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On the complemented subspaces of the Schreier spaces
by

I GASPARIS (Stillwater, OK)and D. . LEUNG (Singapore)

Abstract. It is shown that for every 1 € £ < w, two subspaces of the Schreier space
x¢ generated by subsequences (efﬂ) and (ESnn }, respectively, of the natural Schauder basis
(eﬁ) of X% are isomorphic if and onty if (el‘E“) and (efn“) are equivalent. Further, X¢ admits
a continuum of mutually incomparable complemented subspaces spanned by subsequences
of (eﬁ,). It is also shown that there exigts a complemented subspace spanned by a block

basis of (e,‘%), which is not isomorphic to a subspace generated by a subsequence of (eg),
for every 0 < ¢ < £. Finally, an example is given of an uncomplemented subspace of X
which is spanned by a block basis of (ef,,).

1. Introduction. The Schreier families {S¢}¢«., of finite subsets of pos-
itive integers (the precise definition is given in the next section), introduced
in [1], have played a central role in the development of modern Banach space
theory. We mention the use of Schreier families in the construction of mixed
Tsirelson spaces which are asymptotic £; and arbitrarily distortable [3]. The
distortion of mixed Tsirelson spaces has been extensively studied in [2]. In
that paper, as well as in [14], the moduli {§4)a<w, Were introduced measur-
ing the complexity of the asymptotic £; structure of a Banach space. The
definitions of those moduli also involve the Schreier families. Other applica-
tions can be found in [6] and [5] where the Schreier families form the main
tool for determining the structure of those convex combinations of a weakly
null sequence that tend to zero in norm, or are equivalent to the unit vector
basis of . For applications of the Schreier families in the construction of
hereditarily indecomposable Banach spaces, we refer to [3] and [4].

A notion companion to the Schreier families is that of the Schreier spaces.
These are Banach spaces whose norm is related to a corresponding Schreier
family. More precisely, for every countable ordinal £, we define a norm || - |l
on cgp, the space of finitely supported real-valued sequences, in the following
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274 I. Gasparis and D. H. Leung

manner: Given ¢ = (2(n)) € cgo define

lalle = sup > la(n)].

fneF

X%, the Schreier space of order £, is the completion of gy under the norm
|| - ll¢- X° = g, the Banach space of null sequences. X* was first considered
by Schreier [15] in order to provide an example of a weakly null sequence
without Cesaro summable subsequence. It is proven in [1] that the natural
Schauder basis (e§) of X¢ is l-unconditional and shrinking. X* has been
studied in [13] where it is shown that every quotient of X* is co-saturated.
That is, every infinite-dimensional subspace contains a further subspace iso-
morphic to cp.

Given M, an infinite subset of N, we let Xfu denote the closed linear
subspace of X¢ spanned by the subsequence (e )neas. For an element z €

X8 2 =3, cnancs, we set [|z]lo = sup,cy|an|. The main result of this
paper is the following

THEOREM 1.1. Let L = (I,,), M = (my,) be infinite subsets of N, and let
& < w. The following are equivalent:

1. There exist a bounded linear operator T : XE - Xﬁ, and & > 0 such
that |T(e5)lo > 6 for all 1 € L,

2. (efn) dominates (€5, ) for every ¢ < ¢.
3. (ef ) dominates (es, ).

We recall here that a basic sequence (%) in some Banach space X is said
t0 dominate the basic sequence (Yn) in the Banach space ¥ if there exists
a constant C > 0 so that [[307 ) ey < C|SL, eiwi| for every n € N
and all scalar sequences (a;).;. Equivalently, (z,) dominates (yn) if there
exists a bounded linear operator T from the closed linear span of (z,) into
the closed linear span of (y») so that T(xn) = yn for every n € N. The

sequences (zn) and (y») are equivalent if each one of them dominates the
other.

Combining Theorem 1.1 with Lemma 3.14, we obtain
y IEIJOROLLARY 1.2 Let £ <w and L = (1,,), M = (mn) be infinite subsets
of N.
1. If X} is isomorphic to a subspace of X3, then (ef ) dominates (€5, ).
Oons:quently, XE i8 isomorphic to Xﬁ,l if, and only if, (ef ) 45 equivalent
to (es, ). i

; <2§. If X§ is isomorphic to X5, then X} is isomorphic to XIEJ for every
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3. Suppose that (efn) dominates o permutation of (ef, ). Then (ef)
" n
dominates (eﬁnn).

Theorem 1.1 combined with elementary descriptive set theory yields our
next result on the structure of the subsequences of (ef), £ < w. We recall
here that the Banach spaces X and Y are incomparable if neither of them
is isomorphic to a closed linear subspace of the other. In what follows, [N]
denotes the set of all infinite subsets of N.

THEOREM 1.3. For every 1 < € < w there exists A C [N] (depending on
£} of cardinality equal to the continuum and with the following property: for
every pair (L, M) of distinct elements of A, the spaces XE and X5, are
incomparable.

Corollary 3.15 provides another application of Theorem 1.1: Xf\, is not
primary, for every N € [N and all 1 € £ < w.

The proofs of the aforementioned results are given in the third section
of our paper. In the fourth section we deal with complemented subspaces
of X¢ spanned by block bases of (e&). Proposition 4.3 and Corollary 4.4
establish that for every semi-normalized weakly null sequence in X¢, £ < w,
there exist ¢ £ £ and a subsequence which is equivalent to a subsequence of

es).

( n)Further, we show that there exists a block basis of (ef) spanning a com-
plemented subspace of X¢ which is not isomorphic to X§,, for all 0 < ¢ < ¢
and every infinite subset M of N. We also show that there exists a block
basis of (&) spanning a subspace which is not complemented in X¢.

The problem of the isomorphic classification of the complemented sub-
spaces of X¢, even for block subspaces, seems rather difficult.

Part of the research for this paper was conducted while the second author
visited the University of Texas at Austin. The second author thanks the
Department of Mathematics there, especially the Banach space group, for
making the visit possible. Thanks are also due to Ted Odell for several
conversations regording the results contained herein.

2. Proliminaries. We shall make use of standard Banach space facts
and terminology as may be found in {11]. In this section we shall review some
of the necessary concepts. We shall also review two important hierarchies,
the Schreior hierarchy [1] and the repeated averages hierarchy [6]. Finally
we shall state some fundamental results from descriptive set theory which
will be widely used in what follows. For a detailed study of descriptive set
theory we refer to [9]. '

We first indicate some special notation that we will be using. A sequence
(2a)2, of elements of an arbitrary set will be conveniently denoted by
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(z,). Given M, a subset of N, [M]<* denotes the set of all finite subsets
of M, while [M] stands for the set of all infinite subsets of M. If M € [N],
then the notation M = (m,,) indicates that M = {m1 < my < ...}. Let
E, F' be finite sets of integers. We shall adopt the notation B < F to
mean max F < min F. If ¢ = (:c(n)) belongs to cgo, the space of finitely
supported real-valued sequences, and F' € [N|<®°, then (F) = 3 . p #(n),
and [2](F) = ¥,y lo(n)].

All Banach spaces considered throughout this paper are real. £; denotes
the Banach space of absolutely summable sequences under the norm given
by the sum of the absolute values of the coordinates. cg is the Banach space
of null sequences under the norm given by the maximum of the absolute
values of the coordinates. By the term subspace of a Banach space we shall
always mean a closed linear subspace. A subspace Y of the Banach space X
is said to be comnplemented if it is the range of a bounded linear projection
on X,

We next recall that if (z,,) is a sequence in some normed linear space,
then the sequence (i) is called a block subsequence (resp. convez block
subsequence) of (z,) if there exist sets [; C N with Iy < Fp < ... and a
sequence (a;) of scalars (resp. non-negative scalars such that 3 cp an =1,
for every i € N) such that for every i € N, 3 = ., o5 Gn%n. We then
denote by supp y; the support of y;, that is, the set {n &€ F; : |a.| > 0}. We
shall also adopt the notation 33 < y2 < ... to indicate that (yn) is a block
subsequence of (zn). If (z,) is Schauder basic, then (y,) will be called a
block basis (tesp. conves block basis) of (2,).

Next we review the definition and some basic properties of the Schreier
families {S¢}ecw, (cf. [1]). The Schreier families are defined by transfinite
induction as follows: So = {{n} : n € N}U{0}. Suppose S; has been defined
for every ¢ < £. If £ is a successor ordinal, say £ = (4 1, we set

n
S’gz{UFi:neN, n < min Fy,
=1 Fi<...<F,, Fes, iSn}U{(B}.

