L — Ly
and
(©) 55 : Lo = Ioll ¢ g Ny < 1Sy + Zp — L)

ﬁ(N )

where 8(N,p) = Cp if 1 < p < 0o and B(N,1) = B(N,0) = cN. Also by

duality we have
155 : Lp — Lp|l = [|T¥

where 1/p+1/p" = 1.
Clearly the operator Ty is an integral operator given by the kernel

Ly — Ly|| = C{p', N)

1 2N

Ty (f)(e S(Zw(t &) £(t) dt
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‘We set
2N .1
(7) Fy(t,a) = Y wa(t)e™,
n=0

The following representation of Fiy (£, @) will be of fundamental importance
in our considerations:

aN=1_y gN-1_y
FN(f,Of) = Z wn(t)e“'”“ + TN._;L(t)eizN_lc" Z wn(t)e"”“
n=0 n=0

1l

(1+ry-1(t)e®

so by induction we get

a)FN—l(t’ CM),

N—-1

[T (@ +re@)e).

k=0

(8) FN (t7 Of) =

The following lemma will be used several times in this paper:

LeMMA 1. For any A; and B; we have

LN N
Ey S H(Aj+B,-cos2ja)da= HAJ"

0 j=1 =1

This lemma is well known. It follows immediately if we write cos 2o =
3(e%® 4-e~2') and expand the product. We see that there is no cancella-
tlon in the expansmn so it is a trigonometric polynomial with constant term
equal to HJ —1 4;. This gives the assertion.

I would like to express my gratitude to Prof. S. Kwapied, Prof. P. F. X.
Miiller and Prof. A. Pelczyhiski for many useful conversations about the
matters discussed in this note.

2. Non-equivalence. All our results will follow from estimates for var-
ious mixed norms of the function Fy (t,a). Let us start with some proposi-
tions which will be used in the proofs of Theorems 1 and 2.

Prorosrrion 2. There exists a number b < 2 such that

1
sup § [P (t, ) dt < 257
¢ g

(9) 1++V3/2)

for N=1,2,.
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Proof. Using independence of Rademacher functions we get

! N-11
SUDSIFN(t, a)|dt = sup H S|1 +Tn(t)6i2k°‘ldt
R & 100

N_lll_'_em‘“a‘_'_u_eéz"a'
= sup H 5 .
¢ k=0

Since
(11 + €| + |1 — &))? = 4+ 2|1 — **| = 4(1 + [sin )

we infer that

1 N-1
(10) sup S [Fy(t,a)ldt = ,|sup H (1 + |sin 2kc).
0 % k=0

Let us start with the upper estimate. Fix £, 0 < £ < n/3. If for some %
we have

(11) (r+l/2)r-E<2t< (n+1/r+§
then for [ = k + 1 we have
(12) (an+ V)m — 28 < 2 < (2n + L)w + 2¢.

Now let s denote the number of ks in the product in (10) which satisfy (11).
Clearly there are at least s — 1 numbers [, 0 < I < N — 1, for which (12)
holds. In particular s < 1+ N/2. The factors where (11) holds are estimated
by 2 and factors where (12) holds are at most 1 +sin2¢ each. All the other
do not satisfy (11) so are at most 1+ |sin{n/2 + £)|. From this we infer that

sup Iﬁl(l + isin 2Fal) < 2°[(1 + sin 2¢)]° (1 + |sin{n /2 + &)YV 2
Set A(fk)=i [2(1+sin 26)]/, B(§) = 1+|sin(r/2+¢)| and C(£) = max[A(£),
B(£)]. With this notation we have
(13) sup NI_Il(l + [sin 20} < 20(6)F
for each 0 < ¢ < m/3. Loo:::g at the graphs of A(£) and B(¢) we easily see

that there exists £ such that A(£y) = B(£p) and then C'(£) < 2. This gives
b<2.

Now let us work out the lower estimate. We take v = (3,0, 47%)/2 =
1/6. For even k = 2s we have 2"y = 4%y = integer + 1/2 + . For odd
k = 25+ 1 we have 2Fy = integer + 2. Since 1/2+ vy = 2/3 and |sin 27 /3| =
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|sin/3| we get
N-1L
(14) TI G+ lsin25m)) = (1 +sinn/3)Y = (1+ V3/2)V. w
k=0
REMARK. Estimating numerically we get & ~ 0.4609285, which yields
b ~ 1.89564. Since 1 + (/3/2) ~ 1.866025 we see that the arguments given
above are quite precise.

PROPOSITION 3.

