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Degenerate evolution problems and Beta-type operators
by
ANTONIO ATTALIENTI and MICHELE CAMPITI (Bari)

Abstract. The present paper is concerned with the study of the differential opera-
tor Aulz) = a(z)v”(x) + B(z}u'(z) in the space C([0,1]) and of its adjoint Bu(z) =
{{aw) () — Bz)v(z)) in the space LY{0,1), where a{z) = 2(1 —2)/2 (0 < = < 1).
A careful analysis of their main properties is carried out in view of some generation re-
sults available in [6, 12, 20] and [25]. In addition, we introduce and study two different
kinds of Beta-type operators as a generalization of similar operators defined in [18]. Among
the corresponding approximation results, we show how they can be used in order to repre-
sent explicitly the solutions of the Cauchy problerns associated with the operators A and
A, where A is equal to B up to a suitable bounded additive perturbation.

1. Introduction and notations. The present paper falls within a wide
program of investigations whose main object is the interplay between con-
structive approximation processes and degenerate evolution problems by
means of standard semigroup theory. More specifically, we are interested in
representing explicitly the semigroups generated by some degenerate differ-
ential operators in terms of powers of suitable positive linear operators: as
a direct consequence, the solutions of the initial value problems canonically
associated with such differential operators may be represented in the same
way, as well. This kind of approach, basically based upon Voronovskaya-type
formulas and Trotter’s theorem [26], has its roots in a paper by Altomare [1],
dealing with the convergence of the powers of the classical Bernstein oper-
ators; actually, it turns out to be quite satisfactory in practical situations,
since gome qualitative properties of the relevant semigroups, such as asymp-
totic behaviour, regularity, saturation and so on, may sometimes be eas-
ily derived from the corresponding properties of the approximating opera-
tors.

A rather exhaustive treatment of this subject together with a system-
atic analysis of some classical approximation processes may be found in

2000 Muthematics Subject Classification: 41A36, 34A45, 47EOS.
Key words and phrases: approximation process, Cp-semigroups of contractions, Beta-
type operators, differential operators.
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[3, Chapter 6]; however, several recent contributions in this direction have
enlarged the class of the differential operators and, at the same time, of the
approximating operators considered, in the framework of spaces of continu-
ous functions on both bounded and unbounded intervals.

Without assumption of completeness, we mention, for instance, [2, 4, 5,
7, 8, 9] and [11] in this respect.

Our aim is to take the described approach for the differential operator

(1.1) Au(z) = a(z)u{z) + B(z)v'(z), 0O0<z<l,

in the space C([0,1]) and for the operator A defined by

(1.2) Av(z) = Bu(z) - (&"(z) — F(2)v(z), O0<z<]l,

in the space L1(0,1), B being the operator adjoint of A defined by

(L3) Bu(z) = (o) (2) - Ble)(e), 0<z<1,

and a(z) = 2(1 - z}/2 (0 <z < 1)

In a more suggestive fashion, we may say that A is obtained by perturb-
ing the operator B, adjoint of A, with the term (o' (z) — 8'(z))v(z) which
will be bounded in our treatment. As a consequence, when dealing with E,
all the classical perturbation results will be available.

Differently, observe that in (1.1) an additive unbounded perturbation
appears with respect to the simpler operator

(1.4} Agu(z) = —3—:~(}~;—$)u"(m), <<,

already studied in [3, Chapter 6].

We also point out that the above operators A and A occur when studying
the general evolution problems describing diffusion models in population
genetics (see [14, 16] and also [24]).

Moreover, we recall that, in the framework of spaces of continuous func-
tions, even more general operators than A have been considered in [10]
and [20], but merely from the viewpoint of semigroup theory: such analy-
sis, therefore, though useful to our investigations, lacks any explicit mention
of approximation of solutions of the associated evolution problems, heing
primarily concerned with analyticity and compactness properties of the rel-
evant semigroups.

The paper is organized as follows. In Section 2 we outline some basic

properties of the operator A defined in (1.1) when acting on its maximal
domain

(1.5) Dy(4) = {u € C([0,1]) nC?(10,1]) | Au € G([0,1])}
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or, alternatively, on the domain
(1.6) Dy (A) := {u € Dy(4)} | linollAu(ac) = 0},
«—0,

i.e., assuming Ventcel’s conditions at the boundary points 0 and 1. Besides
the generation of a Cg-semigroup as an application of the classical results by
Clément and Timmermans {12] and Timmermans [25], we show that the sub-
space of all twice continuously differentiable functions in the corresponding
domains is a core for A.

A similar analysis is carried out in Section 3 for the operator A. In
this respect, we refer to some recent results stated in [6], which may be
regarded as the analogues in L1(0, 1) of the cited theorems by Clément and
Timmermans [12] and Timmermans [25].

In the last Section 4 we introduce and study two sequences of Beta-type
operators acting on C([0,1]) and L(0, 1), respectively, and generalizing two
sequences of positive linear operators introduced by Lupag [18]. After show-
ing that they are positive approximation processes on the corresponding
spaces, we state some estimates of the rate of convergence in terms of the
classical modulus of continmity w(f,-) for continuous functions and, in the
framework of the space L!(0, 1), in terms of the averaged modulus of smooth-
ness 7(f,+)1 (see [23]).

The Voronovskaya-type results (Theorem 4.4) provide a link with semi-
group theory, being, in fact, the key tool in proving the main theorems of
the section. More specifically, we prove that there exist Cg-semigroups of
positive contractions on C([0,1]) and L*(0,1), having A and A as gener-
ators, respectively, and which may be expressed in terms of powers of the
Beta-type operators previously defined.

The notations we use throughout the paper are quite standard: besides
the spaces C([0,1]), L*(0,1) and L°°(0,1) endowed with the usual norms,
we sometimes deal with the space Li (0, 1) of all Lebesgue measurable func-
tions on [0, 1] which are integrable on compact subsets of |0, 1] as well as with
the space AC(0,1) of all absolutely continuous functions on [0, 1]. Accord-
ingly, ACLc(0, 1) denotes the space of all continucus functions on [0, 1] which
are absolutely continuous on compact subsets of |0,1[. As usual, C™ ([0, 1))
denotes the vector space of all real-valued m-~times continuously differen-
tiable functions on [0,1] (m > 1).

