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Geometry of Banach spaces and biorthogonal systems
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8. J. DILWORTH (Columbia, SC), MARIA GIRARDI (Columbia, SC)
and W, B. JOHNSON (College Station, TX)

Abstract. A separable Banach space ¥ contains £; isomorphically if and only if ¥
has a bounded fundamental total wch-stable biorthogonal systern. The dual of a separable
Banach space X fails the Schur property if and only if ¥ has a bounded fundamental total
weg-biorthogonal system.

L. Introduction. Generally it is easier to deal with Banach spaces that
have some sort of basis structure, the most useful and commonly used struc-
tures being Schauder bases and finite-dimensional Schauder decompositions
(FDD). Much research in Banach space theory has gone into proving that
if a Banach space which has a Schander basis or FDD has a certain prop-
erty, then the space has a basis or FDD which reflects the property. While
such theorems often give information {for example, by passing to suitable
subspaces) about general spaces which do not have a basis or an FDD,
they cannot give a clagsification of all separable spaces which have a certain
property in terms of bases for the entire space unless the property itself
implies the existence of a basis or FDD in a space which has the property.
For that reason it is interesting to consider weaker structures than FDD’s
and Schauder bases which exist in every separable Banach space and try to
prove that a separable Banach space has a certain property if and only if
there is structure in the space which reflects the property.

One useful basis-like structure that has been considered for a long time
is that of fundamental total biorthogonal system. Markushevich [M] showed
in 1943 that each separable Banach space contains a fundamental total
biorthogonal system. The main theorems of this paper characterize certain
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geometric properties of a Banach space by which types of bounded funda-
mental total biorthogonal systems exist in the space. Theorem 1 shows that
the dual of a separable Banach space X fails the Schur property if and only
if ¥ contains a bounded fundamental total wej-biorthogonal system. Recall
that the dual of a Banach space ¥ fails the Schur property if and only if
X fails the Dunford-Pettis property or £ embeds in X. Theorem 2 shows
that #; embeds in a separable Banach space X if and only if X contains a
bounded fundamental total wch-stable biorthogonal systern.

Thirty-two years after Markushevich’s result [M, 1943], Ovsepian and
Petcayriski showed [OP] that for each positive g, each separable Banach space

contains a [(1 +v/2)? +¢]-bounded fundamental total biorthogonal system;
the following year Pelezyfiski [P] improved the bound to {1 +¢). The proofs
of Theorems 1-and 2 use a combination of the methods in [OP] and [P].
Theorem 15 shows that if ¥ is a separable Banach space containing £;, then
there is a [1 + /2 + g]-bounded fundamental biorthogonal system {Zn, 2k}
in X x X* with the z*’s arbitrarily close to an isomorphic copy of £y sitting
in X*. Section 5 shows that, in the statement of Theorem 15, the 1+ V24e
can not be replaced with 1.02 +&. To the best of our knowledge, this is
the first Tesult in the literature which provides the existence of a bounded
fundamental biorthogonal system in all spaces which have a certain property,
and yet the bound for the systems cannot be arbitrarily close to one.

2. Notation and terminology. Throughout this paper, X, ), and Z
denote arbitrary (infinite-dimensional real) Banach spaces. If X is a Banach
space, then £* is its dual space, B(X) is its (closed) unit ball, S(X} is its unit
sphere, § : £ — X** is the natural point-evaluation isometric embedding,
and & = §(z). If Y is a subset of X, then sp{Y'} is the linear span of ¥ while
[¥] is the closed linear span of ¥. Often used are the unit vector basis {dn}
of £,, the Kronecker delta 5., and the space C(K) of continuous functions
on a compact Hausdorff space K.

If a > 0, then T € £(X, ) is an ab-isomorphic embedding provided

™|z < |ITl| < bll=]

for each £ € X; in this case, Ty € £L{X,TX) denotes the bijective operator
that agrees with T on ¥. A surjective Tisomorphic embedding 7' € L(%,Y)
is a T-isomorphism; in this case, X and ) ave T-isomorphic.

Recall that for a subset X of X and a subset Z of X*,

1. X is fundamental if [X] = X, or equivalently, the annihilator X+ of
X in X* ig {0},

2. Z is total if the weak*-closure of sp{Z} is X*, or equivalently, the
preannihilator ZT of Z in X is {0},
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3. for a fixed 7 > 1, Z 7-norms X (or X is 7-normed by Z) if

ol <7 sup 2
z€Z\{0} [l ]
for each » € X,
4, Z norms X if Z 1-norms X.

If Z 7-norms X for a 7 > 1 then Z is total. Also, {z,, 25}, in X x Z
is

1. a biorthogonal system if % (zm) = Snm,

2. M-bounded if {x,} and {z}} are bounded and sup,, |lz.| - [z} < M,

3. bounded if it is M-bounded for some (finite) M,

4. fundamental if {z,} is fundamental,

5. total if {z,} is total.

A biorthogonal system {zn, x5 52, in £ x X* is

1. a wcj-biorthogonal system if {z}} is a semi-normalized (i.e., bounded
and bounded away from zero) weakly-null sequence,

2. a wc}-stable biorthogonal system if, for each isomorphic embedding T’
of X into some Y, there exists a lifting {y}} of {z%} (i.e., T*y;, = x;, for
each n) such that {¢%} is 2 semi-normalized weakly-null sequence in 3’ (or
equivalently, such that {Tz,,y*} in ¥ x ¥* is a wcl-biorthogonal system).

Bases of type wej were introduced in [FS] (cf. [S1, IL.7 and pp. 625-626]).

Recall that Z is injective if for each pair ¥ and )/, each isomorphie
embedding T € £(%,)), and each § € L(X, Z), there exists § € L(Y, Z)
such that the following diagram commutes:

1%
22
If Z is injective, then there exists A > 1 so that Z is A-injective, i.e. 5
can be chosen so that ||| < M|ST5 || Recall 2 is a Grothendieck space if
weak" and weak sequential convergence in £* coincide; an injective space is
a Grothendieck space {cf. [LT3, p. 188]). Z has the Schur property if weak
and strong sequential convergence in 2 coincide.
All potation and terminology not otherwise explained are as in [DU]

or [LT1].

3. The fine line between wc} and wci-stable. The unit vectors
{eP,ed} in £, x £y, where 1 £ p < oc and ¢ is the conjugate exponent of p,
form a l-bounded fundamental total wcp-biorthogenal system. For p = 1,
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they are even a wcj-stable biorthogonal system, as the proof of (a)=>(b) in
Theorem 2 shows. The next two theorems clarify the fine line between the
existence of nice wcl-biorthogonal and wcj-stable biorthogonal systems.

THEOREM 1. The following statements are equivalent:

(a) X* fails the Schur property.
(b) There is o bounded wci-biorthogonal system in X X X*.