1 12n
. 4 — /N
5 g ‘SJ Fy(t,a)* dodt = 6™.
Proof. First note that from (8) we get
N-1
Ey(t,a)t = TT I+ )1+ ru(e)e )]
k=0
N-1
= (2 + 2rk (t) cos 28a)?
k=0
N-1
= (4 + 8r(t) cos 28 cx + 4 cos? 2%a)
k=0
N-1

= H (6 + 2cos 2571y 4 8ry (t) cos 2%a).
k=0
Integrating this over ¢ and using the independence of Rademacher functions

we get
1

N

(15) SFN(t, a)tdt = H(6+2cos 2k ).
0 k=1

Lemma 1 completes the proof, =

PROPOSITION 4. For every R > 1(2++/2+4+/8) there exists Cr such that

2m
1
sup — | |Fiv(t,0)|da < CrRY for N=1,2,...
£ Pl o
Proof. Using (8) we have
N1 i N-1
18)  |Fn(t o)l = ] I1+m)e® =[] \/2+2'rk(t)cos2’“a

k=0 k=

0
N1
= gN/2 H /1 + r(t) cos 2k,

k=0
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LEMMA 5. For |z| <1 we have
ViTe<1l+iz—qe? fory=15-v2

Proof We consider the function f(z) = I+ — 1 — 4z +~y«*. Dif-
ferentiating we see that f has a local minimum at z =0 and f”(z) > 0 on
—1,£] and f7(z) <0 on [£,1] for a certain £ > 0. This implies that in order
to prove the inequality it suffices to check that f(—1) > 0, f(1) > 0 and

F(0} > 0, which one verifies easily. =

Using Lemma 5 and (16) we infer that

2
1
(17)  sup - §] |Fx(t, )| dex

27

<2N/"’sup-—-s (1+ Zre(t) cos 2Fa — y cos® 2P )da
0

29

N—
k=
N—
_ oN/2 1 7 1 k., k1,
=2 supm S H 1 + rk(t)cos2 o 2-:c>s2 dov
0

— %(e'mk"'la + ewi2k+1a)] d

2r N

= 9N 1 j
0

Now let us consider inductively the products

N-1
—— — 1 ;E ip_ka —ioky JokEl, _iak+l,
en= ] [(1 2) + TR ) — 4(8 +e )].

k=0
Clearly each @ is a trigonometric polynomial of the form

(18) ‘PN(O’) = Z ase’

|s|<2¥+1

Let us single out the coefficients corresponding to s = 0 and s = +2¥ and
write

(19)  on(a) =Py + Qe * + Que "> 4 D asee

s#£0, a2 N

Since

eni{a)=py(a) [( —%)—t—im(t)(ei2N“+e—i2”a)_%(ei2N+1 izt )]

icm
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from (18) and (19) we infer that

(20) Py = Py (1 - —) + 2'-'"N(t) QN
and
(21) Qni1= :]iTN(t)QN + %PN-

To estimate Py from above we define inductively two sequences p,, and ¢,
by the conditions:

1
(22) p0=1_1: qomZa
1
(23) Prn+i = Pn (1 - %) + '2'Qn=
1
(24) Intl = an -+ %Pn-

We easily see that for each ¢ € [0, 1] we have |Px| < pn and also |Qn] < gn.
LemMmA 6. Let p, and g, be defined as in (22)-(24). Then for n =

0,1,2,...,
1
fora>1—g-+z(\/5—2\/§—\/§).
1

Since 5= Sg’r on(a) da = Py (see Lemma 1), from (17) and Lemma 6 we
infer that

(25) P < Cpa™

2
sup—}— S |Fn(t, o) do < C2V/20N .
t 2 0

Proof of Lemma 6. Define I, = ¢/pn. Then from (22)-(24) we have
To=T4(1 —~/2)]" and [y = f(I},) where
N T4y
f) = o vz

One easily checks that for ¢ > 0 we have 0 < f/(2) < 1. This implies that Iy
converges to the fixed point of f, i.e. the solution of the equation f(z) = x;
call it g. A standard cornputation yields

e
AR/ B

So for any @ > g we have g, < apy, for large n’s. So from (23) we infer that
for large n's we have pp+1 < [(1—7v/2) +a/2]pn, which gives the assertion. m

PROPOSITION 7. For 1 < p < 2 we have O(p, N) > (277/2 4+ 1/2)N/7,
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Proof For each t € {0,1] we have

(26) H Z H)e'™

n=0

o 2¥_1 P
P
0 < C’(p, N) H 1;) 'wﬂ.(.t)wn »

N—
It is easy and well known (see e.g. [4], p. 7) that || Zi-_—ol W (t)wn |5 does
not depend on ¢ and equals 2=V . 277, Note that

(27) i H Eil wa ()™
0 n=0

1 1 2%
= —| | |Fv(t, @) dtde

200

1 2 N—1 E1+e"2k°‘|P + ]1 _ E{Qkalp
= — S H do

2m 0 k=0 2

P
dt
?