Sometimes, in the above notations, the interval [0,1] will be replaced
by a more general interval I of the real line. Finally, for every p € No, we
denote by e, the continuous function on [0, 1] defined by ep(x) := 2P for
every € [0,1], whereas, for each z € [0,1], . is the function defined by
$z(t) := t — = (0 < ¢ < 1). The Landau symbols will be denoted by o()
and O(-), as usual.
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2. The differential operator A. In this section we deal with the second
order differential operator

(2.1) Au(z) = m_(l_;ﬁ u'(z) + Bz (z), O<z<l,

acting on C([0,1]), where 3 is a continuous function on [0, 1] which is Holder
continuous at 0 and 1. It is convenient to rewrite (2.1) in the form

(2.2) Au(z)= ig1—%;?—)u”(ac)—l—((l-—m)/\(m)—:ec,u(ac))u’(a:), 0<z<l,

with A := 8 and p:= —4.
Observe that, whenever A(z) = p(z) = 1/2 for any = € [0,1], then one

has Aut )_i(x(1~$) | ))
W=\ T o YW

ie., A is self-adjoint.

For generation results, we basically refer to the papers by Clément and
Timmermans [12] and Timmermans [25], which in turn are very closely re-
lated to the pioneer work by Feller [15]. Accordingly, following the notations
of those papers, after choosing =y = 1/2, we set for every z € |0, 1],

wie) = (-2 § (20 - £0)a),

12 2 1-¢
2 xT
{2.3) Q(z) = o(1 — 2)W () 1§2 Wi(t)dt,
¢ 2
R() = W(z) | ——_dt,
1§2 =W

and an easy computation yields W(z) ~ K/z?® as x — 0% as well as

2 M i
(2.4) Q(z) =~ { 1—2X(0) (1 - mlsz(o)) if A(0) #1/2,
| 2(logz + log2) i A(0) = 1/2,
and
1 N .
(2.5) R(z) =~ { X0) ~ A(0)220) if M0) # 0,
2(logz +1log2)  if A(D) =0,

where K, M, N are suitable strictly positive constants depending only on
A(0). By replacing = by 1 — z and A(0) by u(1) one gets similar asymptotic
relations for W, @ and R near 1 and therefore the cited results by Clément

icm

Degenerate evolution problems 121

and Timmermans {12] and Timmermans [25], according to the terminology
of Feller [15] (see also [13, p. 366]), read as follows:

(1) If A(0), x{1) > 1/2, i.e., if the endpoints 0 and 1 are both entrance
boundary points, then A is a generator on the maximal domain Dy(A)
(see (1.5)). )

(2) If A(0),u(1) £ 00or 0 < A(D), (1) < 1/2, ie., if the endpoints 0
and 1 are both exit or both regular boundary points, respectively, then A is
a generator on the domain Dy (4) (see (1.6)).

In addition, some intermediate situations are allowed: more precisely, if
A0) < 1/2 and p(1) > 1/2 or, conversely, A(0) > 1/2 and p(1) < 1/2, then
A is a generator on the domain

DVM(A) 1= {'LL © DM(A) 1 111’51_}_ Au(m) = 0}
or, respectively, on the domain
DMv(A) = {u c DM(A) ‘ 1iI?]l-1- Au(m) = D}

(see (25, Theoremn 4]).

For a probabilistic interpretation of the above classification we refer the
reader to [13, Problem 1, p. 382]; see also {13, p. 162} for connections with
Markov jump processes.

REMARK 2.1. Note that our operator A formally coincides with the
operator A; considered in [10] and [20] with m(z) := 1/2 and b(z) =
2(1 — 2)A(x) — 2zu(z). Therefore, if A(0),u(1) < 1/2, on account of
[20, Theorems 3.3 and 4.1], (4, Dy(A)) is the generator of a bounded an-
alytic semigroup of angle 7/2, which is compact, positive and contractive
(see also [10, Theorems 3.1, 3.3 and 3.6}).

For a more general discussion of one-dimensional degenerate diffusion
processes see also [13, pp. 371-372] and [13, Theorem 2.8, p. 375] in the case
d=1

A first simple result is indicated in the next proposition.

ProPOSITION 2.2. If u € C([0,1))NC%(]0, 1[) and Aw is continuous at 0
(resp. at 1), then

(2.6) lim zu/(z) =0 (resp. lim (1 —a)u'(z) =0).
z—0t z—1-

Proof. We have Au(z) = (z/2)u”(z) + A(0)u'(z) near 0 and therefore
a simple integration by parts gives

Tawva () -fos () () ). =0

i
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where the term on the left hand side is convergent as z — 07 since Awu is con-
tinuous at 0 by assumption. As a consequence, the limit [ := lim,_,o+ zu' (z)
exists and is finite. Indeed, it is 0, since otherwise w'(z) = I/z as & — 0T
and hence, for a suitable non-zero constant M, u(z) ~ M logz as = — o+,
contradicting the fact that u € C([0,1]). The proof for the limit at 1 is
gimilar. m

Tn order to go deeper into the properties of the operator A, we need to
write down its relevant domains in a way easier to handle in practice. Indeed,
a rather complete result will be stated below in the case A(0), (1) € |0, 1/2],
but first we introduce some notations. We set
Dy(4)  EAD)M1) <1/2
DM(A) if A(D)nu(l) >1/2,

Dym{A} if A(0) < 1/2, (1) > 1/2,

Dyv(4) i A(0) > 1/2, p(1) < 1/2,

and for a fixed u € C([0,1]) N C*(]0, 1[) we define the boundary conditions
{(N,) and (N,) at 0 and 1, respectively, as follows:

uw e CH[0,1/2]), v/ (0) =0, 1i1’£l+ zu'(z) =0 if A(0) <0,

(2.7) D(A) =

(Ny) ml_ifﬁi zu'(z) =0 if A(0) = 0,
u € CH{[0,1/2]), lim, zu'(z) =0 if A(0) = 1/2,

we CN([1/2,1]), /(1) =0, lim (1-zju’(2)=0 i p(1) <0,
(V) § Jlm (L e)(@) =0 i (1) =0,
u € CH[1/2,1]), Tim (1-z)u’(z)=0 if u(1) > 1/2.