And in the case when X is separable:

(¢} There is o bounded fundamental total wcj-biorthogonal system
{Zn, 7t} in X x X*.
Furthermore for each € > 0: if (b) holds then the sysiem can be taken

to be (1 + €)-bounded; if (c) holds then the system can be taken to be
[2(1 + +/2)2 + €]-bounded and so that [z},] norms X.

Recall {cf. [D2, p. 23]) that X* fails the Schur property if and only if X
fails the Dunford—Pettis property or £; — X.

THEOREM 2. The following statements ore equivaelent:

(a) &1 — %.
(b) There is o bounded wc-stable biorthogonal system in X x X*.
0

And in the case where X is separoble:

(¢) There is a bounded fundamental total wey-stable biorthogonal system
{zp, 2z} )} tn X x X*.

Furthermore for each € > 0: if {b) holds then the system can be taken
to be (1 + g)-bounded; if (c} holds then the system ean be taken to be [(1+
V2) + gl-bounded and so that [z7] (2 + &)-norms X.

In this section are the proofs of the eagier implications in the above
theorems. The other implications follow from the results of the next section.

Proof of (b)=>(a) in Theorem 1. A wc}-biorthogonal system in X x X*
is enough to force X* to fail the Schur property. m

Proof of (b)=-(a) in Theorem 2. Find an (isometric) embedding T of
X into a C(K)-space. Assume that there is a wec}-biorthogonal system
{Tzy,ys} in C(K) x C*(K) with {2} bounded, which would be the case
if (b) beld. If {x,} had a weakly Cauchy subsequence {2, }, then {T'z,,}
would be weakly Cauchy and {y;, } would be weakly null, which cannot be
since a C(K) space has the Dunford-Pettis property (cf. [D2, p. 20]). So,
by Rosenthal’s £; theorem, {z,} admits a subsequence that is equivalent to
the unit vector basis of 1. =

The above proof reveals somewhat more.
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REMARK 3. In the definition of we}-stable biorthogonal system, if the

word isomnorphic is replaced with isometric then the statement of Theorem 2
remains true.

REMARK 4. If {z,,z%} in X x X* is either:

1. a bounded wep-biorthogonal system and X has the Dunford—Pettis
Property, or

2. a bounded wcj-stable biorthogonal system,

then each subsequence of {z,} contains a further subsequence that is equiv-
alent to the unit vector basis of #;.

That (a) implies (b) in Theorem 1 (with the (1 +¢) bound) follows from
Facts 5-7.

Fact 5. Let {2,}3%, be a weakly null sequence in X and {g,} be a
bounded sequence in X* and £ > 0. Then there exists m & N satisfying

[{@m,gn)| <€ for infinitely many n € N.

This follows directly from the fact that, since {z,}52, is weakly null,
there exists a finite sequence { Ay, }_, of positive numbers satisfying

N

&
max” E +An H<-—-——~
£ = T supy; (gl

and Efml Am = 1 (cf [W, p. 48, Exercise 13]).

FACT 6. Let {zn,}22, be a normalized weakly null sequence in X and
€ > 0. Then there are a subseguence {Zn, }io; and functionals {z} }2,
biorthogonal to {#n, 172, s0 that supey [|z5, || < 1+e.

Proof. Fix a sequence {ex}5>, of positive numbers satisfying

= £
ZEk < ‘6
k=1

Without Joss of generality (pass to a subsequence), {zn}32, is a basic
sequence with biorthogonal functionals {f,.}52; satisfying || fa|| < 3. These
fn's will be used to perturb functionals as needed.

Again without loss of generality, there is a system {Zn, gn}ne; in X x X~
satisfying ||lgn|| < 1 +¢&/2 and (@m, gn) = dmn when n < m. To see how to
find such a system by induction, consider a subsequence {n(j,k)}3>, in N
given at the beginning of the jth step (for the base step, let n(l,k) = k).
Let zn, = @png;1) and find g, in S(%X*) satisfying gn,(@n;} = 1. Find a
subsequence {n(j + 1,k)}2.; of {n(j, k) }i, satisfying

{ngjr1,0) Tns )| < Ek
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for each k € N and let

o0
On; = Gn; — Z<$n(j+1,k):gnj>fn(j+l,k)-
k=1
Without loss of generality (pass to a subsequence),
{ZTmy gn)| < €m  whenm < mn.
To accomplish this, iterate Fact 5 to produce a sequence {{n(j, )}, 132,
of sequences and a sequence {k;}32, so that {n(j+1, k) }g%; is a subsequence
of {n(7, k)13, and [{&n(j ks Inig+1,8))| < 5. Then the subsequence n; =
n(g, k;) works.
Clearly, the functionals
Ty =g — Z
{meN:m<n}
are biorthogonal to {£,}3 , and are of norm at most 1 +. m

(mmagn)fm

Fact 7. Let {z},2;*}°2, be o biorthogonal system in X* x X** with
sup,, |zr*|l < 1+ for some € > 0 and {z}} normalized and weak-star
null. Then there is a subsequence {ng}f>, along with a biorthogonal system
{Zng, @5, Jo2y 0 X x X* with supy, [2n, || <1+e.

Proof. Without loss of generality (pass to a subsequence), there is a
biorthogonal system {y,, 25152, in £ x X* with
sup ||lyn] € M < o00.

For just let Xg be a separable subspace of X that 1-norms [z}]%%.; and take
a o (X5, Xp)-basic subsequence of {z}|x,} ([JR], cf. [D1, V, Exercise 7]).

For each n € Nlet B, := [¢}*] and F, := [2],...,2}]. Use the Principle
of Local Reflexivity to find a sequence {z,}2.; in X satisfying

(znyzh)y = {zh,2}") =8nr  when k <n
and
sup ||zl < 142 ~¢g
neN

for some ¢ > 0. Fix a sequence {e;}72, of positive numbers satisfying

= £
;zsj < “J\%

Without loss of generality (pass to a subsequence), |{z,#}}| < €; when
n < j. Clearly, the vectors

oo :
Ly 1= 2p — E (zmm;:)yj
J=n+1

are biorthogonal to {z}}22, and are of norm at most 1 +¢. m
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The next lemma provides a means by which to determine whether a
wcg-biorthogonal system is wel-stable.

LeMMA 8. Let {zn,z3} be a biorthogonal system such that {zX} is a
semi-normalized weak™-null sequence in X*. Then {z,,z}} is a weh-stable
biorthogonal system if and only if the operator S : X — ¢y given by S(z) =
(z3,(z)) factors through an injective space.

Proof. Let {z,,x}} be a biorthogonal system such that {z*} is a semi-
normalized weak*-null sequence in ¥~

First, assume that the above operator S factors through an injective
space and let 7' : X — ) be an isomorphic embedding. Consider the diagram

x
VN
¥ Z—Lseg

where Z is an injective space and S = LR. Since Z is injective, there exists
R: € L(V, Z) such that the following diagram (totally) commutes:

x
VN
yi,.z__l;,_cﬂ

Note that the operator § = LR is given by
(LR)(z) = (zn(x)) andso =z

™

= R*L*(4,);
similarly, the operator LR; has the form
(LRy)(y) = (va(y)) where y, = RIL"(n).

