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Polynomial inequalities on algebraic sets
by

M. BARAN and W, PLESNIAK (Krakéw)

Abstract. We give an estimate of Siciak's extiremal function for compact subsets of
algebraic varieties in C™ (resp. R"). As an application we obtain Bernstein—~Walsh and
tangential Markov type inequalities for (the traces of) palynomials on algebraic sets.

0. Preliminaries. The theory of the multivariate Markov inequality fur-
nishing estimates of the derivatives of a polynomisal in n variables in terms
of its degree and its uniform norm on an n-dimensional compact subset of
C™ or R™" was essentially developed in the last ten years. For an exhaus-
tive survey on this subject we refer the reader to [Pl3]. In recent years,
Markov and Bermstein type inequalities have been intensively investigated
on algebraic subvarieties of R® (see [BLT], [BLMT1], [BLMT?2], [FeNal],
[FeNa2], [FeNa3], [Bru], [BaPl2], [BaP13], [RoYo], [Gen]). In particular, in
[BLT], [BLMT1)}, [BaP12] and [BaP13] the authors have characterized semial-
gebraic curves as well as semialgebraic manifolds in R” in terms of tangential
Markov or Bernstein and van der Corput—Schaake type inequalities.

The purpose of this paper is to establish Bernstein-Walsh or (tangential)
Markov type inéqualities on subsets N of an algebraic set in R™ that are
images under non-degenerate analytic maps of non-pluripolar, compact sets
in R*. Our results vield, as particular cases, some recent results of Bos-
Levenberg-Milman-Taylor [BLMT1], [BLMT2] and Brudnyi {Bru].

Let us note that if N is a subset of an analytic variety then, in general,
it need not admit a tangential Markov inequality with any finite exponent.
A relevant example is due to Izumi {Iz] (see [BLMT1]).
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function, pluricomplex Green function, Bernstein-Walsh and tangential Markov type in-
equalities on algebraic sets.
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Let & be a subset of the space C*. We set
Ve(z) = sup{u(z) : u € L{C*), u <0 on E},

where £(C*) = {u € PSH(C*) : sup,cen [u(2) — log(1 + |2)] < oo} is the
Lelong class of plurisubharmonic functions with minimal growth. The func-
tion Vg is called the (plurisubharmonic) extremal function associated with

E (see [Si2]). By the pluripotential theory due to E. Bedford and B. A. Tay-
lor (see [K]), if E is non-pluripolar in C* then the upper semicontinuous
regularization V of Vg belongs to L(TF) and is a solution (in Ck \ B, where
E denotes the polynomial hull of E) of the homogeneous complex Monge-
Ampére equation, which reduces in the one-dimensional case to the Laplace
equation. Therefore V3 is a multidimensional counterpart of the classical
Green function for C\ E. It is a result of Siciak [8i2] that if B is compact
then

(0.1) Ve(2) = sup{

% log |p(2)| : p is a polynomial with degp > 1
egp

and ||p||z < 1} = log $g(2),

where @5 is the (polynomial) extremal function of E introduced by Siciak
[5i1]. In what follows, we shall be working with both the plurisubharmonic
and the polynomial extremal functions.

‘We recall that a subset & of C* is said to be pluripolar if there is a
plurisubharmonic function w on C* such that E C {u = —oo}. By Josefson
[Jog], B is pluripolar if and only if it is locelly pluripolar, i.e. if for each point
a € F there exist an open neighbourhood U of a and a plurlsubharmomc
function % on U such that ENU C {u = —x0}.

Let now M be a locally analytic subset of C" such that the set Mreg of
regular points of M is a complex submanifold of C* of pure dimension &,
where k& < . A function » defined on M is said to be plurisubharmonic on
M if it is plurisubharmonic on M, and locally bounded above on M. Let
N be a subset of M. Then ¥ is said to be pluripolar in M if there exists a
plurisubharmonic function u on M such that N N Mg C {u = —oc}.

In our paper, a crucial role is played by the following

LeMMA 0.1, Let E be a non-pluripolar compact subset of C* and let f
be an analytic map defined in an open neighbourhood U of E, with values
in @ locally analytic subset M of C* of pure dimension min(k,n), where
we set M = C" 4f k > n. If ranky f := sup ¢y rank, f = min(k,n) for a
connected component V of U such that V N E is non-pluripolar, then f(E)
5 o non-pluripolar subset of M.