If £ is a limit ordinal, let (£,) be a preassigned increasing sequence of suc-
cessor ordinals whose limit is {. We set

Se = U {F €8, :n<minF}uU{l}.
n=1
Given M € [N] we denote by S¢[M] the family {F: F e S;, F C M}. .
An important property shared by the Schrejer families is that they are

" spreading: I {p1,...,Px} € Se, p1 < ... < Dpx,and g1 < ... < g are so that
p; <'g; for all ¢ <k, then {g1,...,qx} € Se. o
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Of particular interest are the maximal (under inclusion) members of Se.
The following lemma concerning those sets is proved in [§].

LeMMA 2.1. Let M € [N] and £ < wy. Then there exists a (necessarily)
unique sequence {FE(M)}2, of successive mazimal S¢ sets so that M =
UZG=1 F’E (M) ‘

REMARK. The following stability properties of {F§(M)}S2,, are easily
verified:

LIf by < ky < ... and N = |22, Fy (M), then FE(N) = Ff (M) for
all n € N.

2. Let M = (m;) and N = (n;) be infinite subsets of N. Assume that for
somep € N,m; =mn; foralli < p. If FE(M) is contained in {m, : i < p},
then FF (M) = FF(N) for all 5 < k.

We shall make use of the following

LevMMa 2.2. Let M ¢ [N], I € [M] and £ < w. Then max F*(M) <

Proof. Suppose L = (I;} and M = (m;). We prove the assertion by
induction on £. The case £ = 0 is trivial. Assume now that £ > 1 and that
the assertion holds for £ — 1 and all P, @ with Q € [P].

For an arbitrary P & [N|, we set P, = P and

P,={peP:p>maxF}(P)}, i>2

We observe that FE~1(P) = FE (P, for all i € N. We also have F&(P) =
. Ff _1(Pi), where p1 = min P . It follows now, by the induction hypoth-

esis, that L; € [M;] for all ¢ € N. Therefore,
max F* (M) = ma.fo_l(Mml) < mafo—l(Lml) < maach(L)
asmy <. m

We now pass to the definition of the repeated averages hierarchy in-
troduced in [6]. We let (e,) denote the unit vector basis of ¢pg. For every
countable ordinal £ and every M € [N], we define a convex block subse-
quence (£M)22  of (e,) by transfinite induction on £ in the following man-
ner: If £ = 0, then £¥ = e, , for all n € N, where M = {(m,,). Assume that
(¢M)22_; has been defined for all { < & and M &€ [N]. Let £ = ¢ + 1. Set

1 =
& = —IZQM
=1

m

where m; = min M. Suppose that £¥ < ... < £M have been defined. Let
M,={meM:m> maxsupp &M} and  k, = min M,,.
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Set
1 &
gﬂlzg_zgl "
T =1,

If £ is a limit ordinal, let (£,+1) be the sequence of ordinals associated with
£ in the definition of S¢, and let M € [N]. Define

M = [£m1 + 1]%4
where m) = min M. Suppose that £ < ... < £ have been defined. Let
M, ={meM:m>maxsuppt} and k, = minM,.

Set
ey = (&, + 175

The inductive definition of (£)2%;, M € [N], is now complete.
The following properties are established in [6].

P1 (gM )52, is a convex block subsequence of {e,) such that, for all M

€ [N and £ < wy, we have M = | 7o, supp&M.

P2 supptM e Scforal M e [N, £ <w; andneN.

P3 If M\N € [N|, £ < wy, and supp&M = suppé&d for i < k, then
M =gl fori <k.

P4 Tfé&<w, {ne:keN CN and {Ly: k € N} C [N] are such that
supp 2% < supp f,f’:jj for all i € N, then letting L = | Ji2, supp £,
Wehavef -—6;3;‘ , for all 4 € N.

Properties P83 and P4 are called stability properties of the hierarchy
{6}, : M € [N}}. Lt is easily seen, by induction, that supp £ = F§(M)
for every £ <w, all M € [N] and n € N,

In the next lemma we show that for £ < w and M € [N] the sequence
(€M), considered as a sequence in X%, is equivalent to the unit vector basis
of ¢y. Moreover, the equivalence consta,nt depends only on £.

LeMMa 2.3, ||Y0 Ml <€+ 1 forevery M e [N, n €N, and £ < w.

Proof. We use induction on £. The case £ = 0 is trivial. Assume the
assertion holds for é—1. Let G € S¢. We shall show that 3.7, €M(G) < £+1,
for every M € [N] and n € N. To this end choose successive members
Gh <...< Gy, of S;_1 s0 that I <minG and G = |J\_, Gy. Let {iy,...,ip}
be an enumeration of the set {i < n: FF (M) NG # #}. We define

j2]
— £ . 3
L_HF;t(M)U{mEM.m > max Fy (M)}

and observe that F (M) = UL, _ ., Ff (L) for all t < p, where rp =
0<ry <...<rgare chosen so that ry —ry_y = mmet( ) for all ¢ < p.
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Therefore,
1 =
=——7r—— > (¢-1)], t<p
' min Fi‘i (M) ;i
and thus
IEACED D) PEERES
‘S;M( (E - 1)]
= t=2 s=1 TOID FE (M) J=r_q+1
i p
=22 ——m (6-1)j(G)
s=1 t= 2mmFg( —EH

l

£ D (Z > - nHen)

—1 min F, =2 j=ry_1+1

l

1

< ————¢ by the induction hypothesis
; min FE (M) P

min F}, (M)
<¢£ aslSminGSmaxFﬁ(M)<mmF5(M)

Finally, 3%, ¢}(G) < 1+¢ and hence Y}, £€M(G) < 14 £. We conclude,
since G € S; was arbitrary, that |7, &M < £ +1, as claimed. =

Let now M € [N]. By identifying elements of [A] with their indicator
functions, [M] can be endowed with the topology of pointwise convergence.
It is not difficult to see that [M] is then homeomorphic to a Gy subset of the
Cantor set {0,1}", and thus it is a zero-dimensional Polish space. Further,
[M] is perfect (that is, contains no isolated points) and every compact subset
of [M] is nowhere dense. It is then a classical result that [M], endowed with
the topology of pointwise convergence, is homeomorphic to the space of
irrational numbers with the ordinary topology. It is worthwhile to note here
that the family

{Wipt,-...pe) keEN, p1<...<pr, pi €M, i <k}

where Wi(p1,...,p0) = {L € [M], L= (l;): l; = p;, ¢ < k}, forms a basis
of clopen subsets for the topology of pointwise convergence in [M].

3. Proofs of the main results. This section is devoted to the proofs
of Theorems 1.1 and 1.3,

DEFINITION 3.1. Let ¢ < wy and A € [N]<>°. We set
7¢(A) = max{n e N: ANF5(AU{m € N:m > max A}) # 0}.
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We observe that 7:(A) remains invariant if {m € N : m > max A} is
replaced by {m € M : m > max A}, M € [N|, in Definition 3.1. The quantity
T¢{A) is important for our purposes since it will enable us to state a criterion
for determining whether or not the sequence (el ) dominates (ef, ), where
L = (I,) and M = (m,) belong to [N]. Our next lemma describes some
permanence properties of 7¢(A4).

LEMMA 3.2, Let £ <un and A, B belong to [N]<™.

1. If AC B then 7¢(A) < 7¢(B).

2. If A< B then (AU B) < 7e(A) + 7e(B).

3 A={a1<...<an}, B={b1 <...<by}, n €N, and a; < b; for
i < n, then 1¢(B) < 7e(A).

4. Assume that A = |Ji, A, B = Ji—, B;, wheren € N, and 4A; <

. < Ay, By < ... < B, are mazimal members of S¢. If min 4; < min B;
for all i < n, the'n, Tg+1(B) < 14 (4).

5. Assume that A =|J{_, A; for somen € N. Then

) < (X reld)) €+ 1) +1

i=1
for any £ < w.

Proof The first two properties are immediate consequences of Defini-
tion 3.1. The third property follows because S is spreading. Let us show
that 4 holds. This is accomplished by induction on . The case n = 1 is easy
because 7¢41(B) = Te41(4) = 1. Assuming the assertion true for all k < n,
we set k; = min A; and ; = min By. In case I; > n, we obtain B € Sgq1.
Thus 7241 (B) = 1 and hence the assertion holds.

