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On Bardny’s theorems of Carathéodory and Helly type
by

EHRHARD BEHRENDS (Berlin)

Abstract. The paper begins with a self-confained and short development of Barany's
theorems of Carathéodory and Helly type in finite-dimensional spaces together with some
new variants. In the second half the possible generalizations of these results to arbitrary
Banach spaces ate investigated. The Carathéodory-Barany theorem has a counterpart in
arbitrary dimensions under suitable uniform compactness or uniform boundedness con-
ditions. The proper generalization of the Helly-Bérdny theorem reads as follows: if Cp,
n=1,2,..., are families of closed convex sets in a bounded subset of a separable Banach
space X such that there exists a positive o with (pep (C)e = @ for £ < g9, then there
are On € Cn with [, (Cn)e = ¢ for all £ < £q; here (C)- denotes the collection of all =
with distance at most ¢ to C.

1. Introduction. The simplest version of Bariny’s Carathéodory theo-
rem is often illustrated as follows: imagine in the plane three triangles, the
first with red, the second with blue and the third with green vertices; if all
contain a point z, then it is possible to choose a red, a blue and a green
vertex such that z is in the convex hull of these three points. The surprising
feature is that even in this innocent two-dimensional setting there seems to
be no really simple proof of this combinatorial fact.

The d-dimensional Carethéodory-Bdrdny theorem reads as follows: if A,,
i=0,...,d, are subsets of R¢ for which the convex hull co(A,) of A; contains
a common point z, then one may choose z; € A; for i =0,...,d such that =z
is in. co({®o, ..., ®q}). By 2 duality argument one can deduce the following
Helly-Bdrdny theorem: if C;, i = 0,...,d, are finite families of compact
convex subsets of R? such that ((gee, € = @ for every 4, then it is possible
to find C; € C; with ), Cy= . '

These theorems—which obviously contain the classical Carathéodory
and Helly theorems as special cases—were published in 1982 in [3]. Since
then a number of refinements and applications have been studied (see the
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236 E. Behrends

survey article [8], the papers [1], [4], and the references given there). Also,
Bérdny's theorem has been applied to find selections of multivalued maps
in [2], where the investigations from [5] are continued.

The aim of the present paper is two-fold. In the first sections we want
to provide a short and self-contained proof of the Bérany theorems together
with some variants. The second half is devoted to the study of infinite-
dimensional generalizations. This just means that we allow arbitrary Ba-
nach (or locally convex) spaces and that we pass in the Carathéodory type
theorems from the convex to the closed convex hull. The main results are
as follows:

¢ The Carathéodory-Bérany theorem is false in every infinite-dimen-
sional space {Proposition 4.1).

e The theorem holds in X provided that X' is separable and all A,,
n=1,2,..., lie in a common bounded set (Theorem 4.3).

» It is also true without any restriction on X' if the A,, are contained in a
fixed compact convex set K; under this condition the theorem even holds for
locally convex spaces if the points of K satisfy the first countability axiom
with respect to the relative topology (Theorem 4.4).

¢ The Helly-Barany theorem does not hold in infinite-dimensional situ-
ations (Proposition 5.1).

¢ If, however, one imposes a uniform boundedness condition, then it
has a counterpart in separable spaces (see the abstract; Theorem 5.5). For
inseparable spaces also this variant fails to hold (Proposition 5.6).

The Carathéodory-Bardny theorems are proved by using our finite-di-
mensional variant of the corresponding theorem. The strategy to show the
Helly-Barany results is—as in the finite-dimensional case—to reduce them
by an appropriate duality argument to a Carathéodory—Béardny theorem.

2. Carathéodory-Bérany theorems in R%. Qur way to prove this
theorem is essentially the same as that in [3]. In order to keep the paper
self-contained we sketch the simple argument.

The starting point is a lemma which states that all rays from a support
point of a ball B to the interior of the half-space which contains B necessarily
meet the interior of B:

LEMMA 2.1. Let B(z,7) be o ball in o finite-dimensional euclidean space
and & a point on its boundary. Then, for every x such that (z2—%,z~%) > 0,
there is a positive € such thot ||((1 — )T + ez) — 2| < r.

Proof. Assume for simplicity that z = 0 and 7 = 1, and consider the
funetion '

Frem || —-e)&+ez|® = (1 — )T+ ex, (1 — )F + ex).
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We have f(0) = 1, and the derivative of f at & == 0is 2{Z,z — Z) < 0. Hence
f is smaller than one for small positive . =

Now we prove the cone version of the Carathéodory-Bdrdny theorem. We
recall that a cone in a real vector space X is a convex set which contains
together with each of its elements all nonnegative multiples. If A is a nonvoid
subset of X we denote by

cone(A) = {z”: Ay

i=1

the cone which is generated by A.

nelN, z; €A, )\2‘20}

THEOREM 2.2. Let A;, i =1,...,d, be subsets of R?. If a z is contained
in all cone(4;), then there are z; € A; such that z lies in cone({z1,...,2a}).