Proof. First assume that & < n. Let Mgng be the set of singulér points
of M. Then Miing is an analytic subset of M with dimMgn, < k (see e.g.
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(£, Chapt. V.4]). Consequently, the set Ay ==V 1 f— }(Mjing ) is an analytic
subset of V. Since ranky f = k, we have A; # V, as otherwise we would have
dim f(V') < k, which is 1mp0551b1e In particular, by Josefson’s theorem, the
set Ay is plur1polar (in C*).

Let now Az be the set {z € V : rank, f < k}. Then 4, is also pluripolar,
whence F' := F\ (41 U A;) is a non-pluripolar subset of C*. Again by Josef-
son’s theorem, there is a point a € F such that for each open neighbourhood
V, of a the set F'NV, is non-pluripolar. Since rank, f = k, and since the sets
Ay and A, are closed (in the induced topology of V), we may choose V, so
that Vo C V'\ (41U Ag) and the restriction of f to V, is a b1holom0rphlsm
of V; onto f(Va) C M.

Suppose now that f(F) is (locally) pluripolar, Then there exist an open
neighbourhood 2 of f(a) with 12 C f(V,) C M, and a plurisubharmonic
function u on {2 such that 2N f(F) C {v = —co}. Thus, for the plurisub-
harmonic function u ¢ f we would have f~1{2)NF C {uo f = —o0}. Ou
the other hand, since f~*(f2) is a neighbourhood of g, the set f~1(2) N F
cannot be pluripolar. This gives a contradiction. Consequently, f(F) as well
as f(E) must be non-pluripolar.

The case where k > n is now obvious,

In what follows, we will be assuming that R™ is the real part of the space
C", ie. R" = R" 4+ 40 C C". In Section 2, we shall deal with real algebraic
subsets of R, In such a setting Lemma 0.1 yields the following

COROLLARY 0.2. Let E be a non-pluripolar compact subset of R* and let
f be a real-analytic map defined in an open neighbourhood of E, with values
in a real olgebraic subset M of R™ of dimension k with 1 < k < n, where we
put Ml=R"™ if k = n. If rankg f =k then f(E) is a non-pluripolar subset
of (the complezification M of) M

1. Estimates for Siciak’s extremal function on algebraic sets.
We shall need the following beautiful result of Sadullaev [Sa).

SADULLAEV'S CRITERION. An analytic subset M of T" ds algebraic if
and only if Siciak’s extremal function O is locally bounded in M for some
{and hence for each) non-pluripolar compact subset N of M.

The above criterion together with Lemmma 0.1 permits one to prove nu-
merous versions of Bernstein—-Walsh type inequalities on algebraic varieties.

ExAMPLE 1.1. Let S™! denote the unit sphere in C* and let 2 be
an open subset of S"~*. We claim that there exists a positive constant A
depending only on {2 such that for each polynomial P € Clz1, ..., #n],

sup |P(z)] < Ades P sup | P(2)].
zegn—t
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Indeed, S*~1 can be considered as a compact, (2n - 1)-dimensional real
algebraic subset N of R?",

N={af+yi+...+on +u =1}

whose complexification M is a complex algebraic subset of C* of complex

dimension 2n — 1. Let 7' : I — N be the standard spherical parametrization

of N, where I is a compact cube in R*"~ (see e.g. [K, Section 2.1]). If £2 is an
open subset of $™1, one can find a closed subcube J of I such that T'(J) C
2. Hence by Lemma 0.1, 2 is a non-pluripolar subset of M. By Sadullaev’s
Criterion, A := sup @py)(N) < co. Hence by the definition of the extremal
function, for any polynomial P in n complex variables z1,. .., z, we get for
U= (Z1,¥1,--%Tn:Yn) € N, where z; = o; +iy;, j=1,...,m,
P(w)] < A%EF sup |P(u)l,
ueT(J)
which proves our claim.
By Sadullaev’s Criterion, it is also clear that the same holds true if we
replace 2 by a subset {2’ of §"! that is non-pluripolar in M.

ExAMPLE 1.2. Let M be an algebraic subset of R™ of pure dimension k,
where 1 € k < n— 1, and let = be a regular point of M. Then one can find
an open neighbourhood 2 of 2 and an analytic homeomorphism ¢ of the
open. unit ball B = B(0,1) in R* onto 2. If § C 2, let

o(9)= | |ded|dA(t)
¢=1{5)

be the measure on 2 induced by the Lebesgue measure A in R*. We claim
that for every ball B(8) = B(z,§)N{2 on Ml with 0 < § < 4o, and for every set
8 C B(4) with a(S) > 0, there exists a positive constant A > 1 that depends
only on B(6) and §, such that for every polynomial P € R[zy,..., 2] of
degree d we have '

sup |P(x)| < A% sup | P{x)!.
B(&) zES

To see this, choose a compact subset E of ¢~1(9) with A(E) > 0. Then
the set F is non-pluripclar (in C*) and by Corollary 0.2 the set ¢(F) is a
non-pluripolar, compact subset of M. Hence applying Sadullaey’s Criterion
to the extremal Siciak function P4(p) We prove our claim.