1 2T N-1
= Z'NZNP/22— S H (11 + cos 28a|P/% + |1 — cos 2% a|P/2) do.
T
0 k=0

To estimate it further we will need the following lemma:
LEMMA 8. For 0 < 5 <1 and |z} < 1 the following inequality holds:
(28) L4z + 1 —2* >2— (22"

‘We postpone the proof of this lemma for a while.
Using the lemma we can continue {27):

2mr N-1

> oN(/2—- U 1 S I 2 - (2 - 2°/%) cos® 2a] da
0 k=D
1 27t N~1 1 1
= oN{p/2-1) = 9 Z(2—98/2y _ 29 _ 9p/2 9k+1 '
o é Ig 2( } 2( )cos af do

From Lemma 1 we sce that this integral equals [2 — (2 — or/ 2)]N. This
gives

N

(29) i“ S wal)em | dt

0 n=0 P

. 1 Yo R
> oN(p/2 1)2_._5(2_2;0/2) = 5.21?/24_1.2? .
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Thus we get
1 1Y 1 ¥
Clp, N > gNngp QP2 Zop| = [ Z 4 9-p/2
2 4 2
which gives the assertion of Proposition 7. n
Proof of Lemma 8. Consider the function
flo) =1+al"+[1 -2 -2+ (2 - 2%)2"

Clearly f is even. Differentiating twice we see that f(z) is convex on a
certain interval (—u, 1) with ¢ > 0 and concave for x| > u. From this we
infer that for (28) to hold it suffices to have f(0) > 0 and f(1) > 0, which
is easily seen to be true. =

Before we start with our main theorem let us recall the following lemma.
LeMMA 9. Let ¥(a) = Ek _o axe™®. Then for 1 < p < 0o we have

[%]leo < 2 2V,

This lemama was proved by Jackson in [2] and is a special case of classical
Nikol'skil estimates (see [1], Theorem 2.6).

THEOREM L. The quantities C(p, N) satisfy the following estimates:
(i) For 1 <p <2 we have
(30) (2772 + 1/2)N/7 < O(p, N) < 22/22p(3/p- 1N
where b < 2 is the constant from Proposition 2.
(ii) For 2 < p < oo we have
(31) 26PN < O(p, N) < CrRU-/BIN
where R is any number > $(2+ v2 ++/6) and £(p) > 1 for allp > 2. The
function £(p) satisfies

9 [/3\P
(32) £(p) > log, (% (Z) ) for 2<p<4,
0.44-1/p for 4 < p < co.

Proof, The left hand inequality in {30) is Proposition 7. Clearly C(2, N')
= ||Ty : Ly — La|| = 1. From (5) we infer that
1
C(L,N) = ||8n : Loo = Loof| = sup | | Fiv(t, o)| dt
o
0
so from Proposition 2 we infer that C(1, N) < bV . 2V, Using the Riesz—
Thorin interpolation theorem (cf. [6], Vol. II, p. 93) we get

Clp, Ny < 22/7=1 . p@3/p-LN,
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The upper estimate in (31) follows directly from the Riesz—Thorin theo-
rem and Proposition 4. To prove the lower estimate in (30) we use Lemma 9
to find that for any bounded f we have

ITw (f)lloo <2 2Y/2 T (f)lp < 2- 2Y2| T : Lp — Lyl - || fllp
<2 ‘2N/pHTN : Ly = Lp|l - [ flloc
80
ITw : Ly — Ly 2 % L3 NIP| Ty : Lo — Lol
So from Proposition 2 we get

(33) Clp,N) > % . 9~N/pgaN _ 52L_ . 9N(a—1/p)

This is a sensible estimate for p > 1/a but not for all p > 2. From Remark
after the proof of Proposition 2 we see that 1/a < 4 so we will use {33) for

p > 4. For 2 < p £ 4 we take a, = €™ in (1) toget
271' ¥
60 ETIT el dnccbor [T o]
0
Classical estimates for the Dirichlet kernel {cf. [6], Vol. I, p. 87) give
27r 2V 1

do > c2NF-1),

m(s+c¢)
27:' ‘ Z
Using this, integrating (34) over s and applying Hélder’s inequality we get