Next suppose that I; < n. It follows that Uf;l A; and Ui‘zl B; are max-
imal Sgyq sets. On the other hand, because n — Iy < n, the induction
hypothesis yields 7e41(UL;, 11 Bi) € 7e41(Upmy, 41 Ai). But also kb < Iy,
and so property 1 yields that 7ea(Uiy, 1 4d) < Teq1(Uiy, o1 Ai). The
proof is complete since 711 (B) = 1+ 7eq1(Ujmy, 1 Bi), while 7541(4) =
1+ 7o (Uig 41 40)-

We now prove 5. Let k = 7¢(A) and M = AU{m € N:m > max A}.

Penote Etl £M by z. By Lemma 2.3, {|z||; < ¢+ 1. Hence

o) < 3" 0(4) < (3 7e(Ao)) el < (Zﬁf 0)E+1),

i=1 i=1

from which the result follows. m

DerFmITION 3.3. Let { < wy and L = (I,), M = (m,) beleng to [N].
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Define
de(L, M) = sup{7e(¢™"A) : A € S¢[M]},
where ¢ : L — M is the natural bijection ¢(I,) = m, for all v € N

The reason we introduced the quantity de(L, M) is justified by our next
lemma.

LEMMA 34. Let £ < w and L = (I,), M = (m,) belong to [N]. Then
(ef ) dominates (ef, ) if and only if dg(L, M) is finite.

Proof. Suppose first that de(L,M) = p < co. Let (a;)}., be scalars
and choose F € S¢[M] so that } . plai| = |30, a:ef, ||, where we have
set H = {i £ n:m; € F}. It follows, by our assumption, that we can find
successive S¢[L] sets Gy < ... < Gp so that ¢~ F C { J]_; G;. We now set

={i€ H:l; € Gj}forall j <p Itis clear that H = | Ji_, H;, and
moreover, {I; : i € H;} belongs to S¢[L]. Finally,

S el =30 3 lad <pHZamez |
icH j=141€H;
Thus: HE:‘:], aiefﬂ.f_ || S p”z:=1 a"ielg il'

Conversely, assume that (efﬂ) C-dominates (ef, ) and let F' € S¢[M].
Suppose that TE(qS_lF) = k. It follows that there exist successive maximal
Se[L] sets G < ... < Gi_1 so that U;'c e N ¢~ LF. Put

k—1
Q=JGiu{leL:l>maxGr}.
i=1
We may write £2 = Yiea a}eg with ¥, a5 =1forall i < k—1. If we
apply Lemma 2.3, we obtain

o O3 3EE B 3p oL L MBS

as Uy e () jEG,}CFa.ndEeGa,ml Hencek<0(£+1)+1
Whlch 1mp11es that de(L, M) € C(€+ 1)+ 1 as F was an arbitrary S¢[M]
set. n

We shall next show that (e$) has “many” non-equivalent subsequences.
LEMMA 3.5. Let 1 <& <w, N € [N] and set
D= {(L, M) € [N] x [N]: de(L, M) = d¢g(M, L) = oc}.
Then D is o Gs dense subset of [N] x [N].
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Proof. By Baire’s theorem, it suffices to show that the sets {{L, M) €
V] x [N] : de(L, M) < co} and {(L, M) € [N] x [N] : d(M, L) < o0} axe
first category F., subsets of [N} x [N]. Indeed, we may write

o0
{(L, M) : de(L, M) < oo} = | J{(L, M) : de(L, M) < n}.

n=1
It is easy to see that each set in the union is closed in [N] x [NV ] and thus
it remains to show that {(L, M) € [N] x [N] : d¢(L, M) < n} has empty
interior in [N]x [V]. If that were not the case, choose non-empty basic clopen
subsets I and V of [N] so that U x V' is contained in {{L, M) € [N] x [N]:
de(L, M) < n}. There exist p1 < ... < p& in N so that V = W{p1,...,pk).
Fix L € 4, L = (I;). If M € [N] with min M > py, let P = {p1y.. P fUM.
Since dg(L, P) < n, it follows that if Ly = (lk+i)i2,, then de(Ly, M) < n.
By Lemma 3.4 this implies that (ef);e L, is equivalent to the unit vector
basis of £, which is absurd. Arguing similarly, we also find that {(L, M) €
[N] x [N}:de(M, L) < 0o} is a first category F, subset of [N] x [N]. m

We also need the following result which is a special case of a theorem by
Mycielski [12] and Kuratowski [10] (cf. also [9]).

PROPOSITION 3.6. Let K be a perfect Polish space and G a Gs dense
subset of K x K. There exists a subset C of K homeomorphic to the Cantor
set such that C x C\ A C G (here A is the diagonal of K x K).

This result may be found in [9] (p. 129, Theorem 19.1) but we shall
include a proof to be thorough.

LEMMA 3.7. Let K be Polish and G be an open dense subset of K x K.
Let (A7, (n > 2) be a finite sequence of open non-empty subsets of K.
Then for every € > 0 there exist open non-empty subsets (B;)7, of K so
that diam B; < £ for all i <n and B; x B; C GN (A x Aj) for alli# j in
{1,...,n}.

Proof. By induction on n. Suppose first that n = 2. Since (A, x A2) N
G # 0, there exist open non-empty subsets Cy, Cp of K, with diameters
smaller than ¢, so that C1 x Cy € GN(A; x Az). Further, (Co xC)NG # 0
and thus there exist open non-empty subsets By, By of K so that Box B,
GN(Cy x C1). Of course, By and By satisfy the conclusion of the lemma for
n = 2.

Next assume n > 2 and that the result holds for n — 1. We can therefore
choose open non-empty subsets (C,-);‘z“ll of K, with diameters smaller than
g, sothat C; x 05 € GN{4; x A;), forall i # jin {1,...,n — 1}. Next,
set Ano = A, and choose, as in the case n = 2, non-empty open subsets
(B2}, (An,i)2t of K, with diameters smaller than ¢, so that B; x A, C
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GnN (C,, X An',;_]_) and Anﬂ' X B.i CGn (An’,;.,]_ X C-,‘), for all £ < n — 1. Set
B, = A, n—1 and it is easy to check that (B;)7.; is the desired sequence. w

Proof of Proposition 3.6, Since K contains no isolated points, A is no-
where dense in K x K. Hence, GN{K x K\ A) is a G5 dense subset of K x K.
We shall therefore assume, without loss of generality, that G N .4 = 0. Now
let {Gy,) be a decreasing sequence of open dense subsets of K x K whose
intersection is G. We can assume that G, N A =0 foralln e N,

We shall construct a collection {U, : @ € {0,1}",n € N} of open non-
empty subsets of K so that the following properties are satisfied for every
n € N:

(i) UuNUpg = 0 whenever a # 8 in {0,1}™.
(i) Uy C Upg for all @ € {0,1}" and every 8 € {0,1}™ (m < n) which
is an initial segment of o.
(iii) diam U, < 1/n for every o € {0,1}".
(iv) Uy x Us C Gy, whenever « # g in {0,1}".

Once this is accomplished, we let
C= {.’c €K :dae {0,1}%, {z} = Uo,|n},
n=1

where a|n = (a1,...,0.) if @ = (a;) € {0,1}N. It is a standard result that
C is homeomorphic to the Cantor set. Property (iv) yields that C satisfies
the conclusion of Proposition 3.6.

The construction is done by induction or n € N. For n =1 choose open
non-empty subsets Wy and W; of K so that Wy x Wi C G1. Then Wy and
W, are disjoint since G1 N A = @. If we apply Lemma 3.7, for £ = 1, to the
dense open subset G and the open sets Wy and W1, we shall find non-empty
open subsets Uy, Uy of K having properties (i)—(iv) for n = L.

Now suppose that for every k < n we have constructed a collection
{Uq : & € {0,1}*} of open non-empty subsets of K whose members share
properties (i)~(iv) for k. Let {d1,...,dp}, p = 2", be an enumeration of
{0,1}™. Another application of Lemma 3.7 yields non-empty open subsets
Wi and Wy of K, j < p, so that Wi, x Wy, C (Ug; % Ugy) N Gy for
every 7 < p and all pairs (r, s) of distinct elements of {0, 1}. It follows, since
Guy1 M A =B, that W;o N Wy = 0. According to the induction hypothesis
Uy, NUq =@ forall ¢ # jin {1,...,p}, and thus Wi N Wi = @ for all
(5,7) # (i,8) in {1,...,p} x {0, 1}.