The following theorem, which partly restates Proposition 3.2 of [20] in a

particular case, will play a fundamental role in what follows; it also has an
interest of its own.

THEOREM 2.3. Assume A(0), u(1) € ]0,1/2[ and consider w € C([0,1])N
C2(]0,1[}). Then u € D(A) if and only if u sotisfies the boundary condi-
tions (Ny) and (N,). Moreover C%([0,1]) N D(A) is a core for A provided
we further suppose Az)/z = O(1) as z — 0T in the case AM(0) = 0, and
w(z)/(1—2) = O(1) as x — 17 in the case p(1) = 0.

Proof We need to work out the proof of the first part of the theorem
only in the case A(0),u(1) = 1/2 (i.e., dealing with the maximal domain
Dy (A)), since all the other possible characterizations of D (A) directly follow
from [20, Proposition 3.2]. We argue only around 0 and therefore refer to the
assumptions on A{0) and to condition (N,). The proof around 1 is similar.
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Thus, assume A(0) > 1/2, choose u € D(A) and set f := Au; a direct
computation yields

2(@)  _ d (1(a)
1 =— :
S 2l oW do (W(m) » O<e<ld

Integrating both sides of (1) from ¢ to =, with 0 <& < z, we find

0 _w(z) v
(2) § H1— W () i = W(z) W)

The above integral is convergent as £ — 07: indeed, 0 is an entrance bound-
ary point by assumption and therefore the function (¢(1 — )W (¢)/ 2)71is
summable near 0 (see [15, p. 5186]). This, in turn, implies that the integrand
in (2) is summable near 0 as well because, in addition, f € & {[0,11).

Consequently, the limit [ := lm,_g+u'(€)/W(e) exists and is finite.
More precisely, we show that necessarily | = 0. Otherwise, we should have
u'(e) = IW (g) = 1K/e*M? as € — 0T and therefore, for a suitable non-zero
constant M,

u(e) ~ Mel=220) i A(0) > 1/2,
Mloge if A(0) = 1/2,
which is not possible, because v € C([0, 1]).
Thus, passing to the limit as ¢ — 07 in (2) yields

/ T 2f®) Kt 2
wlz) = Wia) g AW T O § Hl— W)
for every z € |0, 1], whence, by L'Hépital’s rule, lim,_,o+ v'(z) = F(0)/A(0),
i.e., u is differentiable at 0.

This implies that lim,_o+ zu’(z) exists and is finite. In addition, it
must be 0, because, if not, a non-zero constant 1 could be found such that
w'(x) ~ 1/z as z — 0T and hence w'(z} ~ Nlogz as & — 07 for a suitable
non-zero constant NV, yielding a contradiction since %' 1s continuous at 0.

Therefore u € D(A) satisfies (N)) and the proof of the first part of the
theorem is complete.

As for the second part, without loss of generality we may and do restrict
ourselves to showing that C2([0, 1/2]))nD (A) is a core for A (here we continue
to denote by D{A) the domains defined in (2.7) relative to functions in
C([0,1/2}) N C*(}0,1/2]) with the corresponding boundary condition only
at 0); more precisely, we have to prove that for each v € D(A) there exists a
sequence (i Jnex in C*([0,1/2]) N D(A) converging to u in the graph norm
of A. In this way, only the assumptions on A(0) will be involved.

herefore first assume A0) > 1/2, fix u € D(A) and for every n € N set
un () = u(z) if © € [1/n,1/2] whereas

£ — 07,

dt
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0 =) ()2) () )

whenever 0 < z < 1/n.

Clearly each u, € C%([0,1/2]), because u),(z) = u/(1/n) + v’ (1/n)(z —
1/n) and u!’(z) = u”(1/n) whenever 0 < x < I/n. In addition, for every
n € N we easily estimate

1
T 5 | (n)

1 i 1
_ — —_ < -~ flall PN el
on—ull = s funle) =ulo)l < o(wz) =2 (3)
where the sum on the right hand side tends to 0 as n — o0 because of
condition (V). Thus we have shown that lim,, e |l — 1| = 0.

It remains to prove that lim, .. || Aun — Au|| = 0. To this end, let M =
SUPp<g<1/a |(1~2)A(z) —~zp(z)| and observe that, since limg_o+ zu"(z} =0
in view of (NN,), for every ¢ > 0 a positive § £ 1/2 can be found such
that z|u”(z)| < /4 for any = € [0,8]. Moreover lim, ,o(1/n)u"{1/n) =
limy, oo w(w',1/n} = 0 and therefore there exists an integer ng > 1/8 such
that

1

1

n

u” (}.) < mmms___ 7% u" .}.. < mi_u_“.
n 4(M + 1)’ ‘n 4(M +1)
for any n > ng. Consequently, for any n > ng and = € )0, 1/n], we have

| A () ~ Au(z)]
(3] s () -

1
7N B
1 M
< =" (—) ' + zlu (z)| + — u”(l> + Muw (u’, l) <e,
n T T T n

which also hold at 0 and 1, because Awu, and Au are continuous. Since
| Atr, — Aull = suppcp<y/n | Atin () — Au(z)| for every n € N, it follows that
Hmy oo | Atin ~ Aull = 0, as required.

In order to show the assertion when A(0) < 0, fix u € D(A) and for every
n € N set

- . Jul=) if1/n <z < 1/2,
) () '"‘{zn(w)wn(m) ;fogmgml/n,/

on(@)i= 0o (3)-m(2) (--1 )3

and (un)nen is defined as in (3), still converging to  in the graph norm of
A on account of (2.7) because Dy(A) C Dy (A4).

