Now for a numerical polynomial \(p_n(z) \) of degree \(n \) the following inequality of S. N. Bernstein holds:

\[
|p_n(z)| \leq \left(\frac{a' + b'}{a} \right)^n \sup_{|t| \leq a} |p_n(t)|,
\]

where \(t \) is real, \(z \) complex and \(a' \) and \(b' \) are the semiaxes of the ellipse with foci \(a \) and \(-a \), passing through the point \(z \).

We fix an \(a > 0 \) such that

\[
g \left(1 + \frac{2}{a} \right) < 1.
\]

There are (uniquely determined) polynomials \(P_n(z), Q_n(z), \ldots \) defined on \(X + iX \) with values in \(Y + iY \) (see [1]) and with the property

\[
P_n(z) = P_1(z), \quad Q_n(z) = Q_1(z), \quad \ldots \quad \text{if} \ z \in X.
\]

We define the set \(S_\delta(U) \): the point \(z_1 + \delta z_2 (z_1, z_2, X) \) belongs to the set \(S_\delta(U) \) if \(z_1 + \delta z_2 \in U \) for every real \(t \), \(-a \leq t \leq a \). The set \(S_\delta(U) \) is open (see [1]) and the following inequality holds whenever \(z \in S_\delta(U) \):

\[
|Q_j(z)| \leq 2C g \left(1 + \frac{2}{a} \right)^{j/2} \left(1 + \frac{2}{a} \right)^{j/2} (j = 1, 2, \ldots).
\]

This follows easily from Bernstein's inequality if we set \(z = z_1 + \delta z_2 \) and note that \(|Q_j(z_1 + \delta z_2)| \leq 2C g \), if \(-a \leq t \leq a \), \(j = 1, 2, \ldots \).

The sum of the series

\[
P_1(z) + \frac{Q_1(z)}{z} + \frac{Q_1(z)}{z^2} + \ldots
\]

is bounded and \(G \)-differentiable in \(S_\delta(U) \). By definition this sum is an analytic operation (see [2], p. 51).

Norm. An analytic operation may be uniformly approximated by polynomials only locally. This is an easy consequence of the existence of analytic operations defined on the whole space \(X \) and unbounded in a sphere. Take for example

\[
X = E^n, \quad x = \sum_{j=1}^{N} x_j, \quad \sum_{j=1}^{N} |x_j| < \infty, \quad Z = E^1, \quad F(x) = \sum_{j=1}^{N} e^{kx^{N-k}}.
\]

This operation is analytic, as can be shown readily by extension to the complex case.

References

(Reçu par la Rédaction le 13.5.1953)