It is easy to check that {z,,}} is indeed a wcj-stable biorthogonal system:
the commutativity of the diagram gives Ty = z¥, the weak-nullness of
{y;} follows from the fact that 2 is a Grothendieck space ({L*8,} is weak*-
null and thus weakly-null), and |jyX| > | 7|7 |lz% |-

Next assume that {z,, 2} } is a wcj-stable biorthogonal system. Find an
embedding R from X into the injective space £oo(I") for some index set I'.
By the stability of the system, there exists a weakly-null sequence {y;} in
£.(I") such that R*y} = z}. Define L : £oo(I"} — ¢ by L{f) = (y5.(f)), for
then S =LR. w

The commutative diagrarm in the next proof was inspired by the Hagler—
Johnson proof [HJ] of the Josefson and Nissenzweig Theorem (cf. [D1, Chap-
ter XII). '
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Proof of (a)=+(b) in Theorem 2, along with the (1 + &) bound. Consider
the following commutative diagram:

L

/lR\
x LOO-L)—CO

where § is an isomorphic embedding, ¢ is the formal injection, and
Ro(6s) =7 snd L(f) = (g fra d,u)n

for the Rademacher functions {r,}. Since L., is l-injective, there exists an
operator Rg such that the following diagram commutes:

I
%-—RLLOO —l"-—e-CU

and ||Rx]| < [[Rojg -
The operator S := LR5 takes the form

S(z) = (wy(z)) where z) = R3L*(5,).

It is easy to check that {jd,.z}} is a wc}-stable biorthogonal system.
Biorthogonality follows from the commutativity of the diagram. Since {5,}
is weak”-nuil, so is {z}}. Next, Lo is an injective space through which §
factors. Furthermore, since Ry and L both have norm one and 1 = 2 (54,),

1317 < lizh]l = FR3L*6n ]| < || Rall - [ L] < 1 Rojg* I < Nl

and so {z},} is semi-normalized. If £; embeds in X, then it (1 + £)-embeds
in X, thus one can arrange that sup,, ||z, - (=4 < 7] - i i < 1+¢& w

It is not difficult to see that, if ¥ is any Banach space and & > 0, then
there is a (2 +¢)-bounded biorthogonal system {x,,, =%} in X x Z* with {z}}
weak™-null. The first step towards this is the lemma below.

LemMMA 9. If Xq is a finite-codimensional subspace of X and € > 0, then
there is a weak®-closed finite-codimensional subspace Y of X* such that V
is (2 4+ ¢)-normed by Xq.

To see how $o use Lemma 9 to produce the desired biorthogonal sys-
tem {&y, 2}, }osy, start with a normalized weak*-null sequence {yr}2., in
X* (guaranteed to exist by the Josefson—Nissenzweig Theorem) and fix a se-
quence {e,}72; of positive numbers tending to zero. Assume that
{z;, m}f}j<n have been found. Let

X, = [z} ;l'<n and Z, = [%'}jkn'
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By Lemma 9, there is a weak*-closed finite-codimensional subspace V), of
X* that is (2 + €/2)-normed by %,.. Since Y, N 2, is Anite-codimensional
and weak®~closed and {y;}72 is weak*-null, there exists 27 € S(Vn N Z5)
with ||z, — yi || < &, for some large k. Next, find ,, S{X,) with 1 <
(24 €)zn(Tn) and let 2y, == T, /2% (7, ).

Proof of Lemma 9. Let ) be the annihilator of any finite-dimensional
subspace of X that (1 4 ¢)-norms the annihilator of X. Indeed, if f € § (&%)
then

sup |f{zp) = inf —y*
moesm)l( )| y*ex;”f vl

2 Inf max|[f]|—[lg"], sup_[(f -y} ()]
Yy EXE ze§(YT)

. * 1 *
> inf max [l— lu* 1, lly ||:]

YEXS l4¢

. t -1

SO R

Lemma 9 is nearly best possible since, for each £ > 0, the one-codimen-
sional subspace Xp of mean zero functions in L; does not (2 — £)-norm
any finite-codimensional subspace of L.,. Indeed, any finite-codimensional
stubspace of Lo, containg a norm one functional y* that is bounded below
by —e (just perturb a disjointly supported sequence of nonnegative norm
one functions in Lo, that are close to V) and so y*(z) < £(1 + &) for
each x € §{¥y). However, any one-codimensional subspace %y of a Banach
space X does 2-norm a one-codimensional subspace Y, namely ) := ker P
where P : X* — Xg is a norm one projection. Indeed, if f € S()) then

1f =yl 2 3l F = + 1P =)l = 21 = vl + lly* Il = 3
for each y* € X5

4. Constructing fundamental total wcj-biorthogonal systems.
The constructions of fundamental total biorthogonal systems in the proofs of
(a)=>(c) in Theorems 1 and 2 use the Haar matrices, which are summarized
below.

REMARK 10. Fix m > 0 and consider the 2™-dimensional Hilbhert space
£", along with its unit vector basis {e}3_,.

The Haar basis {h7}3_; of £ can be described as follows. For 0 < n
<mand 1<k < 2" let

={jeN:2""k—-1)<j<2™" "k}
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Thus
={1,...,2", n={1,..,2"%, n§={+2m1.. . 2™}
In general, the collection {If}7_; of sets along the nth level (disjointly) par-
titions {1,...,2™} into 2™ sets, each containing 2™~ consecutive integers,
and I is the disjoint union IF = I3FL U I Now let
- 2
hin = 2 m/2 Z ej'
jer?

and, for0<n<mand 1 <k <2", let hgl,_m be supported on I as

ik = Z(n_mw[ Z ef ~ Z e?].
jelpt, e’
Note that {hT}?Zl forms an orthonormal basis for £2" .

Let Hy = (al}) be the 2™ x 2™ Haar matrix that transforms the unit
vector basis of £ onto the Haar basis; thus, the jth column vector of Hy,
1s just 7" and so Hp, is a unitary matrix. For example,

271 427t 42712
i S A 1
2—1 —9-1 0 +2—1/2
g-1 _9-1 0 __2—1/2

Let {z;,27}3 , be a biorthogonal sequence in S(X) x %*. Consider
{4, 27}, where

Hy =

2y %1 z7 x7
Hpl| - 1=1 ¢ and H,| ! | = ,
2gm Zom 23m Z3om
thus
2™ 2™
@i 1= E a;;z; and @i = E Q25
i=1 §=1

Since Hp, is a unitary matrix, we have
(H1) =} (gg;) = i3, _
(H2) [mi]i=n3 == [zj]j=1=
(H3) [=7135) = 27035,
Note that, for each 1 < ¢ < 2™,
(H4) o} = 2—m/2
and the £;-norm of the ith row of H,, is bounded:
(B5) 27 Ja| = 1+ V2 —20-m)/2 A1 4 /3 a5 m — oo,
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and so

(H6) llz:]l < 272 ||z1)l + (1 + v/2) may ¢ j<om |124]],
(H7) lo7 ]l < 27227 + (1 + v2) max; < j<om [
(H8) for each z** € X**,

.."5'** o S £t 2—~m/2 * LT
" @D < [ + (4 VE) max e ()]

DEFINITION 11. A sequence {J;}22, of subsets of N is a blocking of N
if N is the disjoint union | J;, Ji and max Jy < minJx4, for each k € N.
Given a blocking {Ji}32, of N, let Jy = {0} and for each k € N Iet

JE= 1J Jj,  JD:=Ju\ {the first clement in Ji},
0<i<k

o0
J,fo = U JL, N = U g5,
0i<k k=1

From the next theorem it easily follows, when X is separable, that (a)
implies (¢} in Theorem 1.