One can easily check that (iin)nen is a sequence in C?([0,1/2]) N D(4),
ie., each T, belongs to C2([0,1/2]) and @, (0) = 0. In addition, in view of

M

g + =
n

1
< =

where
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condition (N,), a straightforward computation shows that

sup lgn(z){—0,  sup [|Agn(z)[ =0, n-—co,
0Lz<l/n 0<zLl/n
where now A still denotes an operator acting formally as in (2.2).

On the other hand, for every n € N and z € [0,1/n] we have [Gn(z) —
u(2)] < [0a(2)] + lun(2) — u(z)] 35 woll as |ATn(c) — Aulz)! < |Aga(2)] +
| Aup () — Au(z)|. Taking the supremum over [0, 1/2] or, which is the same,
over [0,1/n] in the above estimates and letting n -+ oo yield [T — ull — 0
and ||AT, — Au|| — 0 as n ~» oo. Therefore, also in this case the proof is
complete.

Finally, assume A(0) = 0 and Az)/z = O(1) as £ — 0% and recall that
for the differential cperator Ap defined by

(5) Aou(z) = %u”(m), 0<z<1/2,

for every u € Dy{do) = {u € C([0,1/2]) N C2(]0,1/2]) | limg_o+ zu"(z)
= 0}, 02([0,1/2]) is a core: really, for a fixed u € Dy (Ap), the sequence
(tn)nen defined in (3) satisfies

(6) lun —ul| = 0, |Aosn — Agul]| =0, n-—o
(see also [3, Theorem 6.2.6, p. 436 and Theorem 6.3.5, p. 457]).

We show that (un)nen also works for A. Indeed, choose u € D(A) =
Dv(Ag) and observe that our assumption yields |(1 ~z)A(z) —zu(z)| < K=
for any € [0,1/2], K > O being a suitable constant. Thus, for every
z €10,1/2[, we get
| Aun (2) — Au(z)] < |Aoun(z) — Aou(@)| + Kzluy () — v/(2)]

< || Aoun — Agul| + 2Kz( sup  |un(t) — W ()] 4+ sup  |ua(t) — u(t)])

T<#<1/2 m<t<1/2

< [ Agtn—Agul| + 4K sup [(t/2uli(8) — (/20 (8)] + K Jun—u]
B <t<1/2
< (4K + 1) || Aotn— Aoul| + Kllup—ul.
Since Au, and Au are continuous, the above estimate still holds at 0, and
therefore || Aun, — Au|| — 0 as n — oo on account of (6). The proof of the
theorem is now complete. w

REMARK 2.4. When 0 < A(0) < 1/2 or 0 < u(1) < 1/2, Theorem 2.3
fails to hold. Indeed, a characterization of D{A) in terms of conditions (Vx)
and (N,), respectively, is not available, neither is C?([0,1]) N D(A) a core
for A. In order to show this, we argue near 0 and, at this end, we may and
do assume

Aulz) = gu”(m) + A0y (z)
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for any u € D(A) := {u & C{[0,4]) N C*(]0,4]) | limy_o+ Au(z
small enough.

If we set @(z) := 217220 (0 < 2 £ §), we have A(p) = 0 and therefore
w € D(A). Nevertheless p ¢ C'([0,6]) and moreover lim, o+ 2" (z) =
—00, i.e., (N) is not satisfled. In addition ¢ cannot be approximated in the
graph norm of A by functions in C?([0,8]) N D{A4), i.e., C*([0,8]) N D(A)
is not a core, as claimed. Indeed, suppose that for every ¢ > 0 a function
u € C2([0,8))ND(A) may be found such that |lu—gp|| < ¢ and ||Au— Agp| =
||Au|| < e. As a consequence we get

=0},6>0

-2 < tl_”‘(o)%(u’(t) 2Oy «2¢, te]0,4]

Dividing all members in the above inequality by £'~2*0 and then integrat-
ing between 0 and s (0 < s < &) give

£ 520} s £ s27(0)
2 0) o 22~
) <u'(s) s < OB
A further intepration yields
w(0) — oo < u(z) < ul0) + —=, z€10,5]
A(0) A(0)° o

whence, also in view of the assumption ||u ~ || < e,
u(8) < e(1+8/X0)), u(d) > p(d)—e =60 ¢
which cannot both hold for any € > 0.

As a final remark, we point out that, however, if u & C*{[0, §))NC?(]0,48])
satisfies w'(0) = 0, then u € D(A) This can be easily seen as follows:
consider the function f(z) := zu'(z) (0 < z < §) and observe that f/'(0) =
u'(0) = 0. Moreover, from f'(z) = u'(z) + zv”(z) for any =z € ]0,8], we
obtain lim,_,q+ zu’(z) = 0, which, in turn, yields lim,_,o+ Au(z) = 0.

3. The operator A. This section is devoted to the study of the operator
A defined in (1.2) in the space L(0, 1). Specifically, if we set

(31) ax) =21 gy = (1 - @)A@) —oula) (0o <)

with A and g continuous functions on [0, 1], we are interested in the differ-
ential operator

(3.2) Av(z) := Bu(z) — (a"(z) — F(2))v(z), 0<z<l,
where B is the adjoint of the operator A defined in (2.2), ie.,
38 Bo(@) = gol(ew) (o) - Alapoe)) = 2 (L),
W Deing defined as in (2.3).
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Note that (8.2) or, equivalently, (3.3), makes sense for every v € Li, (0,1}
such that the functions aw and (av)’ — Sv belong to ACie: (0, 1).

Moreover, if v hag a second derivative in !0, 1], then an easy computation
shows that explicitly

34) Av(a) = =2 0) 4 (1 - 2)(1 - Mz) - 21— () (@):

Henceforth we assume that 8 € AC{0,1) with 8’ € L°(0,1) so that the
perturbing term (o {z) — 8'(z))v(z) in (3.2} is bounded and therefore any
generation result about B still holds true for A

Following [15, p. 516], the classification of the boundary points 0 and 1
for the operator B is identical to the one already carried out for the operator
A in Section 2, since the corresponding functions W, @ and R are the same
in both cases. Consequently, on account of [6, Theorems 2.2 and 3.2}, we
have the following resulis:

(1) If A(0), 4(1) < 0, i.e., if 0 and 1 are both exit boundary points, then
B is a generator on the maximal domain
(3.5) Du(B) := {v e L}(0,1) | Bv & L'(0,1)}.