Let us mention that the above example yields an inequality that is close
to the main result of Brudnyi {Bru, Theorem 1.2],

In Bection 2 of this paper, we shall need more refined information about
Siciak’s extremal function than that furnished by Sadullaev’s Criterion. It
is provided by the following
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PROPOSITION 1.3. Let E be a compact, non-pluripolar subset of CF and
let f be an analytic map defined in an open neighbourhood U of E, the
polynomial hull of B, with values in o min(k, n)-dimensional algebraic set
M in C* (where M = C* ifk > n). Assume that rankg f = min(k,n). Then
there exist constants M > 0 and 8o > 0 such that

Ve (F(2)) S MVg(2)  as dist(z, B) < < 8.

Proof. We have to prove that there exist constants M > 0 and 6y > 0
such that for any d, and any polynomial p € Clwy, ..., w,] of degree d,

IP(F (@] < 1Pl 50m@E () s dist(z, B) < 6 < .
We may assume that f is bounded in U. Let §; > 0 be so small that the
polynomial hull F' of the set F(8g) == {z € C* : dist(z, B) < 8o} is contained
in U. By a uniform version of the Bernstein-Walsh-Siciak theorem (see
(P11, Lemma 2.1]), there exist comstants My and o € {0,1) such that for
any polynomial p € Clwy,...,w,] of degree d one can find polynomials
g €Clzy,....2z], I=1,2,..., of degree I satisfying
lpo f—allr < Mijpo fllva = Mllplisw)a’
< My |pll 4z (sup 5 () (£ (U))) %"

Since rankp f = min(k,n), Lemma 0.1 shows that f{E) is a non-pluripolar
subset of M, and by Sadullaev’s Criterion, 4 := sup @z (f(U)}) < oo.
Choose | = Md, where M is a positive integer so large that Aa™ < a. Then
we have, for z € E(d) with 0 < § < by,

p(F()] < lpe f — amallze + lama(z)] < Mylpl s zya® + llanal 52 4(2).
Qbserve that
laaallz < llpo f—amalle +ipo flz < (Mia® + 1)l|po flz.
Hence, for z € E(6),
po f(2)] € Mullpll sma® + (Mia® + Dpll @ ¥ (2)
< |loll sy (2Maat + 1)BE (=),

Now, applying the above inequality to the polynomials p", » = 1,2,...,
then taking the rdth root of both sides and letting r tend to infinity gives

By (f(2) S €Y (2) for = € B().
In particular,
Vi (F(2)) < M Ve(z) for 2 € B(§) with 0 < 8 < do.
REMARK. Define the modulus of continuity of Vg by
w(Vg;8) := sup{Ve(z) : dist(z, E) < 8} for 0 <4 < do.
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By a remark due to Z. Blocki (unpublished), if the extremal function Vp is
continuous on E, it is uniformly continuous on the whole space C* with the
same modulus of continuity w(Vg;§). For the sake of completeness we give
Blocki’s reasoning.

Let E be a non-pluripolar subset of C* and let u € L(C*), u<0on E.
If ¢ € CF and {¢] < 8o, we set

ve(2) = u(z+ () —w(Va: [(])-
Then v, € L(CF). If z € E then dist(z + (, E) < |z + ¢ — 2| = [(]. Hence

u(z+¢)—w(Ve; [¢]} < 0, whence v¢(2) < 0 for z € E. Thus, by the definition
of Vg, we get

Ve(z+ () — Ve(2) Sw(Ve; (]} forany z € Cck,
By the same argument we show that for any z € C* and [¢] < o,
Ve(z — ¢) — Ve(z} < w(Ve; [K]).
Consequently, for any point z € C¥ and 0 < & < &, we get
sup{|Ve(z + ¢) — VE(2)| : i¢| < 0} < w (Vi3 d),
as claimed.

REMARK. Proposition 1.3 does not assert that any non-degenerate an-
alytic map preserves the modulus of continuity of Vi. (Consider e.g. B =
{(z,y) e B2 :0< 2 <1, 0<y <z} and fz,y) = (2,9%).) How-
ever, if rank, f = min{k, n) for each t € E and f(E) C Mo, then by us-
ing Merrien—Tougeron's version of the implicit function theorem (see [Tou,
Chap. I, Proposition 5.1]) one can show that f preserves the modulus of
continuity of Vg (see [P12], the case where min(k,n) == n}.