Proof We may assume that all A; are finite. Denote, for z; € A,
i=1,...,d, by rq,,. o, the (euclidean) distance between z and the cone
generated by x1, ..., x4 (note that these cones, being generated by finite sets,
are closed convex sets). The claim is that the minimum r of the re; .z, is
ZETO.

We assume that + > 0; this will lead to a contradiction as follows.
Choose T1,...,%q such that ry, ., = 7. The ball B(z,7) meets K :=
cone({z1,...,T4}) at precisely one point Z. The supporting hyperplane H
of B{z,r) at 7 intersects K in a facial subcone which is at most (d — 1)-
dimensional, and it follows—by the cone version of the classical Carathéo-
dory theorem--that Z lies in a cone which is generated by at most d — 1
elements from the set {x1,..., %4}

(The cone version of Carathéodory’s theorem states that for z € cone(A4)
C B¢ there are y1,...,yq € A with z € cone({y1,...,¥a}); it corresponds fo
the special case A; = ... = Ay of the theorem. For our proof we only need
the {d—1)-dimensional case of Carathéodory’s theorem, and therefore, since
we can argue by induction on d, our approach is in fact gself-contained.)

Suppose, e.g., that & = Ayxa -+ ... + Agzq. Since z lies in the interior
of the set {z | (z — %,z — %) > 0} and also in cone(A() there must be an
t € Ay with (z — F,z — & > 0. By the preceding lemma it follows that
T2,wg,..,0q < T & contradiction.

The following theorem is slightly more general than Bardny’s Cara-
théodory Theorem 2.3 in [3]:

THEOREM 2.3. Let A;, i =1,...,d, be subsets of R, Also, let zp and z
be such that z is contained in the conves hull of A; U{zo} fori=1,...,d.
Then there are ; € A;, i = 1,...,d, such that z lies in the convex hull of

{wﬂrmla LR md}'
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Proof. Suppose without loss of generality that z = 0 and that the 4,
are finite. We assume that z even lies in the interior of all convex hulls
co(A; U {zp}) {this can be achieved by adding to the points of A; the unit
vectors of R?, multiplied by a small positive 7, and then letting # tend to
zero). Therefore we may choose a positive & such that —ewp also lies in these
convex hulls and thus in particular in all cone(A; U {zo}), ¢ = 1,...,d. By
Theorem 2.2, wefind y; € A;U{zg} and A; > 0 with —exg = Ay . A Aayg.

This means that there is a nontrivial linear combination 0 = pozg +
g1y 4 oo+ pazg with 2 € Ay for i = 1,...,d and p; > 0, and one only
has to divide by pp ...+ pig to finish the proof. =

COROLLARY 2.4. If a point z is contained in the conves hull of each of
the subsets Az, 1 =0,...,d, of R?, then there are z; € A; such that z lies
in the conver hull of {zo,...,z4}.

Crucial for our further investigations will be the following generalization
of the preceding theorem and its corollary (which correspond to the case
C={z})

THEOREM 2.5. Let A;, ¢ = 1,...,d, be subsets of R? and C C R? be
convez. Further, let zo be a point such that the convez hull of A; U {zq}
meets C for all i. Then there are z; € 4, 1 = 1,...,d, such that the conver
hull of {z0,®1,...,24} intersects C.

In particular, it follows that, for subsets A;, 1 =0,...,d, for which each
co{A;) meets C, there are z; € A; with C Neco({zo,...,zq}) # 0.

Proof. Choose y; € C, ¢ = 1,...,d, such that y; € co(A; U {ze}); fix
also an arbitrary yp € C.

Then 0 lies in the convex hull of A; := {z -9y |z e &FU {zg—w}
for i =1,...,d. Therefore, by the preceding theorem, 0 can be written as a
convex combination 0 = Ao(Zo —yo) + AuT1 + ... + AgF a4 for suitably chosen
z; € A;. Consequently, a convex combination of zp and certain x; € A,
t=1,...,d, equals a convex combination of the yp,...,yq4. w

‘We now -ask some supplementary questions.
e Is it essential that there are d-+ 1 sets A, involved?

The answer is a sound “yes” since even in the original theorem fewer
than d+1 points in general will not suffice. However, let us reformulate the
Carathéodory—Barany theorem slightly:

Let z be an element of the convex hull of Jpee, C fori=0,...,d, where
each C; i.i a family of conver sets in R, Then there are C; € C; such that
TE CO(UI-:O 01) '

It might happen that fewer than d + 1 families C; work similarly well:
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ProrosiTionN 2.6. Let C;, 7 = 1,...,d, be collections of convex sets in
R* such that there is an zg in ), Noec, C- Then for every z which lies
in the convez hull of Ugee, C for i = 1,...,d, there are C; € C; with
ZE co(L_Jf=l ;).