(2) If 0 and 1 are both regular boundary points (whenever A(0), u(1) €
]0,1/2)) or both entrance boundary points (whenever A(0), #(1) = 1/2), then
B is a generator on the domain

(36)  Dx(B)={ve Dul(B)| lim () (o) - Bla)e(z) = 0}

In addition, if A(0) < 0 and z(1) > 0 or, conversely, A(0) > 0 and
#(1) <0, then B is a generator on the domain

Dun(B) :={v € Du(B) | lim ((av)'(2) ~ Ble)o(=) = 0}

or, respectively, on the domain

Dyw(B) = {v € Du(B) | lim ((av)'(z) — B(z)u(z)) = 0},

As already mentioned, all the above generation results still hold true for
the operator . A: the corresponding domains are exactly the same, with B
replaced by A everywhere.

A useful result is stated in the following proposition.

PROPOSITION 3.1. If A(0), u(1) € 0, then C?([0,1]

Proof. First of all, we recall that, on account of the above discussion,
A is a generator on its maximal domain Dai(A). Now consider the operator

Agu(z) = :c_(1§—_~ u(z) + (1 - z){1 — A(z) — 2(1 — ple))' (=)

1) 4s a core for A.
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as acting on C([0, 1]). Observe that A, is closely related to the operator A
defined in (2.2), with 1 — A and 1 — p instead of A and u, respectively. As
a consequence, the assumption A(0), #(1} < 0 together with the notations
and the results of Section 2 (see, 1n particular, Theorem 2.3) shows that
(Ao, Di(Ac)) is a generator on C([0,1]) having C*({0,1]) as a core. This
implies, by definition, that

20, 1)) = Du(Ac),

where 02([0 1])° denotes the closure of C*([0,1]) with respect to the graph
norm of A Therefore, on account of the Lumer-Phillips theorem (see, e,
122, Theorem 4.3, p. 14]), we get

(I~ A)(C?0,1)") = (I — A)(Dwm(4:)) = C([0, 1)),

which implies that (I—A)(C?([0,1]) %) is dense in L {0,1). Since, in view of
(3.4), A = A, when both act on CZ([O 1) = Du(4e) © DM(A) it imune-
diately follows that (I — A)(C([0,1]) “Y is dense in L*(0,1), i.e., C2([0,1]) °

is a core for A. But then, a fortiori, the closure C2([0,1]) of 02([ 1]) with
respect to the graph norm of A {which is contained in Dy (A) anyhow) is

also a core for A, which obviously yields that C*([0,1]) is itself a core, as
required. =

4. Sequences of Beta-type operators and convergence of their
powers. The main aim of this section is to show how the semigroups gen-
erated by the differential operators 4 and A on C([0,1]) and L*(0, 1), re-
spectively, may be expressed, in some cases, in terms of powers of suitable
positive linear operators of integral type, acting on the cerresponding spaces.

Let us start with the following two lemmas which will be an essential
tool in defining and studying the operators we are going to deal with.

LemMA 4.1. If f € L™(0,1) is continuous at 0, then

1 1
(4.1) Jim, a{t* 7 f(t) dt = lim (a+1) {a—t)=f(e)dt = £(0).
0 0

Similarly we get
1 1

(4.2) alixﬁlJraS(l—t)"‘“lf(t) dt = lim (e +1) {2 £(t) dt = f(1),
0 0

prowvided f is continuous af 1.

Proof. We may restrict ourselves to proving (4.1) since (4.2) follows
immediately via a change of variable.
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Indeed, for fixed ¢ > 0, choose § € 10,1{ with |f(t)— f(0)| < e if £ € [0, d].
For o > 0 we readily estimate

1

| fe2 (2 et — £(0)] = |a§t°<-1(f<t) — F(0)) dt|
1]

0

[ 1
< a7 F (1) - £(0) dt + o [12HF () — F(O)] dt
0 )

<ed* + M(1—-68%) < e+ M(1-4%),

M being an upper bound of |f — f{0)| in
same lines, we alsc get

[8,1]. Following essentially the

1
(0 + 1) {1 =87 (5)dt — 70)) < £+ M(1— )
0
Now (4.1) immediately follows from the above estimates, since 1 — 6% — 0
as & — 07 and the same happens to (1 — 8>l asa—co. m

LeMMA 4.2. Let a, 8 € C([0,1]). If o, 8 > 1 and f € L*(0,1), then the
Junction

1
(4.3) zrs (@0 B fdt 052 <)
0
is continuous on [0,1]. The same holds true if f is continuous on [0, 1], with
a,3>0.

Proof. First observe that our assumptions ensure that the integrand
in (4.3) is in L*(0,1}, anyway. To check continuity when «,§ € C([o,11),
@,f>1and f € L}(0,1), fix zq € [0,1], consider a sequence {an)ren in
[0, 1] converging to @ and for each n € N set

On(t) = galan)=1(1 t)ﬁ(an)—lf(t)}
Then obviously
liro_gn(t) = gelma)—t(] — )@=l f(4)  ae. in [0,1]

0<t<l.

and moreover |g,(t)] < |f(t)| for every n € N and ¢ € ]0,1[. Since f €
L1(0,1) by assumption, Lebesgue’s dominated convergence theorem yields

1
lim S
T—r00 0

gt dt = 1505973 (1 0P 16
0

i.e., (4.3) is continuous at xo.
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A similar argument applies to the case «,f8,f € C([0,1]), o, 3 > O
simply define ap := ming<q<y @(x), Bp := ming<y<1 B(z) and observe that

lgn ()] < IFE207 1 =), n>1, 0<t<],
where the function on the right hand side is in L*(0, 1) because ag, 85 > 0. =
Now choose A, u € C([0,1]) and for every n € N and € [0, 1] define
Anle) =2 £ M), pin(o) 1= (L - 2) -+ (o),

(4.4) ’/‘\‘n(m) =nz —A(z), Balz) =n(l~z)— plz).