2. Tangential Markov inequality on algebraic sets. Let now E be

a non-pluripolar compact set in the space C* and let f be an analytic map

defined in an open neighbourhood U of the polynomial hull & of E, with

values in a k-dimensional algebraic subset M of C", where M = C" if k > n.

Assume that f is non-degenerate. Then by Lemma 0.1 the set N = f(E) is
a non-pluripolar compact. subset of M.

Let @ € Clz1,...,2,] be a polynomial of degree d. For any vector v €

. 5%~1 and for any fixed ¢ € E, consider the function g(s} = Q{f (¢ + sv))

defined in a sufficiently small neighbourhood of 0 € C. By Cauchy’s Integral
Formula and by Proposition 1.3 we get

l9'(0)] < 67 sup |Q(F(t+ )| < 67| Qllw sup S (¢ + sv),
lslé |a]=4

for § > 0 sufficiently small, with an appropriate constant M > 0, where
lQlin := sup |Q|(NN). On the other hand, ¢'(0) = Dy;,,)Q, where T(t,v) =
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D, f(t), the derivative at the point ¢ of the map f in direction v. Hence by
(0.1) we get the following formula:

(21)  [DrpyQ@)| < T Mw(Ve; Od+1)||Q|n  as 0 < § < &,
with positive constants M; and & that depend only on E and f..
The above formula can be specified in case E is a compact subset of CF

with the Hélder Continuity Property (of Vi), which means that the extremal
function Vp associated with B satisfies

(HCP) w(Vg;8) < MaY"  for 0 < § < 4o,

where the constants M > 0 and » > 1 do not depend on §. Indeed, by setting
§=1/d" in (2.1) we get

THEOREM 2.1, With the above assumptions on f, if £ is an HCP com-
pact subset of C* with parameter r, then there exists a constant Cy > 0 such
that for any polynomial @@ € Clz1,...,2,] of degree d one has

|Dr2)@(2)| < CLd" Q| 5
where z = f(t) with t € B.

If z = f(t) is a regular point of M then for every v € S*~! the vector
T(t,) is a vector of T, M, the tangent space of Ml at 2. Hence by Theorem 2.1
we get

COROLLARY 2.2. Assume thet k& < n, E is an HCP compact subset of
C* with parometer v, N = f(E) C Myeg, and for eacht € E, rank: f = k.
Then there exists a positive constant Cy such that for any polynomial (¢ €
Clz1,- .., 2n) of degree d we have

|Dr.Q(2)] € Cod"||Q||n  for z € N,

where T, € {T(t,v)/|T{t,v)| : v € 871, f(t) = 2} is any unit vector of
the tangent space T,M. : :

REMARK. In the special case where k = 1 and F = [0,1] (then r = 2),
Corollary 2.2 yields Proposition 6.1 of [BLMT1].

An important family of sets that are HCOP is the family of UPC sets.
Let K = € or K = R. Following [PaPl], let us recall that E is uniformly
polynomielly cuspidal (briefly, UPC) with parameters M > 0, m > 1 and
d € 7 if there exists a mapping ¢ : E x [0,1] — E such that for every
t € E, ¢(t,") is a polynomial map from R to K* of degree d, ¢({t,1) = ¢ and

dist(¢{t, ), KF \ E) > M(1—s)™ for (t,5) € E x [0,1].

The family of UPC sets is large enough. For example, if £ is a compact
subanalytic subset of RP with int F dense in E then by Hironaka’s Recti-
linearization Theorem E is UPC (see [PaPl, Corollary 6.6]). Moreover, by
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[PaPl, Theorem 4.1] for any compact UPC subset E of K* with parameters
M, m and d,

Pp(t) <1+ C8YCMD i dist(e, B) <6< 1,

where C is a positive constant that depends only on M, m and d, and [m] =1
if1—1 < m < [ with ! € Z. Hence in particular, every UPC compact subset
of K* admits Markov’s inequality, of Theorem 2.1 with exponent 2[rm].

REMARK. A more subtle technique (due to Baran), based on properties
of the Joukowski function g{z) = 3(z + 1/2), permits one to show that
(in the case of E being UPC with parameter m) the exponent 2[m] of the
Markov inequality can be replaced by 2m (see [Ba]).

In what follows, we shall assume that K = R. Thus f is an analytic map
with values in an algebraic set M C R, defined in an open neighbourhood
U (in R*) of a UPC compact subset E of R* with parameter m. We let §%*
denote the unit sphere in R*. To prove further corollaries to Theorem 2.1
we shall need the following two lemmas.