THEOREM 12. Let X* fail the Schur property. Fiz € > 0 along with
{an, b7} in X x X*. Then there emists a [2(1 + v/2)? + &]-bounded wep-
biorthogonal system {@n, 2}, } in XxX* such that a,] C [z,) and [b%] C [x%].

Proof. Without loss of generality, [a,],ex and [bf],en are each infinite-
dimensional. Fix a sequence {dx}3>; of positive numbers decreasing to zero.
Since X* fails the Schur property, there is a weakly-null sequence {w}}32,
in S(%%).

It suffices to find a system {zn,z}}52, in X x X* along with a blocking
{Jx}72, of N, asequence {3, }nerne from (0, 24£), and an increasing sequence
{in}nene from N satisfying

(1) 27, (zn) = bmn,

(2) llzn]| < (14 v2) e,

(3) llz3ll < (2 +2)(1+v2) +e,
(4) for each z** ¢ S(X*), if n € Ji then

& ()] < 6+ (14 V2) ?égﬁg(lr**(ﬂjw;’;)l + B;0k),
] ¥

(5) [an]3a C f2nlozy,

(6) [brl5z: C [zh]3%s.

The construction will inductively produce blocks {Zn, 2} }nes,. Let zo
and z} be the zero vectors and jo = 0. Fix k > 1. Assume that {J; }o<j<k
along with {2, 25 tnes? and {in},e gpo and {Bn}ne gro have been construc-
ted to satisfy conditions (1) through (4). Now to construct Jp along with
{ﬂ:n, m:.}ﬂEJk and {Zﬂ}ne.},‘: and {6’!1}116.12'
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Let
P = [z ];[eﬂ and Q= {mn]ne.ﬂ’
and
ny = max Jx.

The idea is to find a biorthogonal system {zy,, 2} }ney, in Pr x Qi by first
finding {#14n,> #14n, } Which helps guarantee condition (5) if k£ is odd and
condition (6) if k¥ even; however, {#11n;, 2] 1n, } Would not necessarily sat-
isfy conditions (2) through (4) and sc J and {zn,2}}ne jo, along with
{intne g0 and {Bn}ne g9, are constructed and then the Haar matrix is ap-
plied t0 {2n, 2 tnes, to produce {Zn, ;, bne s, 80 that {zn, o7 bnesrus, with
{in}nespouo and {Bn}aespougy satisfy conditions (1) through (4).

{#14nx1 21 1n, } 18 constructed by a standard Gram-Schmidt biorthogonal
procedure. If k is odd, start in X. Let

hi = min{h : ap & [Tn)n<n, |-

Set
Zl4n, = Ghy — Z m;(a‘hk)mm
a1k
and, for any ¢}, in X* such that g7, (214n,) # 0,
Z;_}_nk — y]tl—n* - ?nﬁnk y{-{—nk (mn)m:
Yign, (214n4)

If k is even, start in X*. Let
hk = mln{h b [ ]n(nk}

Z bhk )T

n(nk

and, for any y14n, in X such that 2}, {(y14n,) #0,
y1+nk - Ens'nk $:&(y1+nk)mﬂ
2T (VN

Clearly, 21, p,, (214n,) = L, 214n, € Py and 27,,, € Q.
Find a natural number 7y larger than one so that

Set

*
z1+m= = b

Ll4ng =

272 max ({21 1n, §i, |24, 1) < min(e, 6k)
and let
Jp == {1—}—nk,...,2m’°+nk} and so Jg = {2+nk,...,2m’“ +nk}.

Let Py == Py N [}, and Oy := QN [#14n, )" The next step is to
find a biorthogonal system {z,,2z%},.c 70 along with {in}neso and {Br}ne 70
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satisfying
(1) {zns 22} € 8(Pi) x (2+€)B(3y)
and
2 = —wi|l <é
(2) ﬂn k

for each n € JP. Towards this, fix j € J{ and assume that a biorthogonal

system {z,, z n}2+"’k<n<3 along with {ﬂan}ng,,_,=<n<u7 and {8n}24+ny<n<; have
been constructed so that conditions (1) and (2) hold for 2+4-ng < n < 4. Let

J = fpk n[ ]2+nk<n<g and y] T Qk N [zﬂ]2+nk<n<3

By Lemma 9, there is a weak*-closed finite-codimensional subspace yj. of X*

such that J; is (2 +&/2)-normed by %;. Find 45 > 4.1 and o} € S(V; nY;)
such that ||y} — wy || < 6. Find z; € S( ;) such that

2+e“y’(’)_

and normalize z;“ = ﬁjy This completes the inductive construction of

{zn, 23 tnes along with the s6t8 {in}neso and {Br}neso-

Now apply the Haar matrix to {2n, 2} }neys, to produce {z,,z} }nes,-
With help from the observations in Remark 10, note that {zn,z}}nes, is
biorthogonal and is in Py, x Q. Furthermore, for each n in J,

Izl < 2772 a1 gm, | + (L +V2) max 2l < e+ (1+v2)

and

lehll < 274 2lizd o |+ (14 VDY max |25 < & + (24 6) (1 + V),
k

and for each 2™ € S(x*),
[ (2] S 27 |l 4 (1 + V2) max |2 ()
k
<8+ (1+V2) max(|o™ (Byw)l -+ 1858])-
]
Thus {2n, 27 }nesrun, With {in}, oy and {Br}tne Jrougo Satisfy con-
ditions (1) through (4). If k is odd, then

[an]h<hs € [Bn) 214nilnesy € [wn]neJ,‘:qu,

while if k is even, then

[b’ﬁ]hsm € [$;)Zf+nk]ne.f,’: - [m:z}nEJ,fUJk'
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Clearly, the constructed system {z,,z}}52,, with the blocking {J}32,
of N and the increasing sequence {in }nene from N, and the sequence {8, } e
from (0, 2 - €] satisfy conditions (1) through (6). w

Some notation will be helpful in the next construction.

REMARK 13. Let X be a Banach space containing an isomorphic copy
of £;. Recall [Pel, H2] that X contains an isomorphic copy of £; if and only
if ¥* contains an isomorphic copy of Ly. Thus X* also contains an isomorphic
copy of 5. An isomorphic copy of Ly (resp. £) in X* will be denoted by Z;
(resp. Z5).