Moreover set
= {'T € [011] | )\'n(m) < 0}= Gr = {m € [091} I ﬂnn(.’ﬂ) < O}a

Fyi={ze[0,1]]| Anlz) <0}, Gpn:={z€[0,1]|]in(z) < 0}.

For n large enough the sets F,, and Gy, lie very “close” to the end-
points 0 and 1, respectively; more precisely, it can be easily shown that for
any 4 € ]0,1/2], there exists ng € N such that for any n > ng one hag
F, C [0,8] as well as G, C |1 -~ §,1] and, consequently, F,, N G, = 0. Simi-
larly, Fy, 1 Gy, = if n is large enough (without loss of generality, if n > ng,
as before).

(4.5)

After these preliminaries we are in a position to define two sequences
of linear operators of integral type associated with A and p; namely, for
every n > np we consider By » . : C([0,1]) — C([0,1]) such that for every
f € C([0,1]) and z € [0, 1] we have
(4.6)  Boauf(z)

fo )11 — panlE=1p(s) g
i Ap(2), pm(z) > 0,
- BOn(@), @) (o) ()
£{0) if An(2) <0 < pn(2),
(1) if g () <0 < An(z),

and By, 0 LH0,1) — C([0,1]) defined by

(4.7) Bn’)\,”f(ﬂﬂ)
o) (1~ 1)) £(8) e
B0 (@) + 1, fin(o) + 1)

if An (), Bn(z) > 0,

= {fn(@) + DL —0)@pydt i Xo(z) < 0 < Fin (),

(n(z) + 1) {4 f (1) at if fin(w) < 0 < Xn (@),

[ R N e o T B

\
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for any f € L'(0,1) and z € [0, 1], where B(u,v) := Sé g1 - 1)t
(u,v > 0) is the standard Beta function.

As an historical remarlc, we recall that Tupas [18, p. 63 and p. 37] studied
the operators B, ,, and By, In the particular case A = u = 0. In addition,
as a first generalization, the operators By y, when g = A and A([0,1]) C
10,1] have been considered in [5] {see also the discussion below).

Note that our definitions of By » , and En, A, 8re meaningful: indeed, the
corresponding kernel is in L1(0,1) in (4.6) and continuous in (4.7). Clearly,
those operators are positive and linear with ||Bp .l = |1f§n,,\,# | =1, as
may be easily verified.

Moreover, a careful application of Lemmas 4.1 and 4.2 ensures that really
each By, »,, maps C([0, 1]) into itself, whereas each B, a,, maps L' (0, 1) into
C([0,1]), as well.

Also observe that, on account of the previous discussion about the prop-
erties of the sets defined in (4.5), for any n > ng the definitions (4.6) and
(4.7) cover all the possible cases, since for such n the situations “Ap(2), pn(z)
< 0" or “An(2), fin(z) < 07, respectively, never occur.

Finally, it seems worth while pointing out that if A(0) > 0 then the
sets F}, are definitely empty and so are the sets Gy, if (1) > 0. Therefore,
whenever A(0) > 0 and p(1) > 0, we get definitely

S; t)\n(m}«ml(l — t)Hn (I)_lf(t) dt

4.8 B, = , Jed(o,1),
( ) ,)\,.Lbf(m) B()\n(a:),,u,n(m)) ([ })
and, by a similar argument for ﬁn and én,
LiXa(@) (] — $)Fa(@)
o~ t 11—t 1) di
(19)  Bonufle) = W UZIMTIOE -y fag y,

B(n(z) +1,fin() +1) |

provided A{0} < 0 and u(1) < 0.
A first approximation result together with some guantitative estimates
of the rate of convergence is indicated in the next theorem.

TueoREM 4.3. We have

(4.10) Jim [[Boyuf = fl =0, feC(01]),
(4.11) Jim [|Bapf — fli=0, f&LN0,1),

i.e., the sequences (Bpau)nzn, and (ﬁn,;\#)nzno are positive approxima-
tion processes on C([0,1]) and L*(0,1), respectively. In addition, for n large
enough,

(4.12) I1Bapuf — FI < Kalw(f, 1/v/n) + (1A + Il (£, 1/n)),
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(4.13) 1Baxuf — f”l‘:7487(f’2v”)

the positive constanis K; (i = 0,1) depending only on the functions A

and p.

Proof. Indeed, by the elementary properties of the Beta function, i is
easy to check that for every n > ng, p € N and z € [0, 1] one has

z)+k

H if Ap(2), pn(z) > 0,
(1) Boruep(z) = An( m) + pn () -+ K |

o if An(z) <0 < (),

1 if pn(z) <0< Ap(x).

In particular, choose i = 1,2 and observe that for fixed £ > 0 there exists
ny € N snch that
i1

Anlz) + K
kl;[o W@ = i@ E

<e n>mng, zei0,1]

Furthermore one can find § € ]0,1/2[ such that e;(z) < ¢ if z € [0,4] and
1~ ei(z) < eif z € ]1 —4,1]. As a consequence, since F,, C [0,4[ and
Grn C]1—4,1] for all n > ng, after setting 7 = max{ng, n1}, in view of (1)
we obtain

|Brapei(z) —ei(z)| <e, nzm zel0l].
Obviously By, a .20 = € for every n > ngy and therefore we have proved that

lim Bn/\,u.ez—en i=0,1,2,

n—00

uniformly on [0, 1]. This implies (4.10) on account of Korovkin’s theorem
(see, e.g., [3, Proposition 4.2.4, p. 214]).
In order to prove (4.11) as before we compute

Xn(w): En(m) 2 0,

g Xnlz) +k+1
1;[ n(Z) + fn(®) + k42

,un z)+k+ 2 ifxn(m)<05ﬂn(m),

_11(32__*.:.1_
L An(2) +p+1
for every n > ng, p € Nand €0, 1].