- We next apply Lemma 3.7, for ¢ = 1/(n + 1), to the family {W;, :
(4,r) € {1,...,p} x {0,1}} and the dense open subset G,41. We obtain a
collection {U, : @ € {0,1}"**'} of non-empty open subsets of K so.that
U, xUg © (Wjr x Wis) N Gy whenever o = (d;,7), B = (di,s) and
(G,7) # (4,8) in {1,...,p} x {0,1}. Evidently, {Us : a € {0,1}"*} has
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properties (i)-(iv). The inductive step and hence the proof of the proposition
are now complete. m

Assuming we have proved Theorem 1.1 and Corollary 1.2, let us now
show how to derive Theorem 1.3 from our previous results.

Proof of Theorem 1.8. Let D be as in the statement of Lemma 3.5, where
we have taken N = N. We can apply Proposition 3.6 for the space [N] and
the set D to obtain A C [N] homeomorphic to the Cantor set and such that
Ax A\ A CD. Lernma 3.4 and Corollary 1.2 yield that A is the desired
subset of [N]. =

We shall next pass to the proof of Theorem 1.1. We start with some
necessary lemmas. '

LEMMA 3.8. Let G € [N|<*™ and £ < w. The following are equivalent:

1. G is a member (vesp. mazimal member) of S¢.

2. For every 0 < ¢ < € there exist n € N and successive members (resp.
mazimal members) G1 < ... < Gy, of S¢ so that G =, G; and {min G :
i < n} is a member (resp. mazimal member) of Se_¢.

3. There exist 0 < ¢ < £, n € N and successive members (resp. mazimal
members) Gy < ... < Gy, of S so that G =|J_, G; and {minG; : i < n}
is a member (resp. mazimeal member) of Se¢.

Proof. Weshow that all three conditions are equivalent for the members
of SE‘

1=2. Induction on £ If £ = 0 the assertion is trivial. Suppose now
£ > 1 and that the assertion holds for £ ~ 1. Let { < £ If = £, the
asgertion is again trivial. So assume { < £. Choose Hy < ... < Hp in &;_3
so that p < minH; and G = | Jf_, H;. The induction hypothesis yields
that for each ¢ < p there exist Hy < ... < Hip, in Sp so that {min H;; :
J < ri} belongs to Sg¢—1 and H; = U;;l H;;. Let {G1,...,Gn} be an
enumeration of the set {H;; : § < r;,i < p} so that G1 < ... < G Note
that {min@; : ¢ < n} = | f_;{minH;; : § < r;} and so it is a member of
S(_:_,; as p < min A1y = min A, :

2=3. This umplication is trivial.

3=-1. Again induction on £. If £ = 0 the assertion is trivial. Suppose
now £ > 1 and that the assertion holds for £ — 1. Let ¢ < & If ¢ = &,
the assertion is again trivial. Sc assume ¢ < £. We first apply 1=2 for
the set {minG; : i < n} € Se¢ to obtain Hy < ... < Hy in Se_¢
so that {min@; : i < n} = | J_, H; and {minH; : i < p} € S1. Set
L ={j<n:minG; € H;}, # < p. Then Ujer, Gs € Se-1 by the induction
hypothesis since {minG, : j € I;} = H;, which belongs to Se—¢—1. Finally,
G = Ul ,(U;er, G5) € Se, as minG = min Hy > p. The latter inequality
holds because {minH; : { < p} € Sy.
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The proof for the case of maximal Schreier sets requires only minor
modifications. Namely, all the sets which belong to an appropriate class S,

a £ £, and appear in the previous arguments, can be taken to be maximal
members of §,. w

LEMMA 3.9, Let £ <wn. Suppose that L=(1;), M = (m;) belong to [N} and
satisfy l; < my < liyy for every i € N. Then (el{:) is 2-equivalent o (e§, ).

That is, |31y aiei | <10, aieh, Nl < 2150, aiei || for everyn € N and
all scalar sequences (a;)7e; .

We omit the easy proof and pass to

LemMmA 3.10. Let € < w and 0 < ¢ < £ Let L € [N] and set g, =
min F$(L) for all n € N. Then ((E), considered as a sequence in X&, is
12(¢ + 1)-equivalent to (e57¢).

Proof. Let n € N and (a;)?, be scalars. Choose G C {¢1,...,¢n}, G €
Sg_¢, such that 3, lag = ||3-0; aiel ¢ll, where I ={i <n:q; € G}. It
follows that H = {J,c; Ff (L) € S¢, by Lemma 3.8. Hence, |1, a:(Flle >
ierlas] and thus 357 acef ¢l < 1320 ailf e

We next show that |37, ai(F[le < 12(C+ 1)|| 20 2ief ]l Let G €
Se[L] be maximal and put G; = FH(L)NG for all ¢ < n. We apply Lemma 3.8
to find p € N and maximal members Hy < ... < Hp of S¢ so that G =
{Jj—1 H; and {min Hj : j < p} is a maximal member of S

‘We claim that each of the G;’s can intersect at most two of the H;’s.
Indeed, assume that for some i and 51 < j2 < 73 we bad G;N H;_ # 0 for all
r < 3. Then H;, ¢ G; because H;, C [minG;, max G;]. Thus, Hj, C FHL)
and hence Hj, = F{(L), by the maximality of Hj,. It follows that Hj, =
G;, which is a contradiction as H;, N Hy, = @. Therefore our claim holds
and evidently, for each i < n, G; intersects either exactly one of the H;’s,
or exactly two (consecutive) H,’s. We can thus partition {1,...,n} in the
following two subsets:

I = {t < n: G; C H; for some j < p},
L={ign: 35 <ja<p, G;CHj;, UHj,, Giﬂer#@, r <2}

Let k; = max Ff(L) for all ¢+ < n. We now need the following

Cr.amM. Suppose that T; C Ff(L) for all i < n. Assume also that for
each i < n there exists § < p so thet T; C H;. Then

Sach( U 7| < €+ 0[S
i=1 mesl =1
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Once the claim is established we finish the proof as follows: Observe that
our claim yields

et @] < ¢+ 0wl
ich i=1

On the other hand, if i € I, there exist A; < B; so that G; = 4; U B; and
each element of {4;, B;} is contained in some H;. Our claim then yields that

3 acH@)] < ¢+ D[ o]
icls g=1

Therefore, |Y i, a:¢F (G| < 3(¢C+ DY, aie£:¢[|. It now follows, since

G was arbitrary, that |}, a:i(Fll: <6(C+ 1) X0y aiei:CH. The desired
estimate now follows from Lemma 3.9.

We proceed to prove our claim. Let R; = {i < n: T; # 0, T} C H;},
J £ p, and choose i; € R; such that max,cg, |a:| = |a;;|- Then

et (U m)|=[Sedm]= [ ¥ et

F=14i€Ry
D
<3 act) (U 7))
J=1  iCR; meR;
< ZH Z ai(F becanse U Tm € 5¢
j=1 i€R; <. meRy
< Z(g + 1)1 max |ca1 by Lemma 2.3
j=1

= 3 Dl < ¢+ 1Sl
=1 i=1

The last inequality holds since T;; C Hj; implies that min H; < k;; for all
j<pandthus {ki; :j<p} € Se. m

We recall here that a bounded sequence (z,,} in some Banach space is said
to be an Ef-spreadz’ng model, £ < wy, provided that there exists a constant
C > 0 so0 that ||3 ;. p aizil|l 2 C ¥, |ai| for every F € S; and all scalars
(ai)icF-

REMARK. It is easy to see that every subsequence of (ef) is an
!:’ -spreading model in X¢. However, Lemma 2.3 implies that no subsequence
of (e£) is an EE'!’ ~gpreading model in X%.
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PRrRoPOSITION 3.11. Suppose L = {;), M = (m;) belong to [N and that
&€ < w. Assume further that there ezist a map ¥ : L — M and a bounded
linear operator T : X§ — XEJ s0 that T(ef) = efb(l) for every l € L. Then
there exists an integer D > 0 so that 7¢(v~1F) < D for every F € S¢[M]
and all 0 < { < &.

Proof. We first note that y~*F € [L]<* for every F' € [M]<®. Indeed,
if that were not the case, we would find m € M and N € [L] so that 4(I) =m
for every | € N. It follows that T(ef) = ¢4, for all [ € N, contradicting our
assumption that T is bounded.