There is a norm ||| - ||| on 2 which is equivalent to the usual norm on X*
and for which (25, || - |||) is Hilbertian; Z, denotes Z» equipped with the
new ||| - |||-norm. Since Z; is isometric to a Hilbert space, there is a unique
inner product that induces its || - |||-norm; in Z,, Hilbert space concepts are
understood to hein 22.’ For example, a subset of 23 is orthonormal if, when
viewed as a subset of Z5, it is orthonormal in Z,. A sequence {V;} of finite-
dimensional subspaces of 25 is an orthegonal finite-dimensional decomposi-
tion (L-fdd) provided Y; L Y; for i # j and each ); is finite-dimensional.
25 © Y denotes the orthogonal complement of a subspace Y in 2.

LeEmMMA 14. Let X be a separcble Banach space containing an isomorphic
copy of £ and £ > 0. Then 2, can be taken so that a countable subset of it
(24 &)-norms X.

Proof By [H1, DRT] there is a {1 - £)-isomorphic copy of Ly in X£* and
so there is an embedding T : #; ®;1 [y — X* satisfying, for each z € £1 @, Ly,

”z”-h&‘qu < ”TZH}?* < (1 +E)HZ||.£1$1L1-

Moreover, the image {1'0,} of the unit vector basis of £; can be assumed
to be weak*-null (since ¥ is separable, {Tén} has a weak®-convergent sub-
sequence {T'dx, }, so just replace 6, by 2(8k,, — Ok,,,,))- Find a sequence
{z}F}52, in S(X*) such that {z},}2° , norms X for each N € N,

Fix 8 € (0,1) and let

Yo =T6,+ 0z and Z =

Note that for each n € N,
(3) gl < 1+ £+ 5.
The operator S: £ & Ly ~— Z; defined by

S(Docnbn @i f) =3 capis+Tf

1llustrates that 2Z; is isomorphic to £, @1 Ly. Indeed, fix
Z anan 631 f € Sp{dn}nEN 691 Ll-

[{v :n e N} UTL,].
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Then
[8(Xentnesf)| . <0 4e+B) Y laal+ 1 +)51,
S@te+ D) S andn o f

G1@1 Ly
On the other hand,

[s(Cantn e )], = [T(Cantuen 1) + 43 ansi,
= Il Za“5” &1 f @1 Ly _ﬁH Za”&’”“zl

2. 1 - 18 || a'n,5n @ .

( ) Z 1 f i

Thus 2 is (14 8+ ¢)/(1 — 8))-isomorphic to £; ®1 Ly, which is 3-isomor-
phic to Ly.

To see that {y;}nen is (1 + (1 +¢)/B)-norming for ¥, fix z € S(X). Let
d > 0 be such that §(1 +§) < 5 and find n € N such that

(4) |(Téa)(z}l €6 and 1< (1+d)h(2),
for then by (3) and (4),

Yn(2) 1 Jij
Tval = 1+a+ﬁ(1+5 _5)'
sup Ynle) o B

nen [lusll T B+14¢
So, for B sufficiently close to one, {y}}nen is (2 + 2¢)-norming for X. =»

Thus

From Lemma 14 and Theorem 15 it easily follows, when X is separable,
that (a) implies (¢) in Theorem 2.

THEOREM 15. Let X be a separable Banach space containing £1. From
Remark 13, let 2, be total and 2, C Z1. Let {an,,b, ;’fﬁl be in £ x 21 and
fize,n > 0. Then there exists a [(14+/2)+¢]|-bounded 'wco -stable biorthogonal
system {@,, 22152, in X x X* s0 that

(103') [aﬂ]n=1 - [mn]n=la

(18b) [br]aty C lwgla, C 24,

(15¢) sup, ey d(27, 22) <7

In Section 5 it is shown that the [(1 -+ v/2) + &] cannot be replaced with
(1+¢) in Theorem 15. The following fact helps with the bound of the system
in. Theorem 15. It is due to Dvoretzky [Dv] and Milman [Mil]; a proof may
be found in [P].

FacT 16. Let n,m, N be positive integers and § > 0. Then there is a
pogitive integer K = K(n,m,N,8) so that if
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(1) Y is a Banach space with K < dimY < oo,
(2) E is an n-dimensional subspace of Y,
(3) H is an m-codimensional subspace of Y,

then there is a subspace F' of H which is (1 + §)-isomorphic to £y and a
projection P from E + F onto F with ker P = E and ||P|| <1+ 4.

In fact, they showed that P can be taken so that |[P — I|gip| < 1 +46.

Proof of Theorem 15. The proof is similar to the proof of Theorem 12;
thus, notation from the proof of Theorem 12 will be retained.

Fix a strictly decreasing sequence {7 }$2., converging to zero with 1 <7.
It suffices to construct a system {z,,z}}3%., in X x X* along with a block-
ing {Jx}32, of N and a sequence {uy, }52, from 2> satisfying

(1) 27 (2n) = Omn,

(2) llznll < (1 +v2) +e,

(3) llznll <1 +e

(4 llz7, —upll S me if n € i,

(5) [un)nes,, is orthogenal to [urlnes,, for k1 # kg,

(6) [an]nr1 C [2n]rz1,

(7) [B]5% < [2715% © 21
Note that conditions (3) through (5) imply that {z}}nen is weakly-null
in X*. Clearly, all that remains at this point is tc show that the wcy-
biorthogonal system {z,,x}}52, is indeed stable, which is done in the last
step by using the condition that [£7]52,, stays inside of Z;.

Let

£
242
The construction will inductively produce blocks {zy, 2% }nes, and {uk}nes,.

Fix k > 1. Assume that {J; }o<;<k along with {zn, 7} }ner and {uy bnese
have been constructed to satisfy conditions (1) through (5). Now we con-
struct Jy, along with {zn, 2% nes, and {u}}nes,.

The idea is to find a biorthogonal system {z, 2z} }nes, in Pr x Qx by
ficst finding {214n,,#7,,,} that helps guarantee condition (6) if k is odd
and condition (7) if k even; however, {214n,, 2] n, } Would not necessa.mly

satisfy conditions (2) and (3) and 27, may be far from 2Z; and so JQ
and {z,,z%},c o are then comstructed and the Haar matrix is applied to
{2n: 23 Ineg, to produce {zn, 13 }nes, and {u; tne s, s0 that {zn, 27 dne s,
and {up}nesruy, satisfy conditions (1) through (5).

Find {z1+ns, %11, } just as in the proof of Theorem 12: in the case

where k is odd, be sure to choose y§ +m, in 27, which is possible since 2 is
total.
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Find a natural number my, larger than one so that
27" max (s g [, 281, [1) < min(8, o).
Let
By = [{z} nesr U {2l a1,
Hp:=(Z;9 { ]nEJP) [wﬂ]#ejf: n [Zl-l-nk]l’
}1:==LZéLJEhL
N =2 — 1= |J9].
Use Fact 16 to find a subspace F, of Hy, a projection Pj, with kernel Ej,
and a norm one isomorphism Ty so that
P T
Ee+ Fo = Fe 560 and  max(| 75, |Peli?) < 1 +6.