271
- 1
2Nl < ¢ (p, Ny i 5 |F (£, o) [P dt dox
(LI]

2

<07 (5 |
0

T

1 pf2-1
IFw(t e |"=dtda)
0

1 2l 2—-p/2
X (E §§|FN(t,a)|2dtda) i

The second integral above clearly equals 2 so from Proposition 3 we get
Cp, N)P > c2N(P-L)gN ~p/2)gN(p/2-2})

ooz Z(2)) s

REMARK. Note that one can extract from our arguments a very simple
proof of the main result of {5} that the trigonometric system and the Walsh
system are equivalent in L, only when p = 2. By duality it suffices to

which yields

icm
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consider only p > 2. Then Proposition 3 and the argument starting from
(34) give the non-equivalence for 2 < p < 4. The Riesz—Thorin interpolation
theorem shows that this implies the non-equivalence also for p > 4.

3. Riemann norms. In this section we want to express the “power
type” difference between Walsh and trigonometric systems in the language
of Riemann ideal norms (cf. [3]).

For two orthonormal systems A, = {¢;}y and B, = {;}7; and a
Banach space X we define g(X | Ay, By) to be the least constant ¢ such that

the inequality

1/2

(35) ( Hme@ (t) H ) HZMDL t)” dt

holds for all sequences (z;); € X. It is clear (take n = 1 and z; # 0)
that ¢ > 1. One can also easily check that such a smallest constant actually
exists (if all ¢’s greater than a work in (35) then a also works).

"This concept, its variants and ramifications are discussed in [3], 3.3. Let
us recall that for an operator T : X — Y we define its Riemann ideal norm
(with respect to the orthogonal systems A, and By) as the least constant ¢
such that the inequality

(1| o], @) <o(§| S el )
imml i=1l

holds for all sequences (z;)?_; C X. Thus (X | Ay, By) is the Riemann ideal
norm of the identity operator on the space X. We will be interested only in
n = 2N and A, and B, being either the initial segment of the Walsh system
or the initial segment of the trigonometric system. We want to contribute
to the problem of estimating such quantities from below for X = L, and
X = L. This question is discussed in Section 6.5.4 of [3].

Let us introduce the following notation: Wy = {wn}n ot and Ty =
fee)2lgh

THEOREM 2. The following inequalities hold:

(36) o(Loo |Wh, T} 2 o(ﬁ/f’f) ~ C(1.058599)",

(37) Q(LmITN,WN)zo( 2

Varv
(38) oLy | Wy, i) 2 N(\/1 + 172N ~

(39) - o(L1|Tw, W) = (V1 +1/v2)" ~ C(1.306563)".

1/2

N
) ~ C(1.082392)",

(1 306563)",
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Proof. First we reduce the estimates (36)—(39) to estimates of some
mixed norms of Fy(t,c). Consider (36) and take z; = ¢, Then from (35)

we infer that
2N _3

Q(LmlWN,TN) > (%T (Slip| Z eijae*jﬁ‘)zdﬁ)l/2
0 §=0

2 _1

X (isup| Z eiJ""wn(t)|2 dt)_l/z.
o % =0

Since the sup in the first integral does not depend on 3 and equals 2V we get

L -1/2
(40) o(Zeo | Wi, Tar) 2 2V ({sup | F(t,0)P dt)

0
Analogously, taking =; = w; we get

1! -1/2
(41) 0(Loo | Tney W) = 2V (EE S sup | P {t, o) da) .
0

To prove (38) we take z; = e¥" and obtain from (35)

S 2 \1/2
oLy | Wn,In) 2 (S “ Z eij'wj(t)Hldt)
0 j=0

1 2o 2.1 i 3 —1/2
X(ESHZee lda) .
0 =0

Since Z?:G_ ! gif ¥ is a translate of the Dirichlet kernel we see that its L;
noerm does not depend on o and is > CN by the classical estimates of the
Dirichlet kernel (see [6], Vol. I, p. 67), so we get

c /Y71 % 2 1/2
(42) oLy | Wi, T} 2 = { [ == | |Fv(te)da ) dt) .
N 5 2m 5
Analogously, to prove (39) we take xz; = w; and obtain from (35)

27 1

el [ Ty, Wii) 2 (% | (J1Ew( a)|dt)2da) v
o 0

11 2V-1 2 \-1/2
X (g (g‘ nzza wn(s)wn(t)ids) dt) .

