Example. Let X be the closed unit disc and $Y = \mathbb{T} \cup \{0, 1/2, 1/3, \ldots\}$. Let A be the uniform algebra of all functions in $C(X)$ whose restriction to Y is in the restriction to Y of the disc algebra. It is easy to see that X is the Shilov boundary of A, and that the only non-R-points for A are the points of T and the point 0. Thus 0 is an isolated non-R-point for A. In fact, for $y \in Y$, $F_y = \{0, y\} \cup \mathbb{T}$. All other points of X are points of continuity for A.

References

Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces

by

TAKESHI YOSHIKATO (Kawagoe)

Abstract. We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence $\mu = \{\mu_n\}$ of positive numbers and a sequence $f = \{f_n\}_n$ of functions analytic in neighborhoods of the spectrum $\sigma(T)$, the Dirichlet series for $\{f_n(T)\}$ is defined by $D[f, \mu, z](T) = \sum_{n=0}^{\infty} e^{-i\mu_n z} f_n(T)$, $z \in \mathbb{C}$. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.

1. Introduction. In this paper we attempt to study the Dirichlet series in the ergodic theory setting for a bounded linear operator T in a Banach space X with a view to making up for a gap in the structural properties of the resolvent $R(\lambda; T)$ of T. In particular, the abscissa of uniform convergence of such Dirichlet series is investigated in an operator-theoretical sense. Moreover, we introduce a new summation method of what is called Dirichlet's type generalizing the Abel method and show that when $|T^n|/n \to 0$, the uniform $(C, 1)$ ergodicity of T is equivalent to the uniform ergodicity of Dirichlet's type.

Let X be a complex Banach space and let $B[X]$ denote the Banach algebra of bounded linear operators from X to itself. For a given $T \in B[X]$, the resolvent set of T, denoted by $\rho(T)$, is the set of $\lambda \in \mathbb{C}$ for which $(\lambda I - T)^{-1}$ exists as an operator in $B[X]$ with domain X. The spectrum of T is the complement of $\rho(T)$ and is denoted by $\sigma(T)$. $\rho(T)$ is an open subset of \mathbb{C} and $\sigma(T)$ is a nonempty bounded closed subset of \mathbb{C}. So the spectral radius $\gamma(T)$ of T is well defined: in fact $\gamma(T) = \sup \{\sigma(T) = \lim_{n \to \infty} \|T^n\|^{1/n}$. The function $R(\lambda; T)$ defined by $R(\lambda; T) = (\lambda I - T)^{-1}$ for $\lambda \in \rho(T)$ is called the resolvent of T. It is well known ([3], [10]) that $R(\lambda; T)$ is analytic in $\rho(T)$.

and if $T \in B[X]$ and $|\lambda| > \gamma(T)$, then $\lambda \in \sigma(T)$ and
\[
R(\lambda; T) = (\lambda I - T)^{-1} = \sum_{n=0}^{\infty} \lambda^{-(n+1)} T^n,
\]
the series converging in the uniform operator topology. It is also known that
if $d(\lambda)$ denotes the distance from $\lambda \in \mathbb{C}$ to $\sigma(T)$, then $\|R(\lambda; T)\| \geq 1/d(\lambda)$. If we take $\lambda = e^{i\theta}$, $\theta = s + it$ ($s, t \in \mathbb{R}$), then the inequality $|\lambda| > \gamma(T)$ implies $s > \log \gamma(T)$ when $\gamma(T) > 0$. This characterization is of great interest in connection with the question of what is the abscissa of uniform convergence of $R(\lambda; T)$ as a series.

In this paper we consider a more general situation. Given $T \in B[X]$ let $\Phi(T)$ denote the class of all functions of a complex variable which are analytic in some open set containing $\sigma(T)$. We consider the Dirichlet series of the following type:
\[
D[f; \mu; \gamma](T) = \sum_{n=0}^{\infty} e^{-\mu_n \gamma} f_n(T),
\]
where $\gamma \in \mathbb{C}$, $f = \{f_n\}$ ($f_n \in \Phi(T)$) and $\mu = \{\mu_n\}$, $0 \leq \mu_0 < \mu_1 < \ldots < \mu_n \to \infty$.

2. Main results. We first discuss the uniform convergence of the series $D[f; \mu; \gamma](T)$ and the abscissa of convergence. The first result is the following theorem which will play a fundamental role in dealing with Dirichlet averages for operators in $B[X]$.

Theorem 1. Let $T \in B[X]$ and $f_n \in \Phi(T)$, $n \geq 0$, and define
\[
a_{\mu}(f; T) = \left\{ \begin{array}{ll}
\limsup_{n \to \infty} \frac{\log \| \sum_{k=0}^{n} f_k(T) \|}{\mu_n} & \text{if } \limsup_{n \to \infty} \frac{\sum_{k=0}^{n} f_k(T)}{\mu_n} > 0, \\
-\infty & \text{if } \limsup_{n \to \infty} \frac{\sum_{k=0}^{n} f_k(T)}{\mu_n} = 0,
\end{array} \right.
\]
where $f = \{f_n\}$ and $\mu = \{\mu_n\}$. Then the following statements hold:

1. If $s > 0$ and $D[f; \mu; \gamma](T)$ converges in the uniform operator topology, then $s \geq a_{\mu}(f; T)$.

2. When $a_{\mu}(f; T) < \infty$, the Dirichlet series $D[f; \mu; \gamma](T)$ converges in the uniform operator topology for any $\gamma \in \mathbb{C}$ with $\text{Re}(\gamma) > \max(0, a_{\mu}(f; T))$.