Fix 0 < ¢ < & Our first task is to show that sup,, 7c(¢ "> F5(P)) < oo
for every P € [M]. Suppose instead that sup,, 7¢ (¥ ~1F5(P)) = co for some
P ¢ [M]. We claim that there exist a sequence of positive integers, (n:),
and a sequence of successive maximal Se41[L] sets, (G;), so that letting
g; = minG; for all 1 € N we get

Gi\{a:} Cy 'FS(P) forallieN

Indeed, choose ny so that (¢ 1F§ (P)) > L. Put ¢¢ = l;. Because
Y~ F§ (P) contains at least I; successive maximal S¢[I] sets, it is clear
that there exists Hy C ¢~ LF§ (P), ¢ < min Hy, so that Gy = {¢1} U Hy is
a maximal S¢y1[L] set.
Put Iy, = maxGy and wy = 7¢({l1,. .., }). We can find no > ny so that
( 1FC (P)) > w + l31.+.1 NOW, {l E L l Z lh—l—l} ﬁ¢_1F,$2(P) must
contain at least lt,+1 successive maximal S¢[L] sets. If not, then 7¢[{l € L:
U2 by 1} N FS, (P)] € b1 and thus e (Y FE,(P)) < by 1 + w1, by
Lemma 3.2. But this contradicts the choice of nq.

We set gz = [;;+; and arguing as we did in the case i == 1, we can find
H, C ¢~1F% (P), gz < min Ha, so that Gy = {ga JUH}> is a maximal S¢4.1[L]
set. We next put /;, = max G5 and continue in the same fashion to obtain
sequences (1), (G;) with the desired properties.

Let @ = U, Gi. Clearly, @ € (L] and FfTH{Q) = G; for all i € N. We
now set B = | J%, F% (P). Then R € [M] and Ff (R) = F§,(P) for all i € N.
We observe that if ¢ € G; \ {g:}, then T(e}) = e, for some m € F{(R).

Next write (¢ +1)% = aiel, -+ (L — i )u; for all 4 € N. Here, u; is a convex
combination of the vectors (e§)seqi\{a:} and 0 < a; < 1. Evidently, lim; a;
= 0, Observe that T, is a convex combination of the vectors (€5,),,c FS(R)
and thus ||[Tule =1 for all i € N,

It must be the case that ¢ < ¢ for if not, Lemma 2.3 yields lim; {ju;]|¢ = 0.
On the other band || Tu;|l¢ = 1 for all ¢ € N. Hence T is not bounded,
contrary to our assumption. Therefore, { < £ and so ||Ju;|; = 1 for all 4 € N.
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Recall that lim; {(1—a;)Tu;||¢ = 1 and (1—a;)T'; is supported by Ff (R).
Using Lemma 3.8, it is easy to check that ((1 —a;)T%;) is an £~ -spreading
model in Xﬁl, and consequently, since lim; a; = 0, also (T[(¢ + 1)?]) is an
£ spreading model in X gl We conclude, as T is bounded, that ((¢+1)%) is
an Eg"c~spreading model in X¢. However, if we apply Lemma 3.10 we deduce
that (e§"¢~1) is an £ *-spreading model in X¢~¢~*. But this contradicts
the Remark after Lemma 3.10. Hence, sup, 7 (¢ 1F$(P)) < oo for every
P e [M]. 1t follows that

] = | J{P € M) : re( ™" FE(P)) < b, ¥n € N},
k=1
It is easily seen that every set in the unjon is closed in [M]. Baire’s theorem
now yields b € Nand r{ < ... <r§ in M so that if P € [M], P = (p:), and

pi = Tf, i < 8¢, then T (Y LFS(P)) < k¢ for all n € N. It now follows that
there exists m§ € M so that if F € S¢[M], min F >m§, then 1 (¢~ F") < k.
Finally, choose D; € N so that 7¢(¢~1F) < D, for every F € S;[M],
max F' < m§. Part 5 of Lemma 3.2 now yields . ($p=1F) < (D¢ + ke (¢ +
1) + 1 for every F € S;[M]. To complete the proof we need only take
D=max{(D¢+k)((+1)+1:(<£} m

ProPOSITION 3.12. Suppose L = (I;), M = (my) belong to [N| and that
¢ < w. Assume further that there exist a map ¢ : L — M and an integer
D > 0 so that 7.(¥"'F) < D for every F € S;[M] and all 0 < ¢ < €.
Then there exist integer constants By, 0 < ¢ < £, so that (¢ F) < E;
fo(r Savery 1;’ € S¢[M] and all 0 < ¢ < € (¢ : L — M is the natural bijection
() = m).

Proof If ¢ = 0 it is trivial (Eg = 1). Suppose the assertion holds for
some ¢ < { — 1. We show Ecyy = {(( + 1)E; +1][(2D + 1){¢ + 2) + 1]
works for ¢ + 1. Let F € S¢i1[M], F = {my,,...,m,}. Our hypothesis
yields that {l;,,...,1;,} is contained in the union of Ecm;, S¢[L] sets and so
({1, }) S (C+1)Egmy, +1 by part 5 of Lemma 3.2, Choose ¢y € N
so that the set {l;, 47 : 0 < 7 < ¢} is the union of exactly [(¢+ 1) B¢ + 1]m,
successive maximal S¢[L] sets.

Cram. o1 ({liy1;: 0 <5 < @u}) < Beya.

Once our claim is proven, we apply Lemmas 2.2 and 3.2 (parts 4 and 1) to
conclude that 7¢41({li;45: 0 € £ p— 1}) <€ Eeyq and e ({liy, - iy })
< E¢qq.

To prove the claim we choose ¢ < ¢y so that the set {lii4;:0< 7 < g}
is the union of exactly m;, successive maximal S¢[L] sets. Our task now is

icm

Complemented subspaces of the Schreier spaces 289

to show that 7¢41 ({4, +5: 0 <7 < ¢}) £ (2D +1)(¢ +2) + 1. The claim will
then follow by applying parts 4 and 2 of Lemma 3.2.

We first observe that if 0 < jy < ¢ is chosen so that I;, 1; < m;,; for
all j < jo, then {l;; +; : 0 < j < jo} is contained in the union of 2D S¢11[L]
sets.

Indeed, {m4,+; : 0 < j < jo} belongs to S¢4+1[M], by part 3 of Lemma 3.2
and the fact that 7 ({lij+; : 0 € 7 < jo} < my,. It now follows that ¥ =
{9(li;45) : 0 < § < Jo,¥(liy+5) = ma, } belongs to Seq[M]. To see this let
{my, < ... < my,}, where k < jo and i3 < tp, be an enumeration of ¥.
Then my; > my,1; for every 0 < j < k. Since {miy 45 : 0 < 7 < k} belongs
to S¢41[M], which is spreading, we conclude that ¥ belongs to S¢41[M].
Our hypothesis (for ¢ +1) yields that ¢~1(¥) is contained in the union of D
S¢i1[L]-sets, hence so is its subset {l;;4;: 0 < J < o, %(li4+5) = my, }. On
the other hand, the cardinality of {#(l;;+;) : 0 < 7 < jo, ¥ (liy45) < My, t i8
at most i; — 1. Our hypothesis (for { = 0) now yields that the cardinality of
the set {I;,+; : ¥(liy+j5) < may,0 < 7 < jo} is at most D(4; - 1). We deduce,
since I;, > i1 — 1, that {l;4; : ¥ +5) < 14,0 < j < jo} is contained in
the union of D S;[L] sets. Hence, {l;;4; : 0 £ j < jo} is contained in the
union. of 2D S 1[L] sets.

Next set j1 = min{j : 0 < 7 < gand lj;+5 > My, 4;}. If j1 does not
exist, then l; 4; < my 4 for all 0 < j < ¢q. We deduce, by our previous
observation for jo = g, that {l;;+; : 0 < j < q} is contained in the union of
2D S¢qq[L] sets.

If 4, does exist, then {l;;4; : 0 £ j§ < j1} is contained in the union of
2D S¢y1[L] sets. Indeed, this is obvious if j; = 0. If j1 > 1 the assertion
follows from our previous observation by taking jo = 71 — . Finally, {f;, 4, :
41 < 7 < ¢} belongs to S¢t1[L], since I 15, > i 15 = My, and {l; 45 ¢
41 < 4 < g} is contained in the union of m;, successive maximal S¢[L] sets.
Thus, {l;;+; : 0 < j < ¢} is contained in the union of 2D + 1 S¢41[L] sets.