Moreaver the sets I, and G,, defined in (4.5) are both measurable with
m(F ), m{Gnr, ) — 0 as n — oo, m being the Lebesgue measure. In view of

(2) Bupues(a) =4 H __pm__

if fi,(z) < 0 < An(z),
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(2), for all n > ng and 4 = 1,2, since F,, and G, may be supposed to be
disjoint, we readily obtain
1

Sign,)\.nei@) — ei(z)idz
Q
= [ 1Buppeclz) ~ es(@)|do + | |Bospeile) — es(@)| do
ﬁﬂ‘ @ﬂ.
+ S |gn,)\,pei(w) - ei(m)! dx
[0\ (FrUGn)
m(E) + m(Gy)

i—1

Xn(z) +k+1
11 An(2) + Tin(z) + 5+ 2

+
0,11\ (FrUG,) k=0

—ei(z)| du.

Since clearly
o Xn (SC) + k41
ko An(E) 4 fin(z) + k42

uniformly on [0, 1], the above estimate implies that

—ei{z) =0

1
hm S|Bn>\,_bet(:c)—ez(:c)\d$—0 i=1,2.

The same happens for i = 0, because By, a,n€0 = €g and therefore (4.11) is
established as well, on account of Korovkin's theorem (see, e.g., [3, Propo-
sition 4.2.5, p. 215]).

The estimate (4.12) may be easily established as in [5, Theorem 1.2, for-
mula (1.10)], on account of the definition (4.6) and the elementary inequality

w(f,t8) < (L +t)w(f,8) (£,6 > 0). To prove (4.13), set dy(z) 1= Bn 2, u%2(x)
for n > ng and z € [0,1]. Then, in view of (2), a direct computation yields
Io(1—x) if Na(2), fEn(z) > 0,
dn(z) = { 22 if An(z) < 0 < fn(), n — 0o,
(1-2)2 i fn(z) < 0 < An(z),
with 22 < ||A[I?/n? and (1 — z)? < [|p]|*/n® (see (4.4)). Therefore, for a
suitable constant K» > 0, we get ||dn|| < Ka/(4n) for n large enough and
this implies (4.13) by virtue of [23, Proposition 4.3, p. 77]. w

The next theorem establishes a Voronovskaya-type result for the opera-
tors By a,p and Bp e
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THEOREM 4.4, Consider the differential operators A and A defined in
(2.2) and (3.2), respectively. Then, if A(0), u(1)>0, for every u € C2([0,1]),

(4.14) Jim n(Bna,pu(z) — u(z)) = Au(z)

uniformly with respect to x € [0,1]. Similarly, for every v € C%(]0,1]),

1 1
(4.15) nlingong (B, w0 () — v(2)) dz = Sffu(z:} dx
0 0

provided A(0), p(1) < 1.

Proof. In order to prove (4.14) we shall apply a result by Mamedov [19].
First note that a direct computation shows that for any n > ng and z € [0, 1]
such that A, (), un{z) > 0 one has

(1 — 2)A(z) — wp(z)

(1) By uthe(z) =

Mnl@) + pm (@)
1
Bruile () = G T ) Ol @) 7 1)
x nz(l - 2) + (1 — ) (A (z) + A(z))
+ 2 (P (@) + ple)) + 22(1 — 2)M(z)u(z)],
Bn }\,;1.11194( ) P(n:mﬂ\(m):!‘b(m))

Hk oPn(®) + pn(z) +K)

P(n,z, A(z), u(z)) being a pelynomial in the variables n, z, A(z), u(z) where
the power of 7 is at most 2. For a given & > 0, since A(0) > 0, u(1) > 0 by
assumption, there exists § € ]0,1/2{ such that —A(z) + z(Az) + u(z)) <
¢ and — < z(A(z) + plx)) < e for z € [0,8] as well as — < p(x) +
(z—1){A(2) + p(z)) and —& < (2—1)(Ma) -+ p(z)) < eforz € ]1-4,1]. We
may assume £y, C [0, and G, C]1 —6,1] for all n > ng and therefore, by
using (1) and (4.8), it is not difficult to verify that there exists @ € N such
that

|n‘8n.f\:!—5¢-'l=(m) - )\(ﬂ.’!)(l - -’L‘) + .'JS[J.(CB)I < &, "= T, € [03 1]:
ie.,
T B 0) = A@)(L ~ 2) ~ 2(e)

umformly on {0,1]. Arguing similarly one can easily check that in addition
nBn, 3,05 (z) — 2(1—x) and By, »,, ¥ (z) — 0 uniformly on [0, 1] as n — oe.
Furthermore for every n > ng we have supg< <1 7B u%2(z) < oo, which
completes the proof of (4.14) by the result of Mamedov [19].
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To accomplish (4.15) when A(0), (1) < 1, first observe that, when acting

on C%([0,1]), the operator A may be written as in {3.4). Now, for fixed
n > ng and v € C2([0,1]), we may estimate
1

@ || (B uv(e) —v(o) -~ Av(z) e

0
< { niBuaur(e) ~v(@)dz+ | B, uu(z) — ()| de
Fn G
+ || dv|(m m(Gn))
+ S |n(Bn,1—,\,1—,u’U(I)~'U(£E))—gv(xﬂdm
[0,1\(FrliGr)

=D+ L+ I3+ 1,

This is quite easy to see in view of (4.4)—(4.7): simply observe that if = €
[0, 1]\ (F UGL), ie., if Au(z), Fin(z) = 0, then 0bv1ously (1= A)n(z) > 0,
(1- ,u,)n(a:) > 0 and, in addition, By, » 4v(z) = Bp1_x1_.0(2).

Now we show that each I; tends to 0 as n -— co. This is rather obvious
for I3 and I;: indeed, 'm(Fn) m(G n) — 0 and the same happens for the inte-
grand in [y, uniformly on [0, 1], on account of the assumption A(0), u{1) <1
and (4.14). Regarding I}, since F, [0, |A|l/n], from (4.7) and the classical
mean value theorem for integrals, for any n > ng we have

Al 1
(3) Lhsn | |@@)+1]0 - 0@ dt - o(z)|d
0 0

1
= NGB (50) + 1) § (1 = e n(8) d - w(sn)]|
0
for a suitable s, between 0 and ||A||/n. Since s, — 0 and i, (s,) — o0 as
n — 00, in view of Lemma 4.1 and the continuity of v at 0, we conclude
that the last term in (3} tends to 0, whence I; — 0, too. In a similar fashion
one can prove that J» — 0 and therefore (4.15) is fully established. m

REMARK 4.5. Observe that for any compact subset X of ]0,1[ and for
any f € C*(K),
lim B;,A’“f = fl

uniformly on K, provided, in addition, X, g € C*(K); here we still denote
by f a C*?-continuation of f to [0,1].