Proof. In order to prove (1), we assume $s > 0$ and that $D[f; \mu; \gamma](T)$ converges in the uniform operator topology. Then there exists a constant $M > 0$, independent of n, such that
\[
\left\| \sum_{k=0}^{n} e^{-\mu_k \gamma} f_k(T) \right\| \leq M, \quad n \geq 0.
\]
For each $n \geq 0$, set
\[
D_n[f; \mu; \gamma](T) = \sum_{k=0}^{n} e^{-\mu_k \gamma} f_k(T).
\]
Making use of the partial summation formula of Abel (cf. [1], Theorem 8.27; [9], p. 2) we obtain
\[
D_n[f; \mu; 0](T) = \sum_{k=0}^{n} f_k(T) = \sum_{k=0}^{n} \left(e^{-\mu_k \gamma} f_k(T) e^{\mu_k \gamma} \right) = \sum_{k=0}^{n} \left(e^{\mu_k \gamma} - e^{\mu_{k+1} \gamma} \right) D_k[f; \mu; \gamma](T) + e^{\mu_n \gamma} D_n[f; \mu; \gamma](T),
\]
and hence
\[
\left\| D_n[f; \mu; 0](T) \right\| \leq M \sum_{k=0}^{n-1} \left(e^{\mu_{k+1} \gamma} - e^{\mu_k \gamma} \right) + M e^{\mu_n \gamma} = M \left(2 e^{\mu_n \gamma} - e^{\mu_0 \gamma} \right) < 2 M e^{\mu_n \gamma}.
\]
Now for any given $\delta > 0$, choose an integer $N_1 = N_1(\mu, \delta)$ so large that
\[
2 M < e^{\mu_1 \gamma}, \quad n > N_1,
\]
which is possible since $\lim_{n \to \infty} \mu_n = \infty$ by assumption. Then we have
\[
\left\| \sum_{k=0}^{n} f_k(T) \right\| = \left\| D_n[f; \mu; 0](T) \right\| < e^{\mu_n(\gamma+\delta)},
\]
for all $n > N_1$, which yields
\[
\limsup_{n \to \infty} \frac{\log \| \sum_{k=0}^{n} f_k(T) \|}{\mu_n} \leq s + \delta
\]
and we conclude that $s \geq a_{\mu}(f; T)$ as asserted.

Next we turn to the proof of (2). Since (2) holds trivially for the case $a_{\mu}(f; T) = -\infty$, we assume $a_{\mu}(f; T) > -\infty$. Fix $\delta > 0$ arbitrarily small such that $a_{\mu}(f; T) + \delta/2 > 0$. By assumption there is an integer $N_2 = N_2(\mu, a_{\mu})(a_{\mu} = a_{\mu}(f; T))$ so large that
\[
\frac{\log \| D_n[f; \mu; 0](T) \|}{\mu_n} < a_{\mu}(f; T) + \frac{\delta}{2}, \quad n > N_2,
\]
so that
\[
\left\| D_n[f; \mu; 0](T) \right\| < e^{\mu_n(\alpha_{\mu}(f; T)+\delta/2)}, \quad n > N_2.
\]
Thus writing \(a_\mu = a_\mu(f; T)\) for short and using the partial summation formula of Abel again, we have for \(n > m + 1 > N_2 + 1\),

\[
\sum_{k=m+1}^{n} e^{-\mu_k(z-x_0)} f_k(T) = \sum_{k=m+1}^{n-1} \left\{ e^{-\mu_k(a_\mu+\delta)} - e^{-\mu_{k+1}(a_\mu+\delta)} \right\} D_k[f; \mu; z_0](T) + e^{-\mu_m(a_\mu+\delta)} D_m[f; \mu; z_0](T) - e^{-\mu_{m+1}(a_\mu+\delta)} D_m[f; \mu; z_0](T),
\]

so for such \(n\) and \(m\),

\[
\left\| \sum_{k=m+1}^{n} e^{-\mu_k(z-x_0)} f_k(T) \right\| \leq \sum_{k=m+1}^{n-1} e^{-\mu_k(a_\mu+\delta)} \left\{ e^{-\mu_k(a_\mu+\delta)} - e^{-\mu_{k+1}(a_\mu+\delta)} \right\} + e^{-\mu_m(a_\mu+\delta)} - e^{-\mu_{m+1}(a_\mu+\delta)} + e^{-\mu_m(a_\mu+\delta)} - e^{-\mu_{m+1}(a_\mu+\delta)}
\]

\[
= (a_\mu + \delta) \sum_{k=m}^{n-1} \sum_{\mu_k+1}^{\mu_{k+1}} e^{-\mu_k(u(a_\mu+\delta)/\mu_k)} du + e^{-((\delta/2)\mu_k)} + e^{-((\delta/2)\mu_{k+1})}
\]

\[
\leq (a_\mu + \delta) \sum_{k=m}^{n-1} \sum_{\mu_k+1}^{\mu_{k+1}} e^{-u(a_\mu+\delta)/\mu_k} du + e^{-((\delta/2)\mu_k)} + e^{-((\delta/2)\mu_{k+1})}
\]

\[
= \frac{2(a_\mu + \delta)}{\delta} \left(-e^{-((\delta/2)\mu_k)} - e^{-((\delta/2)\mu_{k+1})} \right) + e^{-((\delta/2)\mu_k)} + e^{-((\delta/2)\mu_{k+1})}.
\]