Concluding, in any case the set {l;,4+; : 0 < j < g} is contained in the
union of 2D + 1 S¢41[L] sets. Hence, applying part 5 of Lemma 3.2, we find
that 7epr({liy+5:0< 7 <q}) £ (2D +1)(( +2) + 1, as desired. =

PROPOSITION 3.13. Let £ < wy and L = (), M = (my) be in [N].
Suppose that there exist § > 0 and a bounded linear operator T': XE — Xfw
such that 1|T(ef)\|o > & for every l € L. Then there exist a maptp: L — M
end o bounded linear operator R : Xi — Xi,f such that R(ef) = ef,)(l) for
everyl € L.

Proof. Following [11], given two infinite matrices (a;;) and (di;), we

shall call (di;) a block diagonal of (a;) if there exist increasing sequences
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(r1), (si) of positive integers so that

4 =4 @5 (7)€ Upei[re, Trta) ¥[8k Sk41),
d 0  otherwise.
‘We represent T' as an infinite matrix (a;;). Then T(ef) = E;G 1 a,-jef for
every 4+ € N. Because ||T(el )¢ > 8, for every ¢ € N there exists j € N
such that [a;;| > 8. We can thus define a map ¢ : L — M so that if
P(l;) = m;,, then |a;;| > §. Observe that o ~'{m;} is finite for all j € N,
since (T(ez )) is weakly null in XE In particular, %(L) € [M]. Let (m;cJ )32y
be the increasing enumeration of 9(L). Given m ==} i, A&y, € X5 7, we set
S(z) = 2521 (02 Mtk Jef,, - Tt follows, since T is bounded and (ef) is
unconditional, that § is a well defined bounded linear operator from XE
into X¢ WL Moreover, the matrix representation {(c;;) of S with respect to
the bases (61,-) and (e,fnkj) is given by ¢;; = aix,; for all positive integers ¢, j.
We next consider the matrix (b;;) given by
bi' — J GiF if 1/)([1) == Ty
7 0  otherwise.

Note that there exists a unique non-zero entry in every row of the matrix
{bij), while each column contains only finitely many non-zero entries. We
can thus find a permutation p of N so that the matrix (by(;);) is a block
diagonal of {cp(;);)- Since (cp(;);) represents the bounded linear operator
5: x5 - Xi( 1y With respect to the bases (efpm) and (eﬁnkj), and (by(i);)
is a block diagonal of {cp(;);), Proposition 1.c.8 of [11] yields that (bp(;)
also represents a bounded linear operator from Xi into Xi ) with respect
to the bases (el ()) and (ef,, ) Consequently, (b;;) represents a bounded
linear operator W : X§ — X% (z) With Tespect to the bases (ef) and (efnky_)
which evidently satisfies W(ei) = "'ikjefb(l.-) (where ¢(l;) = my,;) for all
i € N. Because |aik,;| > 8, if ¢(I;) = my,, and (&f} is unconditional, we
conclude that there exists a bounded linear operator R : XE - vaf such
that R{e}) = eim forevery l€ L. =

We are now ready for the

Proof of Theorem 1.1. 3=>1 and 2=-3 are immediate. To prove that 1
implies 2 we first apply Proposition 3.13 to obtain a map ¢ : L — M and
a bounded linear operator R : X — X$; such that R(e}) = ei(l) for every
[ € L. Propositions 3.11 and 3.12 will then yield a constant E > 0 such that
T¢{¢~1F) < E for every F € S¢[M] and 0 < { < ¢ {where ¢ : L — M is the
natural bijection). The result now follows from Lemma 3.4. »
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To obtain Corollary 1.2 we shall need the following

LEMMA 3.14. Let £ < w and s = (uy,) be a bounded block basis of (ef)
such that lim, lun|lo = 0. Then for every N € [N] and 0 < { < & there
ezists M & [N] so that lim, (M - s||; = 0. (Given u = T ;2 aie; € coo, we
denote by p - s the vector ¥ .- | azu;, which of course belongs to cog.)

Proof. If (=0, the assertion follows from the fact that lim, |jun|jo=0.
Assume now that { < £ — 1 and that the assertion holds for . Let N & [N]
and ¢ > 0. We will find Q@ € [N] so that ||(¢ + 1)¥ - sllcta
< g Once this is accomplished, we can choose (Q;) < [N] so that
(¢ + 1)%% - s]|eq1 < &4, where lim;&; = 0 and FEYHQq) < FETH(Qa) < .-
Letting M = U2, FFT(Q;), we obtain (¢ + 1)% = (¢ + 1)} for all i € N,
and thus lim; ||((+ 1)M - sll¢41 =0

We now pass to the construction of ¢). By the induction hypothesis we
can choose a sequence (F;) C [N] sharing the following properties:

1 FS(P) < FE(P) < ...

2. min F{ (Py) > (2+2b) /e, where b is chosen so that ||uy|l¢ < b for every
neN.

3. 1¢F - sll¢ < 1/(2%k;—1) for all & > 2, where k; = maxsupp((7 - 5).

Put Q = o, F£(P;). We are going to show that ||S5, QQ “8lleyr <
2 + 2b for every n € N. Note that ¢ = (7* and F¢(Q) = Ff(B;) for all
i €N

Let G € S¢q1. Let {i1,...,4,} be an enumeration of the set {i < n :
supp(¢2 - 8) N G # B}. Choose I < minG and Gy < ... < Gy in §; so that

G= Ui::l G;. Then |(C§ - s}{@)| £ b. Further,
D ! P i p
3262 50| = {26 06| < D1 - (@)l
te=2 F=1 t=2 j=1t=2

—~

!/\
A

M'a

63 - sfle <D

Ju=1 t=2 j=1 =2 2“ k”—l
< %L 1, since! LminG < k;,.
Therefore, |27 (¢2 - 8)(Q) = |51 (¢? - s)(G)] < b+ 1. Tt follows that

13 (9 s|leqr < 2+ 2b. If we take n = min Ff (P1), we conclude that
1€+ D7 - sliesr <. m

Proof of Corollary 1.2. Let T': XE — Xfu be an isomorphic embedding.
We apply Theorem 1.1 to show that (ef") dominates (ef, ). Indeed, we
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need only check that infjey, ||T(el)\|0 > 0. If that were not the case, let
(z;) be a subsequence of (T (el }) such that lim; ||z:}o0 = 0. By a standard
perturbation result We can assume, without loss of generality, that for some
block basis {u;) of (el ) and a null sequence of positive scalars (g;) we have
|z — ws|e < & for all i € N. Tt follows that also lim; ||u;[|o = 0, and thus
Lemma 3.14 yields N € [N] so that lim; ||£) - s||¢ == 0, where s = (u;). But
then lim; ||£€) -z||¢ = 0 as well (z = (z;)). This is a contradiction because (z;)
is equivalent to a subsequence of (ei) and thus it is an Ei-spreading model.

Hence, (eI ) dominates (e$, ), completing the proof of part 1. Parts 2 and
3 are immediate consequences of Theorem 1.1. =

We recall that a Banach space X is said to be primary if, for every
bounded linear projection P on X, either PX or (I ~ P)X is isomorphic
to X.

COROLLARY 3.15. Xf\r is not primary, for every N ¢ [N] and oll 1 <
£ <w.

Proof. We first let 7 = {(L, M) € [N|x [N]: LUM = N, LnM = 0}.
Then F is easily seen to be closed in [N] x [N] and thus it is a Polish space.
We next set G = {(L,M) € F : d¢(N,L) = de{N, M) = occ}. Arguing as we
did in the proof of Lemma 3.5 we deduce that G is a G5 dense subset of F.
If (L, M) € G then X5 = X¢ ® X§,. However, Theorem 1.1 implies that
va is not isomorphic to a subspace of either X}i or Xﬁa- =

4. Subspaces spanned by block bases. In this section we investigate
subspaces of X% spanned by block bases of (ef). We first show that there
exists a block basis of (ef) spanning a complemented subspace of X¢ which
is not isomorphic to Xfu, forevery M € [N] and all 0 < { < ¢,

LeMMA 4.1. Let 21 < ... < zp be a finite block basis of (ey), the unit
vector basis of cop. Let Gy < ... < Gy be finite subsets of N and (a;)5_; be
scalars. Assume that there ezists C > 0 such that |(32;cr aizi)(U ey Gy)l

< C whenever I C {1,...,p} and J C {1,...,q} satisfy one of the following
twe conditions:

LI=Ues0 15
forall € J.