Proof The proof follows immediately from Theorem 2.3 if one chooses
as zp in this theorem the zp from the common intersection. m

In the case of the classical Carathéodory theorem we can prove a stronger
result which seems to have no counterpart for the Barany generalization:

PROPOSITION 2.7. Let Cy,...,Cy be compact conver sets in RY. Then
the following assertions are equivalent:

(1) For every z in the conver hull D of Uf=0 C; there are 21,..., %4, each
x; lying in some C;, such that z is a conver combination of the x1,...,%q.

(ii) There is an zp in ﬂfg=o (Ui, Ci)-

Proof. Suppose that (i) holds. Then it suffices to apply Theorem 2.3
with zp from the assumption and Ay =.,. = Ag =}, C;.

Conversely, suppose that (i) is satisfied. We put D = co(lJ; Ci) and
Dy = co(U,z, Cs) for 4o = 1,...,d. By assumption, the convex set D is
the union of the D;,, and thus the complement of this union is connected.
The complement of the union of fewer than d -+ 1 sets D, is also connected
since every such union is star-shaped. Thus, by Levi’s theorem, the D;;, must
have a point in common (see [10] or Theorem 3.6 in [8]). m

Here is a further result of this kind:

PROPOSITION 2.8. Let H be o k-dimensional subspace of RY. Suppose
that, for certain finite Ay,...,Ag-k, a point z is contained in the closed
convex hull of H U A; for all . Then there are z; € A; such that z lies in
the closed convex hull of HU{z1,...,2a—r} ' '

REMARK. Note that the case k = 0 is (essentially) equivalent to Theo-
rem 2.3. Note also that “closed convex hull” cannot be replaced by “comvex
hull” here: simply consider in R? a one-dimensional H and a 4; consisting
of two points lying in the same halfspace and having the same distance to H.

Proof (of Proposition 2.8). Let w be the canonical quotient map from
R?¢ to R%/H. For any finite A C R?, the closed convex hull of H U A is just
the pre-image under w of the convex hull of w(A). With this observation we
may reduce the assertion of the proposition to Theorem 2.3 which has to be
applied in the (d — k)-dimensional space R?/H with 2o = 0. =

o How many representations as convex combinations are there?

Let z € R? be in the convex hull of r points =4, ..., 2., where r > d 4+ 1.
By Carathéodory’s theorem, there are in fact d + 1 points among the z;
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which have z in their convex hull. In how many ways is it possible to choose
d + 1 points with this property?

Assume for definiteness that the x; are pairwise different. Fix any d +
1 of them—say zi,...,2z4-1—>such that z can be written as their convex
combination. Now Theorem 2.3 comes into play. With 4y = ... = Ay =
{z1,...,Z4+1} and with =y = one fixed z;, from among zg4i2,...,2, we
find a set A of d+ 1 elements containing this x;, and d points from the set
{1,...,Z4+1} with z in the convex hull of A. This results in ot least r —d
different possibilities to represent z.

In order to obtain a similar result for the number of representations in
the Carathéodory-Bdrdny theorem we suppose that the finite family £,
i=10,...,d, contains n; elements, and that z is in the convex hull of each
A;. Let n be the maximum of the n;. Then, by arguing similarly to the Cara-
théodory case, we get ot least n essentially different ways to select families
z; € A; having z in their convez hull.

Note that we count differently in the Carathéodory and in the Cara-
théodory-Barany case: in the former we count subsets, whereas in the latter
ordered (d+ 1)-tuples are of interest.

3. Helly—Bérdny theorems in R%. We will use the following variant
of duality:

DermiTION 3.1. Let C be a compact convex subset of RY. By C we
denocte the set

{(z',a) | z’ : B* — R linear, z'(z) > a for all z € O} C (R?)' x R.

It is clear that C is a closed cone with nonempty interior. Crucial for
our proof of the Helly-Barany theorem is the following result. It should be
folklore; however, we have only found it in a slightly different form ([12],
Proposition 5.8). :

PRroPOSITION 3.2. Let (4, ...
the following are egquivalent:

(1) nz—l G - @
(i) (0,1) € Cr+...+C,; here “0" stands for the zero functional on RY,

, Cyr be compact conves subsets in R%. Then

Proof. Suppose that there exists a z which lies in all Cj, Then, for
(=, a,,) e C;, we have 2! (z) > a; for all i. Thus, if it happens that z} + .
+z,. =0, then 0> ay + ...+ a,, and therefore it is not possible that (0, 1)
liesin & +... + C..