Let {en}ne o be an orthonormal basis for £Y*. For each n € J2, let 2} =

T, e, and, using Local Reflexivity, find z, € X that agrees, on Ej and Fy,
with a norm-preserving Hahn-Banach extension of P} 1 e, € (Ex + Fi)* to
X* and satisfies

lznll < V1I+ 38 [|PETen].
Then {25, 2 }nesp is a biorthogonal system in Ej x Fy and
max{||z.]| : n € JI} < 1 +4.

Now apply the Haar matrix to {z,,2}}nes, t0 produce {z,,z} ner, and
let

=)t

jedy
for each n in Jg.

With the help of the observations in Remark 10, note that for each n
in.Jk,

all € 27 2 v | + (1 VD) ma 5]
fe

SO+ (A+V2(1+8) < (1+V2) +s
and

lonl < 2™t | + | 3 4Tz
JEJ

<6+(1+6)H > ke

jeJ)

i<1+26<1+s

-«

and since }, — up, = any 25, 11,

|l — Ul = 2_mk/2“z;,,+1“ < M-
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Thus, {Zn, %} nesrury, and {whtnearuy, clearly satisfy conditions (1)
through (5).

This completes the inductive construction of the system {z,, 2, }5%, in
X xX*, along with the blocking {Ji} of N and the sequence {u}, }52; from 2,,
that satisfy conditions (1) through (7).

The last step is to verify that {z,,z}}52, is indeed stable, whick, by
Lemma 8, is equivalent to verifying that the operator 5 : X — cp given by
S(z) = (z}(z)) factors through an injective space. Towards this, consider

the commutative diagram
I
7N
H——B sy

where § is an isomorphic embedding with range 2Z; and A and B are given
by
A{bp) = jolzr =7, and B(d,) =z}
Since A* and B* are of the form
A*(f) = (f(Fn))n and B*(z™) = (z™(z}))n,

their ranges are contained in cy; let Af and Bf be the corresponding maps
with their ranges restricted to ¢g. Thus the following diagram commutes:

Lo
i A
kad By > C()
; /
k3

An appeal to Lemma 8 finishes the proof. »

Theorem 1{c) is much easier to prove if one drops the total condition
since then one can use the technique of Davis—Johnson—Singer ([DJ, Thrmn. 1]
and [S2, Prop. 1]). As a partial illustration of this, we offer the following
theorem, which gives a weaker result but a smaller constant than is provided
by Theorem 1(c).

THEOREM 17. Let X be a separable Banach space not containing £; such
that X* fails the Schur property. Fiz e > 0. Then there is a (2 + ¢)-bounded
fundamental wel-biorthogonal system {x,,z}} in X x X*.

The meat in the proof of Theorem 17 is the following lemma.
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LeMMA 18. Let X be a separable Banach space such that %* Jails the
Schur property. Fiz € > (. Then there is a wep-biorthogonal seguence
{Zn, 23} in S(X) x X* satisfying

(1) lehll <2+,

(2) {zn} is basic,

(3) [z2]" + [zn] is dense in X.

Proof. Fix a normalized weakly-null sequence {w*} in X*, a dense se-
quence {d,} in X, a sequence {¢,, } decreasing to zero, and a sequence {r}
such that 7,, > 1 and [ 7, < co. It is sufficient to construct

(a) a sequence {z,}n>1 in S{X),

(b) a sequence {Z}}n>1 in S(F*),

(c) finite sets {Fy}n>o in S{X*) with Fy := @,

(d) an increasing sequence {k,}2% ; of integers
that satisfy

(4) 2. € FL, 0 {2t ML, = T,

(5) z; € {di}i:n N{zilen = Vn,

(6) 1/(2+ &) < F; (zn),

(7) I3 — wf, || < en,

(8) if z € [z;];4n, then there is f € F, with ||zl| < 7 f(z).
For then just take «;, = T}, /T}, (zn). Note that (4) and (8) imply (2) while (5)
and biorthogonality imply (3) since each d; has the form

di = (d.i -3 ah(d)mn ) + 3wk (d)an.
n=1 n=1

The construction is by induction on n. To start, let 7 = w}. Find x;
in S(X) that satisfies (6) and Fy that satisfies (8).

Fix n > 1 and assume that the items in (a) through (d) have been
constructed up through the (n — 1)th level. From this it is possible to find
X, and Y,.

By Lemma 9, there is a finite-codimensional subspace )} of £* that is
(2 + ¢/2)-normed by %,. Find £, € S(¥ N V,) along with k, > k,_1 such
that (7) holds. Since ) is (2+&/2)-normed by X, there is z,, € S(X,) such
that 1 < (2 + &)&%(z,). Now find F, satisfying (8). w

Proof of Theorem 17. First find the biorthogonal system {zy, 2} given
by Lemma 18. The next step is to perturb this system to produce the desired
system.

Begin by finding a bijection p : N x N — N satisfying

(i) {p(n,4)}2; is an increasing sequence
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for each n in N. Take a dense set {y,} in B([z3]"). The underlying idea is
t0 use {Zp(n ) }¢ to capture yn, along with {Zp(n, i, in the span of a small
perturbation of {4 }s-

Towards this, with the help of (2) and the fact that {z,(,}: is not
equivalent to the unit vector basis of £3, for each n find a sequence {apen,i i
such that

(11) 21: ;U‘P(n,i)l = 00,
(i) 325 Opin,1) Tpins) € X
Let
Wp(n,5) = Tp(n,i) = e(sign ap(n,i))Yn-
Clearly, {wn,z3} is a [(1 + £)}(2 + &)]-bounded wcj-biorthogonal system.
Fix ng € N and consider z* € [Wy(ng,i)]7 - For each m € N,

m m
" (Z ap(ﬂn.i)zp(nu.i)) = €™ (Yno ) Z |ap{ng,i)|‘
i=t i=1
Combined with (ii) and (iii), this gives &* € [yn,], which in turn implies
that 2% € [Zy(no,sy)7 - Thus

[{mp(no,‘i) }’i U {ynu}] - [wp{no,i}]i-
Combined with (3), this entails that {wy }nen is fundamental. u

5. Bounded fundamental biorthogonal systems. The knowledge-
able reader notices that, in our proof of Theorem 15, a combination of
the [OP]-method (which produces [(1 ++/2)% + £]-bounded systems) and
the [P]-method (which produces (1 + &)-bounded systems) is used to pro-
duce a {1+ +/2+¢)-bounded system. Using just the [P]-method in our proof
of Theorem 15 will not guarantee that the z3’s are in Z; nor close to Z,.
This difficulty is not purely technical. Indeed, consider the following special
case of Theorem 15.