This gives

\[
\lim_{n,m \to \infty} \left\| \sum_{k=m+1}^{n} e^{-\mu_k(z-x_0)} f_k(T) \right\| = 0,
\]

implying that \(D[f; \mu; z](T)\) converges in the uniform operator topology.

Now let \(z_0 = (a_\mu + \delta) + 0\) and \(z = s + it\) \((s, t \in \mathbb{R}, s > a_\mu + \delta)\). Since \(D[f; \mu; z_0](T)\) converges in \(B[X]\), there exists a constant \(K > 0\) such that

\[
\sup_{n \leq m \leq n} \left\| \sum_{k=m}^{n} e^{-\mu_k x_0} f_k(T) \right\| \leq K.
\]

As before, for \(n+1 > m \geq 0\) we obtain

\[
\sum_{k=m+1}^{n} e^{-\mu_k x_0} f_k(T) = \sum_{k=m+1}^{n} \left\{ e^{-\mu_k x_0} f_k(T) \right\} e^{-\mu_k(z-x_0)}
\]

\[
= \sum_{k=m+1}^{n} \left\{ e^{-\mu_k(z-x_0)} - e^{-\mu_{k+1}(z-x_0)} \right\} D_k[f; \mu; z_0](T) + e^{-\mu_m(z-x_0)} D_m[f; \mu; z_0](T) - e^{-\mu_{m+1}(z-x_0)} D_m[f; \mu; z_0](T).
\]

Therefore, for such \(n\) and \(m\),

\[
\left\| \sum_{k=m+1}^{n} e^{-\mu_k x_0} f_k(T) \right\| \leq K \sum_{k=m+1}^{n-1} \left| e^{-\mu_k(z-x_0)} - e^{-\mu_{k+1}(z-x_0)} \right| + K \left\{ e^{-\mu_m \text{Re}(z-x_0)} + e^{-\mu_{m+1} \text{Re}(z-x_0)} \right\}
\]

\[
\leq K \sum_{k=m+1}^{n-1} \left| z - z_0 \right| \left\{ e^{-\mu_k \text{Re}(z-x_0)} + e^{-\mu_{k+1} \text{Re}(z-x_0)} \right\}
\]

\[
\leq K \left\{ \frac{\left| z - z_0 \right|}{\text{Re}(z-x_0)} \left\{ e^{-\mu_m \text{Re}(z-x_0)} + e^{-\mu_{m+1} \text{Re}(z-x_0)} \right\} + K \left\{ e^{-\mu_m \text{Re}(z-x_0)} + e^{-\mu_{m+1} \text{Re}(z-x_0)} \right\}
\]

which approaches zero as \(n, m \to \infty\). Consequently, \(D[f; \mu; z](T)\) converges in the uniform operator topology. The proof of Theorem 1 is complete.

When \(0 < a_\mu(f; T) < \infty\), we say that the number \(a_\mu(f; T)\) is the \textit{abscissa of uniform convergence} of the Dirichlet series \(D[f; \mu; z](T)\).

Example 2. If \(T \in B[X]\) satisfies \(\sup_{n \geq 1} \| T^n \|/\| n^{\omega} = C < \infty\) for some real \(\omega > 0\), then \(\gamma(T) \leq 1\), and this yields the uniform convergence of the series for the resolvent \(R(\lambda; T)\) for \(|\lambda| > 1\). This fact can also be restated in terms of \(a_\mu(f; T)\). Indeed, if \(f = \{f_n\}, f_n(T) = T^n\), and \(\mu = \{\mu_n\}, \mu_n = n + 1\), then

\[
a_\mu(f; T) \leq \lim_{n \to \infty} \sum_{k=0}^{n} T^k \leq \lim_{n \to \infty} \sum_{k=0}^{n} \left| T^k \right| + Cn^{\omega} = 0,
\]

where \(N\) is a positive integer sufficiently large such that \(|T^n| \leq Cn^{\omega}\) for all \(n > N\). Hence Theorem 1 is applicable to yield the uniform convergence of \(\sum_{n=0}^{\infty} e^{-(n+1)^2} T^n\).