2. I =UerJis iy < Jip #f 11 <4y and Jy ={j € J : suppz;: N G; # B}
forall ie L.

Then |(37-, at“’t)(U?:l Gyl £3C.

Proof Givenj <q,welet T; ={i <p:suppz;NG; £ 0}. We also let
J={j<q:T; #0}and Jy = {joe J:|Ty| = 1}. Set Jy = J\ J;. Given

L < I, ifj1 <jgand I; ={i € I : suppa; N Gy # 0}
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J € J2 we let s; = minT; and £; = maxT;. We observe that s, <1; < s,
for every j1 < jo in Js.

Next, we define a map ¢ : J1 — {1,...,p} so that {¢(§)} = T} for every
7 € Ji. Note that o(J1) and J; satisfy condition 2 and therefore

(L) (Uel=I( 3 (U a)|=e

i€or 1

Suppose now that Jo = {71,...,7x} and put J3 = {j, : r <k, 7 is odd} and
Ji = {Jr : 7 <k, ris even}. It follows that | J,.; T; and Jm, m € {3,4},

satisfy condition 1 and thus
o) U &)|20
J€Jm

(See)(Ye)l=I(_

e i@ Im TJ'

Hence, (37, ai%;) (U, G4)] < 2C. The assertion follows since

(gaim) (JQ Gj) = (;Giﬁ?i) (jE_‘Jh Gj) + (;plaimi) (jgz Gj), -

LEMMA 4.2. Let 1 < { < ¢ < w ond (z,) be a block basis of (ef) so
that for some b > 0, ||z,lje < b, for everyn € N. Let k,, = maxsupp &, for
every n € N, and suppose that ||zn]lc—1 < 1/2F+-1 for every n > 2. Then
{00, aszy) (H)| < (2 + b) maxicn |as| for every H € 8¢, n € N and all
scalar sequences (a;)i

Proof Let H € S; and put ig = min{é < n: suppax;NH # 0}. We may

write H = U .1 H;, where r < min H and Hy < ... < H, belong to S¢_1.
Note that min B < k;,. We also observe that [z;(H )| < r||z;ll¢c—1 and hence

m € {3,4}.

T n
‘ > aixi(H)‘S > lailrfieillc
i=dg 41 i=ig+1
11'1.5\.x|(,1m Z 2 mas asl-

(e R

Finally, {2, (H)| £ |z le < band so [(31; @) ()] < (2+b) maxicn ai,
as desired. =

Our next proposition is a partial generalization of Lemma 3.10.

PROPOSITION 4.3. Let £ < w and (zy,) be o semi-normalized block basis of
(€5). Set { = min{a < € :inf, |@plla > 0} Then there exists a subsequence
of (zn) which is equivalent to o subsequence of (e4~%).

Proof. Choosed >0, b> 0 sothat § < |[#all¢ and [|oa|le < b for every
n € N. Assume first that ¢ > 1. Then we choose inductively ny < na <.
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so that ||z, [l¢—1 < 1/2%1 for every i > 2, where k; = maxsupp Zn,. For
every i € N we can find F; € S;, F; C supp @n,, so that |z, |(Fi) > §. Put
m; = min F;. We are going to show that (i, ) is equivalent to (e57¢). To this
end let k € N and (a;)%.; be scalars. We first show that |5, a;efn¢| <
57K, @iy, |l Indeed, if G C {ma,...,mz} belongs to S¢_; then set
A= {i <k:m; € G}. We have the estimate

k
Sl <67 Y Jadlend(F) < 67 3 a
icA i€A =1

as |J;c 4 Fi € Se, by Lemma 3.8.

Next, let G € S¢. Lemma 3.8 yields Gy < ... < Gy in §¢ with {minG; :
7 < g} belonging to S... and such that G = [J]_; G;. We shall apply
Lemma 4.1 in order to estimate |(3°F_, a;tn, ) Uiy Gy)l- Let T C {1,...,k}
and J C {1,...,q} satisfy condition 1 of Lemma 4.1. Then I; = {i €
I : suppzn, N Gj # 0} for every 7 € J. We choose 4; € I; such that
las;| = max;er; |a;| for every j € J. Fix jp € J. Then

(X2 amn) (U 65)| = |2 aizn(Ga)
€L, jedJ i€l

= (2+b)lai; |, by Lemma 4.2.

Hence |(¥yer a5en) (Uyes Go)l < (24 5) e lag, |

Note also that {m;, : j € J\ {minJ i} belongs to Sg-.. This is so
since suppzy,, N G; # B whenever ¢ € I; and j € J, and thus min Gy, <
minsuppa,, < m; for every i € I, and j; < jp in J. In particular,
minG;, < my ” when j; < j2 in J. Since S¢. ¢ is spreading we see that {mij :
j € J\ {minJ}} belongs to S¢—¢. It now follows that 3¢ n\ min.ry lai;| <
IS°% | a:ef¢|| and hence

k
(o) (U &) < 20+ 0] aeti].
iel jeJ i=1

We now assume that I C {1,...,k} and J C {1,..., ¢} satisfy condition
2 of Lemma 4.1. Then J; ={j € J : suppzn, NG; # @} foralli € 1. An
argument similar to that in the preceding paragraph yields that {m; : i €
I\ {minT}} belongs to Sz_¢. It follows that 3., las| < 2|5, aiebs¢|.
Finally,

(o) (U] =[Seen(U )

k
<P ectce]
i=1

3

<(245b ;
<2+ )ﬁ:l?fjlal'

5b21a,;| as U G; e S
iel

JEJ:
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We deduce from Lemma 4.1 that

(Sem)(Ua)| so0-n]S et

and hence ||E:’=1 Qi |l < 12(2+ b)HELl asef, <.

To complete the proof we need to consider the case ¢ = 0. We now choose
My € SUpp T, such that |z,|({m,}) > é for all n € N. We are going to show
that (zn) is equivalent to (ef, ). Arguing as we did in the case { > 1 we
find that |8, aiel, | < 675, aszil|e for every k € N and all scalar
sequences (a;}¥ ;.

Next let G € S¢ and put I = {i < k:suppx; NG # 8}. Then

k
‘Z a,-mi(G)’ < Z\az'Hwi(G)l < bZ |os |
=1

icl il
k
< %HZ aiefniH as {m; :1& I\ {minI}} € Se.
i1

k k
Hence |32y aswille < 4bl[30;., aseh, |-
As an immediate consequence of Proposition 4.3 we obtain

COROLLARY 4.4. For every semi-normalized weakly null sequence in X¢,
£ < w, there exist ( < £ and o subsequence which is equivalent to o subse-
quence of (e5).

LEMMA 4.5, Let 1 < € < w and (F,) be a sequence of successive members
of S¢ satisfying the following requirements:

1. (rg—1(Fn)) increases to co.

min F,
2. sup —————— >k for every k € N.
w Te1(Fuik) for every
Let (uy,) be a convex block basis of (ef) such that suppu, = F, for every
n € N. Assume furthermore that 3o 1 |tnlle~1 < c0. Then the closed linear

span of (un) in X¥ is not isomorphic o XJCvn for euery ( < € and M € [N].

Proof. {(u,) is normalized in X* since F,, € S¢ for every n € N. We let
X denote the closed linear span of (u,) in X*. Because 3 - ||tnllg—1 < o0,
we deduce from Proposition 4.3 that every semi-normalized block basis of
(un) admits a subsequence equivalent to the unit vector basis of ¢p. Indeed,
let (vy), vp = ZiEGn b;u;, be a semi-normalized block basis of (u,). Note
that (by) is bounded since (v,) is. But also, limp 3, [juille—1 = 0; since
Some 1 llunlig1 < oo. Therefore limy, ||un|le~1 = 0 and hence Proposition 4.3
(for ¢ = £) yields a subsequence of (v,) equivalent to the unit basis of co.
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It follows that every semi-normalized weakly null sequence in X admits a
subsequence equivalent to the unit vector basis of ¢p. That is, X has property
(8) (see [7]). However, X3, fails property (S) when ¢ > 1 and M € [N]. Thus,
chu is not iscmorphic to a subspace of X, for every 1 < ¢ < ¢ and M € [N].