LEMMA 2.3. Let A = [ay;] be a symmetric, positive semi-definite matriz

of dimension k. Let Qa(v) = E?,j:l
with A. Then for allv € §%—1,

Qa®) > (14t A)l"jc det A.

Proof Let0 < Ay < ... < Mg be the eigenvalues of the matrix A. Then
it is well known that

aijv;v; be the quadratic form associated

Al = mi .
1= I, Qal(v)

Hence for any v € S*~! we have
A2 Ak
14X 14+ Ak
Lemma 2.4, Let Z = {t € U : rank; f < k}. Then there ezist constants
A >0 and o > 0 such that for anyt € E and v € §%-1,
I|Du F(t)]| = A(dist(t, 2))*.

Proof. Let Ag(t) be the (n, k)-matrix of dif (in the canonical basis).
Then B (f) = A% (¢)Af(t) is a quadratic matrix of dimension k. It is known
that if A is an (n,k)-matrix with real entries then rank A = rank(A*A).
Hence

QA(’U) > > A = (1 -+ tr A)l_kdet A.

Z ={telU :detBs(t) = 0}.
By Lemma 2.3,

D F @) = @B, (1)(v) = B1det B4(t),
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where By = (1+supyep tr By (t))!~*. By Lojasiewicz’s Inequality there exist
constants Ba > 0 and 3 > 0 such that for any ¢ € E,

det By(t) > Bo(dist(t, Z))?.
This completes the proof of the lemma.

COROLLARY 2.5. There exist constants Cy > 0 and o > O such that for
any polynomial @ € Rzy,...,z,] of degree d and z € F(E\ Z),

|07, Q)| < Cad®™(dist(F (=) N B, Z))"*(Q| s()-
In particuler, if Z Nint B = ) then we get
| D7y, QUE(E))| < Cod®™(dist(t, OE)) (1@l ¢(m)-

REMARK. If Z N OF # §, one cannot expect a Markov inequality of
Corollary 2.5 with exponent 2m (see [BaPl1, Example 2.9]).

We end this paper by considering the following special case.
PROPOSITION 2.6. Let f be a polynomial map from R to R™ with
Fig) = (L -ty (1 +£)*2Q(t),

where Q) is o polynomial map from R to R™, Q(t) # 0 on [—1,1]. Let o =
max(s1,32). Then there exists a constant A > 0 such that for any polynomial
PeRlzy,..., 2, of degree d we have

|Dz, P(z)] < Ad** | Py forz € N = f([~1,1]),
with Dz, P(z) = Dau/ieuP@), © = f(t).
Proof. By Theorem 2.1 there exists a constant Cy > 0 such that
Doy PUf())] < CLd?|[P|w-
Hence we get
|DowP(F()] € C1d®(1 - )| Py forte (-1,1),
whence by a generalized Schur Inequality (see [Ba, Lemma 2.4]) we obtain
|DowyP(f(t)] < Cr(ddeg £)**d*|| P n.
Therefore we get the required inequality with
A = Ci(deg f)m(tel[riiﬁl] QN

ExaMmpLE 2.7. Let m and |, where m > I > 2, be two relatively prime
natural numbers. Let

o (5 (5))
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Then N = f([-1,1])

M. Baran and W. Plesdniak

= {(z,4) € R? : 0 < z,y <1 and 2™ = y'}. Since in

this case @ = I — 1, by Proposition 2.6 we get

D1,y Ple,y)| < Ad®[{Pl|y
(=v)

for any polynomial P € R[z,y| of degree d.

REMARK. A result related to Example 2.7 has recently been announced
n [BLMT?2]. (See also [Gen].)

REMARK. Let f : [—

fe {11]

1,1] — R™ be a continuous spline function (i.e.
— R™ is continuous and there are points —1 = 5y < 81 < .

Sm = 1 such that fis, ., +1] ig the restriction of a polynomial map W1th

Fi@) #£0fort € (s4,8i41),1=19,..
exist constants A > 0 and 61 > 0 such that foreach i =0,...,m
for each polynomial P € Rlzy,...

for z € f((s5,8i41)), 1= 0,...,m

., — 1. Then by Prop031t10n 2.6 there
— 1, and
yTn} Of degree d,

Dy, P(z)| < Ad%|

Pllg-1,1
— 1, where Dy P is a tangential deriva-

tive of P. Moreover, if f is an arc of class C* then the tangential Markov
inequality holds for any z € f([—1,1]).
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