Conversely, suppose that the intersection of the C; is empty. This just
means.that U := €y x...x C, does not meet the subspace Y := {(z,...,z) |
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z € R%} of (R¥)". Since C is compact and convex, the Hahn—-Banach sepa-
ration theorem provides a functional @ which is strictly positive on ' and
which vanishes on Y. @ has the form (z1,...,2,) — 2{(21) + ... + z'.(z,),
and our assumptions imply that =} + ... + z = 0 and also that =/ (xq) +
..+ (xr) > cfor a strictly positive ¢ and all z; € Cy,...,x, € Cr. Thus,
with a; ;= min@}(C;), it follows that ¢/ := 1 +...+a, > cand (z},a;) € &i.
Consequently, (0,¢') and thus also (0,1) lie in the cone &; + ...+ C,. =

We now prove the Helly-Bériny theorem:

THEOREM 3.3. Let C; be families of compact convex sets in RE for i =
@ such that Ngee, C =0 for all i. Then there are C; € C; such that

ﬂf:o C"; = m

Procf. By the compactness of the sets under consideration we may
assurne that all C; are finite. From Proposition 3.2 it follows that we may
choose y& € C for C € C; such that (0,1) = Y oce, Y- We define A; to be
the collection of all y&,, C & C;. By Theorem 2.2 we find yb & 4A; such that
(0,1) lies in the cone which is generated by these elements. A fortiori, (0,1)
lies in Cy + ...+ C,, and, with another appeal to Proposition 3.2, the proof
s complete n

As a supplement we ask:
¢ In how many ways 15 i possible to produce an empty intersection?

We want to stress the difference from the Carathéodory-Bardny case.
There one could work with Theorem 2.3, by which we had at cur disposal
the “free” point zg. In the present case we have to deal with Theorem 2.2,
and thus the situation is different.

In fact, the following example shows that it might happen that only one
choice is suitable.

Define in R? three collections of compact convex sets as follows:

() consists of the two rectangles spanned by (0.25,—1), (0.25,1), (1, 1),
(1,~1) resp. by (=1, —1), (=1, 1), (=0.25,1), (=0.25, —1).

o The C in C; are the rectangles generated by (—1,1),(1,1),{-1,0.25),
(1,0.25) resp. by (1, —1),(~1,-1), (1,-0.25), (1, —0.25).

o Finally, C3 consists of the two sets {{z,v) | |z|,|y| £ 1, z+y < 0.25}
and {(.’c,y) | |1, Iy! <L z+y= 0'5}'

Then the conditions of the theorem are met, and there is precisely one
choice to have an empty intersection. (Similar examples can be constructed
in every dimension.}
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4. Carathéodory—Barany theorems in arbitrary Banach spaces,
We now turn from R? to an infinite-dimensional situation: our sets will be
subsets of an arbitrary Banach space X or a locally convex space F.

Clearly, a Carathéodory theorem is not to be expected: finite convex
combinations with a fixed number of summands will never suffice in the
infinite-dimensional setting. Therefore we pass from elements of the convex
hull to points in the closed convez hull. A naive translation of the Cara-
théodory theorem then has to start with a subset A of X (or F) and a point
z in the closed convex hull €6(A) of A, and the question is: how many points
x;, 1 € I, have to be chosen from A such that z lies in the closed convex
hull of {z; | 4 € I'}? The answer is trivial: countably many 2; will do in the
Banach space case, and for general E the cardinality of I has to be as big
as the smallest cardinality of a base of neighbourhoods of zero.

Thus the Carathéodory theorem does not lead to interesting gemeraliza-
tions, but this is not obvious for the Carathéodory—Béariny theorem. In the
case of Banach spaces the following natural problem arises:

Let A,,n =1,2,..., be subsets of & Banach space X such that a certain
point z lies in the closed convex hull of A, for every n. Is it possible to
choose &, € A, such that z lies in ©@6({z1, z2,...})?

Our main results are that the answer is “no” in general and that it is in
the affirmative if the 4, are uniformly “not too big”.

ProrosiTION 4.1. Let X be an infinite-dimensional real Banach space.
Then there are subsets A, n=1,2,..., such that:

(i) O lies in the convez hull of each A,, but

(ii} 4t is not possible to choose z, € A, in such a way that 0 lies in the
closed conver hull of {x1,%s,...}.

REMARK. A similar counterexample to the “unrestricted” Carathéodory-
Barany theorem can be constructed in arbitrary infinite-dimensional locally
convex Hausdorff spaces.