To complete the proof we show that X is not isomorphic to ¢p. This
is accomplished by showing that for every k € N there exists n € N so
that (tneq)f, is isometrically equivalent to the unit vector basis of £§. In
particular, X containg uniformly complemented E’f’s. It is a well known fact
that cq fails this property.

We let & € N and choose n € N according to 2 so that
min F,

—— >k

Tgul(Fan)

Condition 1 now yields that 3%, 7¢—1(Fris) < min F,, and thus Uby Frss
€ 5¢. Hence

k k k
32 asws]|, 2 3 lailunta(Frsi) = 3 lad
g=1 =1 i=1

for every scalar sequence (a;)%_,;. Therefore (un4)%_; is isometrically equiv-
alent to the unit vector basis of £5. u

PROPOSITION 4.6. Let 1 < & < w. There exists a normalized convex block
basis (uy) of (ef) so that letting F,, = supp uy, for everyn € N, the following
hold:

1. re_1(F,) = n® and min F,, > k(n + k)* for every n and k in N such
that k < n.

2. X = [un : n € N is not isomorphic to Xi, for every { < € and
M e [N
3. X is complemented in X¢.

Proof. We inductively choose a sequence of successive integer intervals
(F,) such that for every n € N,

min F, > max{k(n + k)*: k <n} and 7e_:(F,) =n

‘We now let, for every n € N,

71.2
M,=F,U{meN:m>maxF,} and u,= ;L-I-Q—Z(f——l}gw“.
i=1

Condition 1 is an immediate consequence of the inductive construction. This
condition implies that in fact F,, € S¢ for every n € N, and thus (uys)
is indeed a normalized convex block basis of (ef). We also deduce from
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Lemma 2.3 that [[unllz—1 < &/n* and so 307, |lunle=1 < co. Hence condi-
tion 2 holds in view of Lemma 4.5.

It remains to establish that X is complemented in X¢. To this end we

define a map P : cgo —* coo by

o0

P(x) = ZZ(FOW for all = € coo-

i=1
Clearly, P is well defined and linear. It is also clear that P(u;) = u, for
every 4+ € N. Our objective is to show that P is bounded with respect to the
I - {le-norm on ¢gp, for then P will extend to a bounded linear projection
on X¢ with range equal to X. To achieve our goal it suffices to show that
if @ € S¢ is maximal, then (3 ., z(F;)w)(G) < 18¢ for every p € N and
T € €, ||CL‘H£ < 1, with 5’:({'&}) >0,2€N.

According to condition 1 of our hypothesis, for every i € N there exist
successive Sg_) sets Fjy < ... < Fyz so that F; = U;:=1 Fi, and {min Fy :
k < i?} € ;. Next let ¢ = min G and choose maximal members Gy < ...
< G of Sg1 50 that G == i, G;. Of course, {min G; : j < ¢} is maximal
in 1. We shall apply Lemma 4.1. Let I C {1,...p} and J C {1, ... ¢} satisfy
condition 1 of Lemma 4.1. Recall that I; = {i € I : suppu; N G; # 0},
j € J. For each j € J we choose 4; € I; and k; < @? such that o(F;x;) =
maXg< jer; £(Fix). We have the estimate

(Z E(Fi)ui) ( U Gj) = Z Z o(F;)ui{Gjy)

i€l jeJ FeJiel;
1 & .
= Zx(ﬂ-){g SE-D G
jesiel, =1
<SS a(Fy) > (€ - 15 (G
jEJ i€l k=1

2
since F; = UF“E
k=1

< S a() T Y€ - D))

jed igl; k=1
< Zm(Fijkj)f by Lemma 2.3
jeJ

< 550( U Fm'jkj) <2

Jed
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The last inequality holds because |zl < 1 and Ujep fmingy Fisk; € Se-
Indeed, min G, < minFi g, whenj < jz in J and therefore, as {minG; :
j<q}es, LJJEJ\{].mn 7} Fizk; belongs to S by Lemma 3.8.

Next assume that I € {1,...,p}and J C {I,..., ¢} satisfy condition 2 of
Lemma 4.1. Then J; = {j € J : suppu; N Gy # (2)}, icl Weset H;={j ¢
Ji : Gy C suppu;}, i € 1. Since suppu; = Fj is an interval, [J:| < |H;|+2 for
all i € I. Moreover, since each G is a maximal S¢.; set and 71 (Fy) = i2,
we have |H;| < ¢ for all i € I. To estimate Y ;c; 2. 5c g, ar, 2(Fi)ui(Gy),
choose j; € J;\ H; for every i € I (we have assumed without loss of generality
that J; \ H; # §). Then the sets I and {j; : 4 € I} satisfy condition 1 of
Lemma 4.1. We deduce from our preceding work that

>, 2

i€l jeJ:\H;

s(F)ui(G;) < 4,

as |J; \ H;| < 2 for every ¢ € I. We next choose, for every 1 € I, R; C
{1,...,4*} with |R;| = |H;| and such that

2 Z 1.Fc < I‘m Z (F«ik).

kER;
This choice is possible since [H;| < i*. (We make use of the following fact: Let

(a:)7_, be scalars with a; < aj, 4 < 7, and let k < n. Then (1/n) ¥, a: £
(1/{n —k)) > 7441 i.) We now have

Z Z m(Fi)uf(Gj} = Z Z [iaﬁ(ﬂk)] [ Z(f 1)(Gy) ]

icl jeH; iel jEH,ﬁ k=1

<ZZ[ Z zk)]f by Lemma 2.3

iel jeH;
—622 T > sFa)S€) ) ) alF,
iel jeH; keR; ie] kER;
<e( | Fik) <2
iel, ke Ry

The last inequality follows since ||zle < 1 and Uep fmio 11, ke r, Fik € Se-
Indeed, the cardinality of the set {minFj; : k € R;,4 € I} does not exceed
that of J since |B;| = |[H;| for all 1 € I. Tt now follows, since {J| < min Gy,
that {min Fz: k € Ri, ¢ € I\{minI}} belongs to S and thus Uer rer, Fix
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is the union of two members of S¢. Concluding,

(1,621' QJ(F-E)'U:',)( EJJGJ') = Z[ Z 2{F)u: (G4) + Z w(Fi)u.;(Gj)]

i€l jeJ\H; JeH;
<46 426 =66,

Lemma 4.1 now implies that (3-F_; @(F;)w)(G) < 18¢ for every p € N and
% € cgo, ||zlle £ 1, with z({i}) > 0, i € N. It follows that ||P|| < 18¢. The
proof of the proposition is now complete. n

PROPOSITION 4.7. Let 1 £ £ < w and {uy) be a block basis of (e,) such
that

1. wp = vp + Wy, with suppv, Nsuppw, =@, n € N.
2. {wp) 5 equivalent to the unit vector basis of co.
3. Tixan [valle = O vet sup,, 75, ville = oo
Then there exists no projection from X¢ onto the closed linear span of (un)-

Proof. Let X denote the closed linear span of (u,) in X* and assume
that P : X — X is a bounded linear projection. Note that since {ef) is
unconditional our assumptions yield that (u,,) is semi-normalized in X¢.
Lemma 2.a.11 of [11] now implies that (w,) dominates (v,), contradicting
3 as sup, ||y wille <oo. =

It is easy to construct a normalized convex block basis of (e}), £ 2 1,
satisfying conditions 1-3. Indeed, let M € [N, M = (my), such that

(1/mn) < oo, Let ¢, = m1nF5(M) n € N (recall that F5(M) =
supp ¢M). Because £ > 1, (e ) is not dominated by the unit vector ba-
sis of ¢g. It follows that there emsts a sequence (a,) of positive scalars such
that lim,, a, = 0 and sup,, |37_; a;ef, || = co. Set

1—
Yy = aneg“ and w, = ——-—M?—n" Z
1- (qn) . oE
i€ (MM {an}
Finally, we let up = vy, -+ wy, n € N, Evidently, (uy,) is a normalized convex
block basis of (e4) satisfying 1 and 3. It remains to show that 2 holds.
Since 37, 1/my < oo and (£M) is equwalent to the unit vector basis of

co, letting o, = ZzEFE(M)\{q }.fn (z)et, we have sup,, i|21_ zille < o0, It
follows that {w,) is equwalent to the unit vector basis of ¢p as lim, a, =0
and lim,, €M (g,) =

tM(i)el, neN
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