Indeed, for n large enough and = € K, By . f(2) is defined as in (4.8)
(see the discussion after definition (4.5)); moreover, differentiating under the
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integral sign yields

o f (@) = N, (@) (Boyp,u(£108) (&) — Brsu f(2)Ba, log(2))
+ 1 (2) (B (£ log (1 = D) () — Brp,puf (@) B, log(1 — }(z))

where again all the functions at which we evaluate By, have to be un-
derstood as C2-continuations to [0,1]. A repeated application of (4.10) and
(4.14) gives the assertion.

Finally, note that if f € C%(]0,1]) then

'nzli]i%o B;li)\:#f = fl
pointwise on ]0,1[ and uniformly on every compact subset of |0, 1[.

Now we are in a position to state the main results of this section about
the existence of Cg-semigroups on C([0,1]) and L*(0,1), having A and A
as generators and which may be expressed as the limit of powers of the
operators By . and B, 3 ,., respectively. To this end we consider the linear
operators Z» ,, : D(Zy ) — C([0,1]) and Zy , : D(Zy,) — L*(0,1) defined
by

{(4.16) Z)\,p(f) = r}irn;o n(Bn,)\,pf - .f),
(4.17) Zrp(f) = Jim n(Boauf =)

on the maximal domains

D(Zy ) = {f € C([0,1]} | r}illgon(sn,),p(f) — ) € C([0,1]) exists},
D(Zy,) ={f € L'(0,1) | o (B f — ) € LH0,1) exists},

which are dense in the corresponding spaces, because C*([0,1]) is a subset
of them both by Theorem 4.4.

The first theorem relates to the operator A4 (see (2.2)), where the domain
D({A) is defined according to (2.7).

THEOREM 4.6. Let A, u € C([0,1]) be such that A(0), u(1) > 1/2 or, al-
ternatively, A(0)=p(1)=0 with A(z)/z=0(1) as z — 0 and p(z)/(1l —z)
= O(1) as x — 1~. There exists a Co-semigroup (T, (t))i>0 of positive con-
tractions on C([0, 1]} with generator (4, D(A)) such that for every t > 0 and
Jor every sequence (k(n))new of positive integers satisfying lim, oo k(n)/n
=t, we have

(4.18) Tult) = Jim BE(A)“ strongly on C([0,1]).

In particulor, for every t > 0,
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(4.19) Ty u(t) = Yim BYY . strongly on C((0, 1)),

nt] being the integer part of nt.

Proof. Under the above assumptions on A(0) and w(1), (4, D(4)) is
the generator of a Cp-semigroup on C([0, 1]), as already pointed out in Sec-
tion 2. On account of Theorem 2.3, C?([0,1]) is a core for A and therefore
(I — A)(C’z([O 1])) is dense in C([0,1]). Applying Voronovskaya’s formula
{4.14), in view of (4.16), we get Z) . = .4 on C3([0,1]) and consequently
(I = 2Z5,)(C*([0,1])) = (I — A)(C?([0,1])) is dense in C([0, 1]}, which obvi-
ously implies that the range of I — Z, ,, is dense as well. Since [[Ba .|| =1
for every n > ng, on account of a result by Trotter [26] {see also [17, Chap-
ter 9, Theorem 3.6] as well as [22, Theorem 6.7, p. 96] or [13, Theorem 6.5,
p. 31}), we conclude that the operator (Z ., D(Z), #)) is closable and its
closure (Z,,,, D(Z,,,)) is the generator of a Cp-semigroup {Ta,u())ez0 of
contractions on C([0, 1]} satisfying (4.18).

Obviously every T} ,(t) is positive. Moreover, Z, , = A on C2%([0,1]),
proving that C2([0,1]) is also a core for Z, ,. Therefore D(Z, ) = D(A)
and Zy , = A, as required. »

In a very similar way, by using Proposition 3.1 together with formula
(4.13), one can prove the following result concerning the operator (A, Dy (4))
defined according to (3.2) and (3.5) (with B replaced by A).

THEOREM 4.7. Let A\ p € C([0,1]) be such that A(0),u(l) < 0. There
erists a Cg-semigroup (T)‘,#(t))tzo of positive contractions on L*(0,1) with
generator (A, Dy{A)) such that for every t > 0 and for every sequence
(k(n))nen of positive integers satisfying limy, .o k(1) /n = t, we have

(4.20) Tult) = Jim BYE)

oy Strongly om L0,1).

In particular, for everyt = 0,

(4.21) T, ult) = Jim BLJ strongly on L*(0,1).

As a direct consequence of Theorems 4.6 and 4.7, by classical semigroup
arguments (see, e.g., [21, Chapter A-II] or [22, Chapter 4]}, the following
Cauchy problems:

dult d't)(t) T
{%:AU(@, t>0, {—dt—~Av(t)’ t20,

u(0) = uo, up € D(A), w(0) = v, v € Dy(A),

have unique classical solutions w(-) and v(-) such that
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u(t) = T u(thuo = ﬂl.—H»%o B"w)\,t»[mluﬁﬂ

[n1]

N _ £>0.
v(t) = Dhut)vo = ,}i{%an,A,H”O’

(4.22)

REMARK 4.8. From (4.22) it follows that a better acquaintance with the

properties of the Beta-type operators By i, and By x,, would allow one to
derive some qualitative information about the solutions u(-) and v(-) of the
above Cauchy problems. In our case, the functions A and p appearing in
the definitions of our operators are very general; however, we point out that
for particular A and g a finer and rather exhaustive analysis is already well
known: we refer the reader to [5, 18] and to the references quoted therein in
this respect.
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