Proof (of Proposition 4.1). Denote by B be the closed unit ball of X.
Our construction will be based on the following

Cram. Let Iy, i = 1,...,r, be finite subsets of X such that for every
i the convex hull of I; does not intersect B. Then there exists an 1 € X
such that the convex hulls of the 2r sets I; U {z}, I U {—2} have an empty
infersection with B. '

Proof. Choose, for i = 1,...,r, a continuous functional z such that
{lzi|l = 1 and =}{z) > ¢; for all z € I}; and some ¢; > 1. Let z be any nonzero
element of X which lies in the kernel of all z!; we claim that & = az for
“sufficiently large” o has the desired properties.
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To show this, choose a number b which strictly dominates all 1/c; and
which is strictly smaller than 1. Let a € R be arbitrary, y an element of the
convex hull of I'; for some 4, A € [0, 1], and w := Ay (1~ A)az a point in the
convex hull of ITU{az} or I3U{—az}. If A > b, then z(w) = z[(Ay) > be; > 1
50 that w does not lie in B. For A\ with A < b, however, we know that the
norm of w can be estimated from below by |a|(1 —&)|lz| —b||y|}. This number
is greater than one uniformly in y for large a since the convex hulls of the
I'; are bounded, and this proves the claim.

‘We now turn to the proof of the proposition. Start with any =1 not lying
in B and put 4y := {—zy,z1}. By the claim, with I} := {z1}, Iy == {-z1},
we get an o such that the convex huils of {+z;,+z.} do not meet B;
the second set, Ag, consists of —zy and za. The four sets co({%zy,+za})
are the new I"s for another application of the claim: we get z3 such that
co({#z1, £xe,+23}) N B = @, and Az is the set {—z3,23}. It should be
clear how to proceed, and the A; which we have constructed in this way
obviously have the claimed properties. »

To get positive results we will have to impose certain restrictions on
the A,. A natural approach is to suppose that they are uniformly bounded.
This, however, will not suffice in general:

PROPOSITION 4.2. There exists o Banach space X which contains subsets
A,m=1,2,..., in the unit ball such that

(i) 0 Wes in the convex hull of each Ay,
(ii) for no choice of z, € A, does one have 0 € T({z1,xq,...}).

Proof This is simple; one only has to consider X = [', the space of
absolutely summable sequences, together with A, := {—en,e,}, where e,
denotes the canonical nth unit vector. =

Therefore a “bounded” Carathéodory—Béariny thecrem fails in every
space which contains [*. The next theorem states that counterexamples do
not exist if the dual space X’ of X is not too big:

THEOREM 4.3. Let X be a Banach space such that X' is separable (in
fact, it will suffice that every separable subspace of X has a separable dual,
that is, X' has RNP; cf [7], p. 198}, Then, if Ap, n=1,2,..., are uni-
formly bounded subsets such that a certain point z lies in the closed conves
hull of every Ay, then there are z, € A, with z € @({z1, 22,.--})-

Proof. Without loss of generality we may suppose that z = 0 and that
all A, lie in the unit ball of X and are at most countable. Thus they are
contained in a separable subspace Y, and therefore it is no restriction to
replace the condition “X’ is separable” with “X’ has RNP”.
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The crucial idea is to apply the finite-dimensional Carathéodory-Bérany
theorem by using functionals. Let zi,..., 2} be arbitrary in the dual unit
ball, and £ > 0. We consider the map

$: X =R,z (2i(a),... 70 (2),

and we pass from 4, to Zn = $(A,). The assumption implies that 0 € B
lies in the closed convex hull of A, for all n. Thus, if we define C to be the
ball in R” of radius ¢ with respect to the maximum norm, we know that
the convex hull of A, meets C' for every n. In particular, this holds for the
7+ 1 convex hulls of A,, n =1,...,7 + 1, and we may choose—by Theo-
rem 2.5—points z; € A; such that the convex hull of {&(z1),. .., $(wrp1)}
intersects C'. And since we are dealing with the maximum norm this means
that the minimum of x} on the convex hull of {z1,..., 2,41} is at most ¢.

This construction will now be applied as follows. Choose a dense sequence
T, %3, .. . in the dual unit ball of X, and then:

» Choose x1 € Ay, xs € Ay such that the minimum of Z} on the convex
hull of Ty, L0 is < 1/2.

® Then select z, € Ay, n = 3,4,5, such that both z} and =), assume
values < 1/3 on the convex hull of {zj, x4, x5}

¢ In the next step the above construction provides z,, € Ap,no=6,7,89,
such that the three functionals 21,25, 24 have a minimum which is < 1/4
on the convex hull of these four elements.