Example 3. If \(T \in B[X]\) satisfies \(\sup_{n \geq 1} \| T^n \|/(n + 1)^\omega = D < \infty\) for some real \(\omega > 0\), then for \(z = s + it\) with \(s > 1 + \omega\) we have, with
\[\varepsilon = s - (1 + \omega) > 0, \]
\[\frac{\|T^n\|}{(n+1)^{s}} = \frac{\|T^n\|}{(n+1)^{\omega}} \cdot \frac{1}{(n+1)^{\varepsilon}} \leq \frac{D}{(n+1)^{1+\varepsilon}}, \]

which yields the uniform convergence of \(\sum_{n=0}^{\infty} T^n/(n+1)^{2} \). This fact can also be restated in terms of \(a_{\mu}(f; T) \). Indeed, if \(f = \{f_n\} \), \(f_n(T) = T^n \), and \(\mu = \{\mu_n\} \), then
\[a_{\mu}(f; T) \leq \limsup_{n \to \infty} \frac{\log \| \sum_{k=0}^{n} T^k \|}{\log(n+1)} \]
\[\leq \limsup_{n \to \infty} \frac{\log(n+1) + \log(\sup_{0 \leq k \leq N} \| T^k \| + D(n+1)^{\omega})}{\log(n+1)} \]
\[= 1 + \omega, \]

where \(N \) is a positive integer so large that \(\|T^n\| \leq D(n+1)^{\omega} \) for all \(n > N \). Hence Theorem 1 is applicable to yield the uniform convergence of \(\sum_{n=0}^{\infty} e^{-\log(n+1)} T^n \).

As mentioned in the introduction, we now introduce a summation method of Dirichlet's type with a view to relating the properties of \(D[f; \mu; x](T) \) for an operator \(T \in B[X] \) and the uniform ergodic theorem for \(T \).

Let \(\mu = \{\mu_n\} \) \(n \geq 0 \) be a sequence of real numbers satisfying the following conditions:

(i) \(\mu_0 \geq 0 \) and \(\inf_{n \geq 0} \{\mu_{n+1} - \mu_n\} = \delta \) for some \(\delta > 0 \),

(ii) \(\sup_{s > 0} \frac{1}{g(s)} \sum_{n=0}^{\infty} n \{e^{-\mu_{n+s}} - e^{-\mu_{n+s+\delta}}\} < \infty, \)

where \(g(s) = \sum_{n=0}^{\infty} e^{-\mu_{n+s}} \) converges for \(s > 0 \). The basic assumption is (i) and it also implies the strict monotonicity of \(\{\mu_n\} \) and \(\mu_n \geq n\delta + \mu_0 \).

Moreover, it follows that \(\lim_{s \to +0} g(s) = \infty \), because
\[\lim_{s \to +0} g(s) \geq \lim_{s \to +0} \sum_{n=0}^{N-1} e^{-\mu_{n+s}} = N \]

for every integer \(N > 0 \). Condition (ii) is needed whenever we deal with operators which satisfy \(\|T^n\|/n^\omega \to 0 \) for some \(0 < \omega \leq 1 \). Such a sequence \(\mu = \{\mu_n\} \) determines a strongly regular method of summability (Dirichlet summability) which will be called a \((D, \mu) \)-method in what follows. Then we can define the so-called \textit{Dirichlet averages} \(D^{(\mu)}(T) \) for \(T \) by the formula
\[D^{(\mu)}(T) = \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_{n+s}} T^n, \quad s > 0, \]

where \(a_{\mu}(f; T) \leq 0 \) with \(f = \{f_n\} \), \(f_n(T) = T^n \), \(n \geq 0 \).

For example, let \(1 \leq \alpha < \infty \) and define \(\mu^{(\alpha)}_n = (a + b)^\alpha \) for some \(a > 0 \) and \(b \geq 0 \). Clearly
\[\mu^{(\alpha)}_n = b^\alpha \geq 0, \]
\[\inf_{n \geq 0} \{\mu^{(\alpha)}_{n+1} - \mu^{(\alpha)}_n\} = (a + b)^\alpha - b^\alpha = \delta > 0 \]

and
\[\sup_{s > 0} \frac{1}{g(s)} \sum_{n=0}^{\infty} n \{e^{-(a+b)^\alpha + s} - e^{-(a(n+1)+b)^\alpha + s}\} < \infty. \]

In particular, when \(\mu_n = n+1 \), we get the Abel averages \((1-r) \sum_{n=0}^{\infty} r^n T^n \), \(0 < r < 1 \) (or, equivalently, \((\lambda - 1)R(\lambda; T) \), \(\lambda > 1 \)).

The study of Dirichlet methods is particularly natural, appropriate and interesting because they contain the Abel method as a special case. We are in particular interested in the connection between uniform convergence of Dirichlet averages and Cesáro averages of order \(\alpha \).

Theorem 4. Let \(T \in B[X] \) satisfy \(\| T^n \|/n \to 0 \) as \(n \to \infty \). Then the following are equivalent:

(i) \(n^{-1} \sum_{k=0}^{n-1} r^{k} \) converges, as \(n \to \infty \), in the uniform operator topology.

(ii) \((1-r) \sum_{n=0}^{\infty} r^n T^n \) converges, as \(r \to 1^- \), in the uniform operator topology.

(iii) For every \((D, \mu) \)-method, \(D^{(\mu)}(T) \) converges, as \(s \to 0^+ \), in the uniform operator topology.