COROLLARY 19, Fiz g, > 0. Let Z, be a total subspace of o, = £ that
is isomorphic to Ly and Zo be a subspace of Zq that is (1 + n)-isomorphic
to £5. Then there exists o [(1 +/2) + €]-bounded fundamental biorthogonal
system {zn, 5155, n S{f1) X £ satisfying sup, oy d{zy, Z2) < 1.

Lemma 20 shows that such subspaces Z; and Z; in Corollary 19 do ex-
ist. Corollary 24 shows that in Corollary 19, the [(1 + v/2) + &] cannot be
replaced with (1 + ). However, if the requirement (15a) in the statement
of Theorem 15 is removed (which would basically remove the fundamen-
tal condition), then the {P]-method can be used to obtain this variant of
Theorem 15 with (1 4 &) replacing [(1+ v/2) + &].
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The proof of Lemns 14 implies that for each £ > 0 there exists a strictly
increasing surjective function ¢ : (0,1) — (3(1 + £),00) and a strictly de-
creasing surjective function n : (0,1) — (2+&, 00) so that if X is a separable
Banach space whose dual contains an isomorphic copy of L1, then for each
B € (0,1), there is a subspace Z; of X* which is 4(83)-isomorphic to L and
which has a countable subset that n(3)-norms %. However, if the dual space

contains an isometric copy Z of L, then the above isomorphism constant (/)
can be improved.

LemMa 20. There exist a strictly increasing surjective function i : (0, 1)
— (1,00} and a strictly decreasing surjective function n : (0,1) — (2, 00) so
that if X is o separable Banach space whose dual contains an isometric copy
of £ that is contractively complemented in some subspace £ of X*, then
for each B € (0,1), there is a subspace 21 of X* which is i(B3)-isomorphic
to Z and which has a countaeble subset that n(3)-nerms X.

Since £, contains an isometric copy Z of Iy, which in turn contains
a contractively complemented subspace which is isometric to £, for each
positive 7, applying Lemma 20 with § sufficiently close to zero entails that
there is a total subspace Z; of £, that is (1 + n)-isomorphic to L, which
in turn contains a subspace 25 which is (1 + n)-isomorphic to £.

Proof of Lemma 20. Find {e*}new in Z which is l-equivalent to the
standard unit vector basis of £; and a surjective contractive projection P :
Z — [e} |new. Without loss of generality, {e} }nen is weak*-null (just replace
{en} with a weak™-convergent subsequence {3 (e, — ef,..,)}, which will
be l-equivalent to {e;} and contractively complemented in [e}}). Find a
sequence {z; 1% ; in S{X*) such that {231} \ norms X for each N € N.

Fix § € (0,1) and let

yr =er + Bz; and Zi:=[{y}:n e N} Uker P|.
Note that for each n € N,
Q Izl < 1+,

Each element in 2 has a unique expression as z = ) aney + f where
f € ket P; the operator S : 2 — Z; defined by

S(Yonet+£) =D anva+ 1
illustrates that Z; is isomorphic to Z. Indeed, fix

Z aney + f € sple) tnen +ker P
Then '

e = 52l = | Y anter ~ 4| <8 ol = BIPE)] < Bl
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Thus
A=)zl < 15=| < (1 + Bl
for each z € Z; thus, 2y is ({1 + 8)/(1 — 8))-isomorphic to Z.
To see that {y2}nen is (1 +1/5)-norming for X, fix z € S(X). Let § > 0
be such that &(1 4 §) < § and find n € N such that
(6) len(@)| €6 and 1< (14 6)zy(2),
for then by {5) and (6),

¥n (%) 1 g
vzl 21+ﬁ(1+6 ‘5)'

Thus
vn{z) B
sup > =
nem il — B+1
So {y*}nen is (1 + 1/8)-norming for X. w

Recall that the modulus of convezity dw : [0,2]) — [0,1] of a Banach
space W is

dw(e) :== nf {1 -

and W is uniformly convez if dyy(g) > 0 for each e € (0, 2]. If W is uniformly
convex then &y is a surjective continuous strictly increasing function (cf.
[GK, pp. 53-585]).

In a uniformly convex space, the midpoint of points near to the sphere
that are far apart is uniformly bounded away from the sphere. This can be
extended to convex combinations of points close to the sphere.

Tty
2

2y € BOV) and [z - y]| > }

LEMMA 21. Let W be a uniformly convex Banoch space and € and b be
constants satisfying 0 <e < b < 1. If {o;}72, CR and {y;}32, C B(W)
satisfy

00 o0
(7) Ziaj|=1 and ”Zajyju >1-—g,

7=1 j=1
then there is o finite subset F of N so that

€
(8) Dolesl>1— e
ey 2b—¢
and for each j € F,
(9) | sgm ity = 3 agus | < s5t)
j=1

and o4 75 0.
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Proof. Let {o;}72; C Rand {y;}32, C B(W) satisfy (7). Set

oo
g = E QY.
—y

Without loss of generality each o; > 0.
Find zf € S(W*) so that z3(z0) = ||zo|| and let

F={jeN:a3(y;) >1+c—2band a; #0}.

The condition ¢ < b guarantees that F is non-empty. Since

l—c< Z a;zg{yy) + Zaj:rﬁ(yj)

igF jeF
e (i Ya) + (N
jeF JEF
= (1+e-2)+ (2} T ay),

jEFR
condition (8) holds. For each j € F,
s + ol > H(L+e-2)+(1—e) =10
and so {ly; — zg|| < 85,}(b) by uniform convexity. m

PROPOSITION 22. Let {zn, o7, }52; be a biorthogonal system in S(£;) % £o
and W be a uniformly convexr Banach space and Q € L(£1, W) be of norm
ol most one, all of which satisfy

(10) d(ay, @ (KB(W")) < 2n
for some constants K > 1 endnp > 0. If
1—27 2_ (1—4p
11 1 et < Sy |
(11) x° 36‘“’( 9K )

then {z,}32, is equivalent to the standard unit vector basis of £,. More
specifically, if constants o and b satisfy

(12) 2(1-1;{2’7)5a<b55w(12_;”)
then
n=1 n=1 n=1

for each {8,152, in £y

Note that if K = 1 and 5 = 0 then (11) becomes 0 < %5W(%); thus, if
K is sufficiently close to 1 and 7 is sufficiently close to 0, as they often are
in practice, then (11) does indeed hold.
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Proof of Proposition 22. The underlying idea behind the proof is to use
Lemma 21 to find a small perturbation {Z,}32, of {x,}3, that are dis-
jointly supported on the standard unit vector basis of £1. For then, {Z,}52;
is equivalent to the standard unit vector basis of #; and so, for a small
enough perturbation, {z, }52, is also equivalent to that basis.

Find {w}}52., in KB(W*) so that

(14) llz5, — @*wyll < 2n.
Thus

1@zl =

and 5o || Qx| > 1 — 2a/3 by the first inequality in (12).