It should be clear that in this way we get a sequence (zn) with z, € A,
such that the infimum of all ) is < 0 on the convex hull. Tt then follows,
by the uniform boundedness of the 4, and the denseness of xh, ..., that
there does not exist any =’ which strictly separates 0 from the closed convex
hull of {z;,25,...}, and this means by the Hahn—Banach theorem that 0 is
in fact contained in this closed convex hull. m

With the same technique one can show the following more general asser-
tion:

THEOREM 4.4. Let E be a locally convex Hausdor(ff space together with
a family (z{)icr of continuous linear functionals which is dense in X' with
respect to uniform convergence on bounded sets. If A; are subsets of E for
every i € I which are aoll contained in the same bounded set B and which

all have a point z in their closed convex span, then there are ©; € A; such
that z € 6({x; | i € I}). :

If we pass to the more restrictive assumption that the A, are uniformly
compact then the Carathéodory-Bérény theorem holds in every Banach
space. In view of the applications we have in mind we consider a slightly
more general locally convex situation. Those who are only interested in

icm

Bérdny theorems 245

Banach spaces might replace E by a Banach space X, the second of the two
conditions of the theorem will then be satisfied automatically.

'THEOREM 4.5. Let E be a locally conver Hausdorff space, K C E convez
and compact and A, C K forn =1,2,... Suppose that z is o point of K
such that

(i) z lies in the closed convex hull of each A,, and

(ii) z has o countable basis of neighbourhoods in the relative topology
of K.

Then there are x, € A, such that z is in the closed convex hull of
{1, 22,...}.

Proof. To prepare our construction we start with any convex neigh-
bourhood U7 of 2. Since K is compact, there are 11,...,y, in K such that
the sets y; + U cover K. Choose subsets A, C A, such that

Ay CA+T, A, CA+U

forn=1,...,7+2, By assumption, z+ I meets the convex hull of A,,, and
therefore z+ 2U will intersect the convex hull of A,,. Let Y be the {at most)
(r + 1)-dimensional subspace of X which is spanned by 2z and the ;. \ye
apply Theorem 2.5 with C' = (242U} NY. This theorem provides z, € A,
forn=1,...,7+ 2 such that their convex hull meets C. Thus, if we choose
Zn € Ap with 2, € %, + U, it follows that (2 +3U)Nco({x1,-..,Tr42}) # 0.

Our assumption implies that there are convex neighbourhoods U7y, Us, . ..
of zero such that z is in the closure of a subset A of K provided that
% + 3U meets A for every k. To begin with, choose suitable x,, € A, for
n = 1,...,7r1 according to the above construction such that (z + 3U1) N
co({z1,...,%p}) # 0, and next z, € A, for n = ry +1,...,75 such that
(z + 3Ua2) Ncol{Zry41,---,Zr }) # 0, and so on. Then the convex hull of
{21, z2,...} will have z in its closure, and the proof is complete. »

REMARKS. 1. If the second condition of the preceding theorem is not met
one could nevertheless uge the same technique to prove the following weaker
statement: if (U;);er 18 a neighbourhood base of 2z in K and z € ©6(4;) for
certain subsets A; of the compact convex set K for all 1 € I, then =; € A
exist with z € ({3 | 1 € I}).

2. Both Theorem 4.3 and Theorem 4.5 allow formally more general ver-
sions of the form: if the closed convex hulls of the A, meet a fixed closed
convex set C, then C NT({z1,%2,...,}) for suitable z, € A,,.

3. A combination of the Krein—-Milman theorem with our Carathéodory-
Bardny Theorem 4.5 leads to the following assertion: if compact convex sets
K, K3, ... of a Banach space are contained in a fixed compact and convex
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set K, then there are, for every z € ﬂ:’zl K, extreme points z,, of K, for
n=1,2,... such that z is in the closed convex hull of {z1,2,...}.

4. We have shown that the Carathéodory-Bardny theorem fails to hold
in spaces which contain I*, and Theorem 4.3 states that it is true for spaces
with a separable dual. However, there are only rather complicated examples
X which do not contain I! and nevertheless have an inseparable dual (see
[9]), and thus Theorem 4.3 is essentially sharp.

5. Helly-Barany theorems in arbitrary Banach spaces. Let X be
an arbitrary Banach space and Cn, 7 = 1,2,. .., families of bounded, closed
and convex subsets of X; suppose that all intersections Neee, C are empty.
Then one might ask whether a Helly-Bardny theorem similar to Theorem 3.3
holds: do there exist C, € C,, such that (oo, G, = 07

In general the answer is “no”, even for compact convex sets:

PROPOSITION 5.1. In every infinite-dimensional Banach space there exist
Jamilies C, of compact convex sets with gee, C =0 such that oo, Cr # 0
for each choice C,, € C,, forn = 1,2,... The sets under copsideration con
even be chosen to be subsets of a fived compact convex set.

Proof. First we consider the Banach space I*. We put
K= {(ts) | |tx| <1/K* for k = 1,2,...},
and for every n we consider the family C,, consisting of the two sets
CZ :={(ty) € K | tn = +1/n?}.
These C,, obviously have the claimed properties.
The case of general X can be treated by choosing a basic sequence ()
of normalized vectors in X and by mapping I* into X via the mapping

@ : (k) = 3 tyaxp; then the $-images of the preceding compact convex sets
provide the desired example.