(iv) For some \((D, \mu) \)-method, \(D^{(\mu)}(T) \) converges, as \(s \to 0^+ \), in the uniform operator topology.

Proof. The proof starts with (iv). Assume that for some \((D, \mu) \)-method \(\mu = \{\mu_n\} \), \(D^{(\mu)}(T) \) converges, as \(s \to 0^+ \), to some \(E \in B[X] \) in the uniform operator topology. Given small \(\varepsilon > 0 \), choose a number \(N = N(\varepsilon) \geq 1 \) such that \(\|T^n\| < \varepsilon n! \) for all \(n > N \). Then we have
\[\frac{1}{g(s)} \left| (I - T) \sum_{n=0}^{\infty} e^{-\mu_{n+s}} T^n \right| \leq \frac{1}{g(s)} \left[e^{-\mu_{0+s}} + \sum_{n=1}^{\infty} \{e^{-\mu_{n-1+s}} - e^{-\mu_{n+s}}\} \|T^n\| \right] \]
\[\leq \frac{1}{g(s)} \left[e^{-\mu_{0+s}} + \sum_{n=1}^{\infty} \{e^{-\mu_{n-1+s}} - e^{-\mu_{n+s}}\} \|T^n\| \right] \]
\[+ \varepsilon \left(\sum_{n=N+1}^{\infty} \{e^{-\mu_{n-1+s}} - e^{-\mu_{n+s}}\} \right), \]

(1) The statement of Theorem 4 is due to the referee's suggestion. This theorem remains valid even if \(X \) is a real Banach space.
which tends to zero by first letting $s \to 0+$ and then $\varepsilon \to 0$. (We use the fact that $\sup_{s > 0} \|(1/g(s)) \sum_{n=0}^{\infty} e^{-\mu_n s T^n}\| < \infty$.) That implies that $E = T E = E T$ and

$$E = \lim_{s \to 0+} \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s T^n} E = E^2.$$

Hence E is a projection operator and $EX = N(I - T)$. Now it follows that

$$\frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s} (I - T^n) = \frac{1}{g(s)} (I - T) \sum_{k=0}^{\infty} \left(\sum_{n=k+1}^{\infty} e^{-\mu_n s} \right) T^k.$$

Let $x \in X$ and $\overline{x} = x - E x$. Clearly $E x$ is an element of $N(I - T)$. On the other hand,

$$\overline{x} = (s) \lim_{s \to 0+} \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s} (I - T^n) x = (s) \lim_{s \to 0+} \frac{1}{g(s)} (I - T) \sum_{k=0}^{\infty} \left(\sum_{n=k+1}^{\infty} e^{-\mu_n s} \right) T^k x \in R(I - T).$$

We claim that $N(I - T) \cap R(I - T) = \{0\}$. Let $e > 0$ be given as before. If x is of the form $x = (I - T) y + y_0$, $y, y_0 \in X$, $\|y_0\| < e$, then

$$\left\| \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s T^n} x \right\| = \left\| \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s T^n} (I - T) y + \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s T^n} y_0 \right\| \\
\leq \frac{1}{g(s)} \left\{ e^{-\mu_0 s} \|y\| + \sum_{n=1}^{\infty} (e^{-\mu_{n-1}s} - e^{-\mu_n s}) \|T^n y\| + e \sum_{n=0}^{\infty} e^{-\mu_n s} \|T^n\| \right\} \\
\leq \frac{\|y\|}{g(s)} \left\{ e^{-\mu_0 s} + \sum_{n=1}^{N} (e^{-\mu_{n-1}s} - e^{-\mu_n s}) \|T^n\| + e \sum_{n=N+1}^{\infty} (e^{-\mu_{n-1}s} - e^{-\mu_n s}) n \right\} \\
+ e \left\{ \sum_{n=0}^{N} e^{-\mu_n s} \|T^n\| + \sum_{n=N+1}^{\infty} e^{-\mu_n s} n \right\},$$

so that $\|(1/g(s)) \sum_{n=0}^{\infty} e^{-\mu_n s T^n} x\| \to 0$ as $s \to 0+$. This means that

$$\left(\lim_{s \to 0+} \left(\frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s T^n} \right) \right) R(I - T) = \theta,$$

where θ denotes the zero operator in $B[X]$. Consequently, if $x \in N(I - T) \cap R(I - T)$, we get $x = E x = 0$ as asserted. Evidently $R(I - T)$ is invariant under T and we let $S = T R(I - T)$. Then on $R(I - T)$,

$$\left(\lim_{s \to 0+} \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s} S^n \right) \theta = \theta.$$

Thus for a fixed s sufficiently small, $I - (1/g(s)) \sum_{n=0}^{\infty} e^{-\mu_n s} S^n$ is invertible on $R(I - T)$. Hence, so is the operator $I - S$ and $R(I - T)$ must be closed because we have

$$I - \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s} S^n = \frac{1}{g(s)} (I - S) \sum_{k=0}^{\infty} \left(\sum_{n=k+1}^{\infty} e^{-\mu_n s} \right) S^k.$$

We have thus proved that

$$X = N(I - T) \oplus R(I - T), \quad R(I - T) \text{ is closed}.$$

Hence we may apply Dunford’s uniform ergodic theorem ([2], Theorem 3.16) to conclude that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} T^k = E,$$

and (i) follows.