Write
o0
— (3 .
Ly = E aj 6_7
i=1

where 7.2 |a| = 1 and let £} = signaf; thus,

w, 1 N . 1-2
(@, 220 Y| 2 ol (on,53) = (25— Qi) > 2

lwil [

Qzn =Y _ o} Q5;.

i=1 :
So by Lemma 21 there is a sequence {F,,}2° ,; of finite subsets in N so that
a
> lofl>1-
jer, 3b—a
and for each j € Fy, [|€7Q8; — Qznl < &,/ (b) and of # 0. Let

~ ne

JEF,

To see that the F,,’s are disjoint, suppose that there is §9 € F,, N F)y, for
some distinct n,m € N. Pick 7 € {-1,1} so that 7¢]; = ¢} . Then

1Qzn — TQem| < |Qzn — 5,Q0, || + I 7e5;Q8j, — 7Qzml| < 25,5 (B).
On the other hand, from (14) and the third inequality of (12) it follows that

1Q2n + Qo > |<Q(mn ) ﬁ—n>’

1
2 [{Tn & T, 2R} — {&n £ T, 27, — QY wp)|
llw ]
1—4n -1
> % = 28, (B),

a contradiction, thus the finite subsets {F;}22; of N are indeed disjoint.
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For each {8,}2° in {1,

PR |3 ua] > horEs
n=1 n=1 n=]
> (155 ol (%) e

= (1 - 3b2fa) 316

n=1
and so (13) holds. =

= D 1Bl - [[En — 2all
n=1

IEW is uniformly convex then W* is super-reflexive and so W* has finite

cotype; thus, there exists a cotype constant Cy(W*) > 1 for some g € [2, 50)
so that

05 (S lutle)” < 000 gy | 30007

for each finite sequence {w;}% ; in W*.

2] 1/2

THEOREM 23. Let a uniformly convexr Banach space W and g7 > 0
satisfy

1 2 1
16 1—- = =y — |.
(16) l+eo 3 W<2(1+60))
Let Cy(W*) be as in (15) and 0 < &1 < g9. Then there exists o constant
(17) 1 =n(Co(W*), 6w, 1) >0

so that £ > g1 if:

(23a) {zn, 25 }32, i3 a (1+¢)-bounded fundamental biorthogonal system
n S(El) X ‘Eoo’

(23b) @ € L&, W),

(23c) @* is a (1 + n)-isomorphic embedding,

(23d) d{, QW) <.

The following notation helps crystallize condition (16) and simplify some
technical arguments in the proof of Theorem 23.

Norarion. Consider the functions I, : [0,1/4] x [0, 00) x [0, 00) — [0, 1]
given by
. 1-2n

(1+m)(1+¢e)

2y 1=m
ulm,m,€) = 3ow (2(1 +ma)(1 +s))'

l("h,ﬂzsf) =1
(18)
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Note that in each variable, [ is a strictly increasing continuous function and «
is a strictly decreasing continuous function. Condition (16) is equivalent to

1(0,0,g9) = u(0,0,£0)
and
1(0,0,) : [0, 00) =22 [0,1),  (0,0,-) : [0,00) 2% (0, 2ow (3)];
thus, for a uniformly convex space W, there is a unique 9 > 0 satisfying (16).

Proof of Theorem 23. The underlying idea behind the proof is that for
sufficiently small n Propesition 22 entails that {z,} is equivalent to the
standard unit vector basis of £;: indeed, condition (10) will hold and condi-
tion (16) implies {11). Then {z}} is equivalent to the standard unit vector
basis of ¢g. But if ¢ is small enough, then condition (23d) cannot hold since
W* has finite cotype.

Let the hypotheses of Theorem 23 hold. Since

Z(D, 0, 81) < l(O, 0, 80) = ’U,(O, 0, Eo) < U(O, 0, E]_)
there are constants o and b so that
1{0,0,e1) < a < b < u(0,0,£,).
Find 5 = n{Cq(W*),dw,€1) > 0 small encugh that

l(n,n,e1) <a<b<ulnmne)

and so that there exists N € N satisfying
2a
where C' = Cg(W*). To see that condition (19} is easily accomplished, note

that if
2a ?
1:20(3+m)] <NeN

and 0 < 7 < 1/N then (19) holds.
Let conditions (23a) through (23d) hold. Assume that & < £;.
By (23c), without loss of generality, for each w* € W*,

+ 2Nn] < N/¢

1
20 - * < L < * N
(20) el < Q7w <

Keeping with the notation from Proposition 22, let

K=_{1+n)(1+¢).
From (23a), (23d), and (20) it follows that there is {w}}32; C KB(W*)
such that

o7 — Q@ will <2n, =]l =@ will
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Thus (10) from Proposition 22 holds. Furthermore (11) also holds since
n.me) < Unimyen) < a <b<ulmmer) < uln,m,e).

So by Proposition 22, since {2,}22,; is fundamental, {z3}22, is equivalent
to the standard unit vector basis of ¢p with

E P

for each {8,122, in ¢p.
For each finite subset F of N,

(21) [ 3 i) ™ < [avggymsa | 3 000
i=1

neEF

<ouplfal < | oot
mn=]

2]1/2.

T;he- right-hand side of (21) mimics co-growth in that for each choice {6 }ner
of signs

e
ner

< W+ 3 6aQuu;
nel

<{1+n) H| Z Onz],
neR

]

+ | 32 bator - @rui)
neF

3b—a
<(1 —
< (1+n) {3(1)_ ) +2IFI17}-
The left-hand side of (21) mimics i,-growth since
1< flenll = 1@ will < flawr]

for each n € N. Thus
3b—a

[F[Ve < C(1+7) [m

+ QJFIWJ .
This contradicts (19). Thus g1 < ¢. m

COROLLARY 24. Let 0 < g1 < —2 4 +/147/6 and, following the notation
in (17), g = n(1, 8g,,€1). Let {x,, x5}, be a (1+ €)-bounded fundamental
biorthogonal system in S(41) x £y satisfying

sup d(2y,, Z2) < 7

neN
for some subspace £5 of £y that is a (1 + n)-isomorph of a Hilbert space.
Then
(22) £ >€7.

Proof. Let W = £3. Thus Co(W*) = 1. It is straightforward to verify
that g¢ := —2 + +/147/6 satisfies condition (16) of Theorem 23. Note that
gp & 0.0207,



270 S. 1. Dilworth et al.

Let *Z, be the predual of Z;. There is an operator T € L(£1,*Z2) such
that T* € £{Z2, £,) is the formal pointwise embedding; for indeed, since 2,
is reflexive, this formal pointwise embedding is weak*-to-weak* continuous.
Similarly, by reflexivity, there is § € £(*Z,, £3) such that 5" € L£(fa, 25) 18
a (1 + n)-isomorphism. Let @ = S o 1. Thus

08 Tovz gy and QF iy o 2 Fht

and Q* is a (1 + n)-isomorphic embedding,.
Thus condition (22) follows from Theorem 23. m
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