Thus, in order to be able to prove positive results, we will need certain
restrictions. Qur approach will use the condition that the empty intersections

Moec,, C are in a sense “uniformly empty”. This can be made precise with
the help of the following

DEFINITION 5.2. Let € be a family of closed, bounded and convex sets
of a Banach space X such that Neee € = 0. Then, if ¢ > 0, we write

o=
Cec
provided that (Noc.(C)e = @; here (C), := {z | d(z,C) < £

If the members of C are even compact, then the (C)e are the sets C' + B,
(with B. = the ball with radius £). In this case the preceding s-variant of
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empty intersection is automatically satisfied if the C' € C have no point in
commen. This simple observation is included to stress that Theorem 5.5
below is a generalization of the finite-dimensional case:

LEMMA 5.3. If (oee €=0, then there is an e >0 such that gee C=. 0.

Proof. We may assume that C is finite, C = {C4,..., C,}. The assertion
now follows from the fact that the compact set Cy x ... x C, C X" does
not meet the subspace {(z,...,z) | z € X'} and thus has a strictly positive
distance. m

Our main result will be proved by using a duality argument. This will
be prepared in the following proposition, which can be thought of as a
quantitative version of Proposition 3.2:

PROPOSITION 5.4. Let C' be nonvoid, closed and convez in the unit ball
B of a real Banach space X. By C we denote the following subset of X' xR
(in this product X' will be provided with the weak* topology):

{@ e} | |z'| €1, 2'(z} > a for every x €C, a > ~1}.

Then, for a family C of nonvoid, closed and convex subsets of B and eg > 0,
the following assertions are equivalent:

(i) Neee € == O for every & < &g; )
(ii) (0,e0) lies in the closed convez hull of Jgee C.

Proof Suppose first that, for some £ <X g, there is an z which lies in
every (C)c. It has to be shown that (0,£9) has a neighbourhood which does
not meet the convex hull of the C. We claim that

U:={(2,a)|2'(z) <7, a >e0—7}
has the desired properties, where 7 :== (gg — €)/4.

In fact, let Cy,...,Cr € C and (2/,a) = 3.;_; Ailz}, a;) be an element of
the convex hull of U:__”l C;. Suppose that (z', ¢) lies in IV, We choose z; € C;
and b; with ||b;]] < € + 7 and z = z; + b;, and we derive a contradiction as
follows:

" T T
T > Z)\,m:(m) = Z/\img(mi +b;} > Z)\,—(ai —e—T) > e — 21 —€.
i=1 i=1 ge=1

Conversely, assume that (0,&0) fails to be in the closed convex hull K of
the upion of the €. Choose an ¢ < & such that (0, £) is not contained in X
and separate K strictly from this point by a continuous linear functional &.
Since X' is provided with its weak* topology, ¢ has the form (z',a) —
z'(z} + ne for suitable z € X, n € R. Strict separation means that ne >
o' (z) + na for all (z',a) € C for arbitrary C € C. Since (0,0) lies in K, we
know that n > 0, and we may and will assume that n = 1.
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We claim that —z lies in all {C').. Suppose that this were not the case.
This time we separate the closed convex set (C). by a normn one functional
z' from —z, that is, we choose this 2’ such that ='(—2z) < ¢ < 2'((C),).
Then, with @ := inf2'(C), we have 2'(~z) <c < a-—core < 7/(z) +a.
This clearly contradicts the above choice of z since (2’,a) € C.

With these preparations at hand we can prove the main result of this
section:

THROREM 5.5. Let X be a separable Banach space and C,, a family of
nonvoid, closed and conver subsets of the unit ball B for every n. Suppose
that there is a positive g with ey < 1 such that ﬂcecn C =; 0 for every
n and every € < egg. Then there are C, € Cp, m = 1,2,..., such that
M1 Cn =< @ for all € < &.

Proof. Since X is separable, every point of the dual unit ball has a
countable basis of neighbourhoods with respect to the relative weak* topol-
ogy. Hence we may apply Theorem 4.5; the compact set K from that theo-
rem is the product of the dual unit ball (which is compact by the Alaoglu~
Bourbaki theorem) with [~1,1], z is the point (0, &), and A, := Jge, 0.
In this way the preceding theorem is reduced to Theorem 4.5 and Proposi-
tion 5.4 (similarly to the finite-dimensional case, where Theorem 3.3 was a
consequence of Proposition 3.2 and Theorem 2.2). m

REMARKS. 1. If all C,, in the theorem contain only two sets, C9 and C
say, then one can prove the theorem without using Proposition 5.4.