(i) implies (ii) by Hille’s theorem ([4], Theorem 6).

(ii) implies the ergodic decomposition (special case of (iv)). One gets

It turns out that $I - T$ is a bijection of $R(I - T)$ onto itself and $R(I - T)$ is invariant under T. Let $S = T R(I - T)$. Then $I - S$ is invertible on $R(I - T)$.

Since by assumption, $\mu_n \geq \mu_0$ and $\|T^n\|/n \to 0$ as $n \to \infty$, it follows that $a_n(f; T) \leq 0$, where $f = \{f_n\}$, $f_n(T) = T^n$. Taking into account that $\sum_{n=0}^{\infty} e^{-\mu_n s T^n}$ converges in $B[X]$ for $s > 0 \geq a_n(f; T)$ in virtue of Theorem 1, all that is to show is

$$\lim_{s \to 0+} \left\| \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s} S^n \right\| = 0.$$

Now for sufficiently small $e > 0$, there exists by assumption a positive integer $N = N(e)$ such that $\|S^n\|/n < e$ for all $n > N$. Then

$$\left\| \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s} S^n \right\| \leq \frac{1}{g(s)} \sup_{n=0}^{\infty} \left\| (I - S)^{-1} \sum_{n=0}^{\infty} e^{-\mu_n s} (I - S) S^n \right\| \\
\leq \frac{1}{g(s)} \sup_{n=0}^{\infty} \left\| (I - S)^{-1} \left(e^{-\mu_0 s} + \sum_{n=1}^{\infty} e^{-\mu_n s - e^{-\mu_n s}} \right) \right\|.$$
\[
\leq \frac{1}{g(s)} \| (I - S)^{-1} \left(e^{-\mu a} + \sum_{n=1}^{N} (e^{-\mu_{n+1} a} - e^{-\mu_{n} a}) S^n \right) + \varepsilon \sum_{n=N+1}^{\infty} (e^{-\mu_{n+1} a} - e^{-\mu_{n} a}) n, \]
\]
whence the required convergence to 0 by first letting \(s \to 0^+ \) and then \(s \to 0 \)
since \(\lim_{s \to 0^+} g(s) = \infty \) and \(\sum_{n=1}^{\infty} (e^{-\mu_{n+1} a} - e^{-\mu_{n} a}) n \) converges uniformly for \(s > 0 \). We have thus proved that (ii) implies (iii). This completes the proof of the theorem.

Next let \(0 < \alpha < \infty \) and let \(A_{n}^{(a)} \), \(n \geq 0 \), denote the \((C,\alpha)\) coefficients of order \(\alpha \), which means that
\[
(1 - r)^{-(\alpha + 1)} = \sum_{n=0}^{\infty} A_{n}^{(a)} r^n, \quad 0 < r < 1.
\]
Then the \((C,\alpha) \) averages \(C_{n}^{(a)}[T], n \geq 0 \), of the sequence of powers \(T^n \) are defined by
\[
C_{n}^{(a)}[T] = \frac{1}{A_{n}^{(a)}} \sum_{k=0}^{n} A_{n-k}^{(a - 1)} T^k, \quad n \geq 0.
\]

As early as 1945 E. Hille obtained, as applications of Abelian and Tauberian theorems to ergodic theorems, the uniform (strong) ergodic theorems for \(T \in B[X] \) with a view to relating the uniform (strong) \((C,\alpha)\) ergodic theorems and the properties of \(R(\lambda; T) \) (see [4], Theorems 6 and 7). In particular, the fact that the uniform (strong) convergence of \(\{ T^n \} \) as \(\lambda \to 1^+ \) implies the uniform (strong) \((C,\alpha)\) convergence of \(\{ T^n \} \) has been established on supposing the power-boundedness of \(T \). Hille’s uniform ergodic theorem has recently been improved by the author [11], where the power-boundedness of \(T \) is replaced by the condition \(\lim_{n \to \infty} \| T^n \|/n^{\omega} = 0 \) with \(\omega = \min(1, \alpha) \). Using this fact, we have the following theorem which is a further extension of Theorem 4.

Theorem 5. Let \(0 < \alpha < \infty \) and let \(T \in B[X] \) satisfy \(\| T^n \|/n^{\omega} \to 0 \) as \(n \to \infty \), where \(\omega = \min(1, \alpha) \). Then the following are equivalent:

(i) \(C_{n}^{(a)}[T] \) converges, as \(n \to \infty \), in the uniform operator topology.
(ii) \((1 - r) \sum_{n=0}^{\infty} r^n T^n \) converges, as \(r \to 1^- \), in the uniform operator topology.
(iii) For every \((D,\mu)\)-method, \(D_{\mu}^{(a)}[T] \) converges, as \(s \to 0^+ \), in the uniform operator topology.
(iv) For some \((D,\mu)\)-method, \(D_{\mu}^{(a)}[T] \) converges, as \(s \to 0^+ \), in the uniform operator topology.