. ‘
Since }:i:'o'l wn(5)wn{t) is a (dyadic) translation of the Dirichlet kernel of
the Walsh system it is well known and easy (see [4], Paley's Lemma, p. 7)
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that its Ly norm equals 1 s0 we get

2 1
@ o T = (5 ] (itea) )
0 0

From estimates (40)~(43) we see that Theorem 2 immediately follows from
Proposition 10 below.

ProrosiTion 10. The following inequalities hold:

i 1 fee\"N
(44) SS‘LIPIFN(t, a)iZ dt S 2N . (.. —) ,
0 ® 3V 3
1 2 1 N
(45) > gsgplFN(t, o) da < 2 (1+ ﬁ) ,
2r 1 N
1 2 1 1
(46) = (VIFw(t o)l dt) da > (“ N _) ,
2m é (§ ) 5t
1 2T 2 ¥
! 11
(47) S(-—- S |FN(t,a)]da) dt > (m + ._,_) _
o 2 0 27
Proof. Let us start with the proof of (44). First observe that
N—1
(48) [Pty a)® = ] [1+ra(t)e®
n=0
N-1
= H (24 2rp (t) coB 2n+1a)
n=
N
=2 H(l + Tp1 (t) cos 2" a).
ne=l

Let @, (t, @) = (147541(t) cos 2°a) (L+r,10(t) cos 2871 a). With this notation
we have

[N/2]+1
(49) sup [F (t a)P <2V ] SUp 2541 (1)

=0

Clearly the functions sup,, yas+1{f, ) are stochastically independent as func-
tioms of ¢ for s = 0,1,...,[N/2] and have the same distribution in t as the
function 1(#) = supg (1 +r1(¢) cos a)(1 + re(t) cos 2¢:). Thus we have to find
maxima in o of the four functions corresponding to all possible choices of
ri(t) = £1. After some tedious calculations we conclude that two of them
have maximum 4 and two have maximum B = 243, Together with (49) this
gives ‘
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1 (N/2]+11

(50) Ssup | P (t, 0)i? dt < 2N H Ssup woap1(t, ) dt
a % s=0 0 °

N/2 N
1 1 /86

N < N1 )
=2 (2 QB) 2 (3 3)

Now let us prove (45). From (48) we get

N

(61) sup | Fy (¢, 0)[2 = 2% H (14 |cos2"ax|).
t n=1
Expanding the product we get
1 2r N 1 2r s
n _ 2 ks
(52) o S H(1+|cos2 a)do=1+ Z o S H]cosz I | dex.
0 n=1 1<k <. <k SN 0 =1

Bach integral in (52) is estimated using the Cauchy inequality and Lemma 1
as follows:

1 27 s 1 2r s 1/2
(53) 5 S chas2’“ia| da < (ﬁ S Hcoszz’“fada)

0 j=1 0 7=1

1 2w s 1 1/2
= (2— S 5(1+cosz-2kia) da) =97°/2,
gl 0 j=1

Thus substituting (53) into (52) we get

1 2r N 1 N
= | JJ (1 + |cos2®af) da < 1+ > 27%/% = (1+—)
2T 5 i 1<k <oo<ks <N V2

so from (51) we get (45).
Both (46) and (47) are estimated from below by
PL

2
(% g §|FN(t,a)|dtda)

0o
so (29) gives the claim.

REMARK. If we split the product in {49) into triples, and not in pairs
like we did, we will have to analyze eight functions

(1 £ cosa)(L &= cos 2a)(1 + cos da).

It can be checked (I used a computer) that two of them have maximum 8,

two have maximum < 4.33, two < 4.186 and two < 3.78. This leads to the
estimate
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1
{sup | (t, @) dt < 2N (5.074)N/3 ~ 2V(1.7718371)",
0 &

which is slightly better than (50) because numerically (50) gives <
2N (1.784709)V. Obviously also this estimate is not optimal.

3.1. Concluding remarks. 1. Qur estimates are quite sloppy and do not
give the asymptotically correct values. It would be interesting to have precise
estimates.

2. The Paley order of the Walsh functions was crucial in our considera-
tions. This order may be considered natural, but there are other ones, just
as natural. We conjecture, however, that in reality our results are essentially
independent of order. The following question seems to be natural and very
interesting: does there ewist a permutation o of the natural numbers such
that {€")}, is equivalent in Ly for some p % 2 to {Wom)tneo?

3. Both systems we consider in this paper are sets of characters of an
abelian compact group. It is an interesting question whether character sets of
non-isomorphic topological groups can be equivalent systems in L. In par-
ticular one may investigate the equivalence of Vilenkin systems (cf. [4]) with
the trigonometric system or with the Walsh system or between themselves.
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