Assume that, for some ¢ < €9, the intersections 5o, (C%~), are empty
for arbitrary sequences (6,,) in {0, 1}. Choose %5,,8,,... from each such inter-
section. Since, by assumption, (C)e4r N (CL)er = 0 for 7 := (69 — ) /2 it
follows that any two different T, 8,,... have a distance of at least 2r. Now
there are uncountably many of them, and this contradicts the separability
of X.

In fact, this argument shows that all but at most countably many of the
Np2., Cén are nonempty. It would be interesting to have a similar cardinality
argument for the case of arbitrary C,.

2. In particular, it follows from Neoec, C =« B for all n that one finds,
for € < €o, sets O, € Cp with (oo, C, =, 0. It is not clear, however,
whether this also holds for & = 9. The main problem is that—in contrast to
the finite-dimensional situation—it does not follow from Noec € =e, 0 that
Neee C =eo++ @ for some positive r; cf. the example on page 61 in [11].

It remains to investigate the role of the separability of X: is this prop-
erty essential or is it only imposed to make an application of Theorem 4.5
possible? Here is an example of an inseparable space where no Helly—Barsny
result like that of Theorem 5.5 can be proved:
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PROPOSITION 5.6. In I°°, the space of bounded sequences, there are fam-
ities Cy, of closed convex subsets of the unit ball such that Ngee, C =< @ for
a suitable positive € and all n, but (°°, C, # 0 for every choice Cy, € Ch,.

Proof. The counterexample is similar to that from the beginning of
this section: define C,, to be the collection of the two sets CE, where

O = {(an) €1 | |(me)l| =1, =n = £1}. »
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Appendix. It has been proved above that the Carathéodory-Bérdny
theorem fails in X for bounded sets if X contains ! and that it holds
provided that the dual is separable (Theorem 4.3). V. Kadets has noted
that it is in fact only necessary to assume that I* is not contained in X': here
is a sketch of his proof.

Let X be a separable Banach space such that no subspace of X is iso-
morphic to I'. The A,, n=1,2,..., are subsets of the unit ball such that
0 € ©(A4,) for all n. Define U to be the collection of all convex combi-
nations of elements z;,xs,... with =, € A,; if y = > A\jz; is in U, put
n{y) :=min{i | A; > 0} and n'(y) == max{i | \; > 0}.

Now define, in the Banach space ¥ := X x [?, the set A = {(y, engyy) |
y € U} (with e, = the mth unit vector in 1?).

(0, 0) lies in the weak closure of A: this is essentially the argument of the
proof of Theorem 4.3 above. Since ¥ does not contain I*, there is a sequence
(Y5, en(y;)) in A tending weakly to zero; this is due to Rosenthal’s theorem,
cf. Section IIL.3 in [6]. And since the eng,,) tend to zero, it is possible to
extract a subsequence of the (y;) such that the intervals [n(y),n'(y)] do not
overlap. In this way one gets x, € A, such that 0 lies in the closed convex
hult of {zy1,z,...}.
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Symmetric Banach *-algebras: invariance of spectrum
by

BRUCE A. BARNES (Eugene, OR)

Abstract. Let A be a Banach *-algebra which is a subalgebra of a Banach algebra
B, In this paper, assuming that A is symmetric, various conditions are given which imply
that A is inverse closed in B.

1. Introduction. Let D be a complex unital algebra. The group of
invertible elements in D is denoted Inv(D). For d € D, o(d; D) denotes the
spectrum of d relative to D, and 7(d; D) denotes the spectral radius of d
relative to D: »(d; D) = sup{|A| : X € o(d; D}}. When D is a *-algebra, Dg,
is the set of elements d € I with d = d*.

Throughout, A is always a Banach *-algebra which is a subalgebra of a
unital Banach algebra B, and A contains the unit of B (the results in this
paper are valid in the nonunital case). Recall that A is symmetric if for every
a € A, o{a*a; A) C [0, c0). In this paper, assuming that A is symmetric, we
study the relationships among the following concepts:

DErRNITION 1. (1) A is inverse closed in B if whenever ¢ € A and
a~! @ B, then a™* € A.

(2) A is *-inverse closed in B if whenever @ € Ass and a~! € B, then
a~le A

(3) A is SRP in B if r(a; A) = r(a; B) for all @ € A (SRP stands for
“spectral radius preserving”).

The property “A is inverse closed in B" is a strong property which is
obviously equivalent to “c(a; A) = o(a;B) for all a € A”. On the other
hand, the property “A is *-inverse closed in B” is a fairly weak property.
In particular, it does not imply in general that “c{a;A) = o(a; B) for all
a € Aga”; see the example in Section 4.

The two questions listed below remain unanswered. Question II is clas-
gical. Question I is more general than Question II, since a C*-algebra A is
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