Proof. The equivalence of (i) and (ii) follows from the author’s extension of Hille’s uniform ergodic theorem ([4], Theorem 1). On the other hand, since \(\| T^n \|/n \to 0 \) as \(n \to \infty \), it follows from Theorem 4 that (ii)–(iv) are equivalent. Hence the theorem follows.

Theorem 6. Let \(0 < \alpha < \infty \) and let \(T \in B[X] \) satisfy \(\| T^n \|/n^{\omega} \to 0 \) (as \(n \to \infty \)) for all \(x \in X \), where \(\omega = \min(1, \alpha) \). Suppose \(\sup_{n \geq 0} \| C_{n}^{(a)}[T]x \| < \infty \) for all \(x \in (I - T)X \). Then the following are equivalent:

(i) For all \(x \in X \), \(C_{n}^{(a)}[T]x \) converges strongly as \(n \to \infty \).
(ii) For all \(x \in X \), \((1 - r) \sum_{n=0}^{\infty} r^n T^n x \) converges strongly as \(r \to 1^- \).
(iii) For every \((D,\mu)\)-method and all \(x \in X \), \(D_{\mu}^{(a)}[T]x \) converges strongly as \(s \to 0^+ \).
(iv) For some \((D,\mu)\)-method and all \(x \in X \), \(D_{\mu}^{(a)}[T]x \) converges strongly as \(s \to 0^+ \).

Proof. The equivalence of (i) and (ii) follows from the author’s extension of Hille’s strong ergodic theorem ([4], Theorem 2). Next, instead of \(\{ T^n \} \), we consider the sequence \(\{ T^n x \} \) for every \(x \in X \). Then the proof of the equivalence of (ii)–(iv) follows exactly the same lines as the proof of Theorem 4. The theorem follows.

Following Laursen and Mbekhta [5], we say that \(T \in B[X] \) is a quasi-Fredholm operator if there exist two closed \(T \)-invariant subspaces \(M \) and \(N \) of \(X \) such that

(i) \(X = N \oplus M \);
(ii) \(T[N] \) is nilpotent;
(iii) \((T[M])^\ast(M) \) is closed;
(iv) \((T[M])^\ast(M) \) contains all subspaces \(N((T[M])^\ast) \), \(n \geq 1 \).

Using the uniform ergodic theorems in Dunford [2], Lin [6], Mbekhta and Zemánek [8] and Laursen and Mbekhta [5] together with our Theorem 4 we have the following theorem which shows that the uniform ergodic theorem of Dirichlet’s type has a close connection with the usual uniform ergodic theorems and the spectral theory of bounded linear operators on \(X \).
form $z = (I - D_1^{(\mu)}[T])u$, $u \in X$,

$$D_1^{(\mu)}[T]z = D_1^{(\mu)}[T]u - D_1^{(\mu)}[T]D_1^{(\mu)}[T]u$$

$$= \left\{ 1 - \frac{1}{g(t)} \frac{e^{-at}}{e^{at} - e^{at}} \right\} D_1^{(\mu)}[T]u - \frac{1}{g(t)} \frac{e^{ab} - e^{at}}{e^{at} - e^{at}} D_1^{(\mu)}[T]u,$$

which approaches zero in norm as $t \to 0+$ since $\sup_{t < t_1} \|D_1^{(\mu)}[T]\| \leq M$.

Moreover, the same result is obviously true for all $z \in R(I - D_1^{(\mu)}[T])$. Hence $D_1^{(\mu)}[T](x - y) \to 0$ in norm whenever $x - y \in R(I - D_1^{(\mu)}[T])$. Now suppose on the contrary that $x - y$ does not belong to $R(I - D_1^{(\mu)}[T])$. Then there exists an $x_0^* \in X^*$ such that $x_0^*(x - y) = 1$ and $x_0^*(z) = 0$ for all $z \in R(I - D_1^{(\mu)}[T])$. Since $u - D_1^{(\mu)}[T]u \in R(I - D_1^{(\mu)}[T])$ for any $u \in X$, we have $x_0^*(u - D_1^{(\mu)}[T]u) = 0$, i.e., $x_0^*(D_1^{(\mu)}[T]u) = x_0^*(u)$. It follows that

$$x_0^*(D_1^{(\mu)}[T]x) = x_0^*(D_1^{(\mu)}[T]x)$$

$$= \frac{e^{ab} - e^{at}}{e^{at} - e^{at}} \frac{1}{g(t)} x_0^*(D_1^{(\mu)}[T]x) - \frac{e^{ab} - e^{at}}{e^{at} - e^{at}} \frac{1}{g(t)} x_0^*(x),$$

so that since $g(t) = e^{(a+b)t}/(e^{at} - 1)$, we have $x_0^*(D_1^{(\mu)}[T]x) = x_0^*(x)$ for all k. In the limit as $k \to \infty$ we obtain $x_0^*(y) = x_0^*(x)$ and this contradicts the assumption that $x_0^*(x - y) = 1$. Hence $x - y \in R(I - D_1^{(\mu)}[T])$ and (s) $\lim_{t \to +} D_1^{(\mu)}[T](x - y) = 0$. This finishes the proof of the theorem.

Theorem 9. Let $T \in B[X]$ satisfy $\|T\|/n^\omega \to 0$ (as $n \to \infty$) for some $0 < \omega \leq 1$ and let $\mu = \{\mu_n\}$ be a (μ, ν)-method. Suppose that for each $x \in X$, $\{D_1^{(\mu)}[T]x : s > 0\}$ is weakly relatively compact. Then for each $x \in X$, $D_1^{(\mu)}[T]x$ converges strongly to Ex, where E is the projection of X onto the null space $N(I - T)$ of $I - T$.

Proof. Let $x \in X$ be arbitrarily fixed. There exists a sequence $\{s_k\}$ with $s_k > 0$, $s_k \to k \to \infty$, and an element $y \in X$ such that $\lim_{k \to +} D_1^{(\mu)}[T]y = y$. Using the argument applied in the proof of Theorem 4, we see that $y \in N(I - T)$, $x - y \in (I - T)x$, and

$$x = N(I - T) \oplus (I - T)x.$$

All that remains is to show that (s) $\lim_{\epsilon \to 0} D_1^{(\mu)}[T] = \theta$ on $(I - T)x$. Assume $z \in (I - T)x$, then for given $\epsilon > 0$ we can find $u \in X$ such that
\[\|z - (I - T)u\| < \varepsilon. \] Thus, writing \(w = z - (I - T)u \), we get
\[
D_s^{(u)}[T]z = \frac{1}{g(s)} \sum_{n=0}^{\infty} e^{-\mu_n s} T^n (u - Tu + w) \\
= \frac{1}{g(s)} \left\{ e^{-\mu_n s} u + \sum_{n=0}^{\infty} (e^{-\mu_{n+1} s} - e^{-\mu_n s}) T^{n+1} u \right\} + D_s^{(u)}[T]w.
\]
Since \(\{D_s^{(u)}[T]x\} \) is assumed to be weakly relatively compact for each \(x \in X \), it turns out that the operators \(\{D_s^{(u)}[T]\} \) are uniformly bounded. Take an integer \(N \) so large that \(\|T^n\| < \varepsilon n^N \) for all \(n > N \). The uniform boundedness of \(\{D_s^{(u)}[T]\} \) and the strong regularity of the \((D, \mu)\)-method give
\[
\|D_s^{(u)}[T]z\| \leq \frac{1}{g(s)} \left\{ e^{-\mu_n s} \|u\| + \sum_{n=0}^{N} (e^{-\mu_{n+1} s} - e^{-\mu_n s}) \|T^{n+1} u\| \right\} + \varepsilon M,
\]
where \(M \) is a positive constant independent of \(s \) and \(\varepsilon \). Hence we have \((s) \lim_{s \to 0^+} D_s^{(u)}[T]z = 0 \) by first letting \(s \to 0^+ \) and then \(\varepsilon \to 0 \). The proof is complete.

Example 10. Let \(C_0[0,1] \) be the space of functions \(f = f(t) \) continuous for \(0 \leq t \leq 1 \) which vanish at 0, with \(\|f\| = \max \|f(t)\| \). Let \(\beta > 0 \) be any real number. Following Hille [4], we define \(Q_{\beta}f = (I - J_\beta)f \) for \(f \in C_0[0,1] \), where
\[
(J_\beta f)(t) = \frac{1}{\Gamma(\beta)} \int_0^t (t - u)^{\beta-1} f(u) \, du, \quad 0 \leq t \leq 1.
\]
Then for each \(n \geq 1 \), the iterate \(Q_{\beta}^n f \) has the form
\[
(Q_{\beta}^n f)(t) = f(t) - \int_0^t P_n(t-u, \beta) f(u) \, du,
\]
where
\[
P_n(w, \beta) = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{w^{k-1} \beta}{\Gamma(k \beta)}.
\]
If \(0 < \beta \leq 1 \), then by Hille’s theorems ([4], Theorems 7 and 11), \(Q_{\beta} \) is strongly (but not uniformly) \((C, \alpha)\)-ergodic for \(\alpha > 1/2 \). Therefore the operators \(\{C_0(\alpha)\} \) are uniformly bounded and \(\|Q_{\beta}^n\|/n^\alpha \to 0 \) as \(n \to \infty \).

From this and Theorem 6 we see that for \(0 < \beta \leq 1 \), \(Q_{\beta} \) is strongly (but not uniformly) \((D, \mu)\)-ergodic.

Next we define \(T_\beta = \Gamma(\beta + 1)Q_1J_\beta \) for \(\beta \geq 3/2 \). Then \(\|T_\beta^n\| = O(n^{\beta/4}) \) and \(T_\beta \) is uniformly \((C, \alpha)\)-ergodic for \(\alpha > 1/4 \) (see [11]). From this and Theorem 5 it now follows that \(T_\beta \) is uniformly \((D, \mu)\)-ergodic for \(\beta \geq 3/2 \).

Acknowledgements. The author thanks the referee for many helpful comments which improved the presentation of this paper. This research was supported by the Inoue Enryo MRF at Toyo University.

References

Department of Mathematics
Toyo University
Kawagoe, Saitama 350-8585
Japan

Received July 8, 1999
Revised version March 31, 2000

(4358)