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where Fy is the functional

Pr(M)=F(EM) for MeS.

Since Lezanski's hypotheses about £ and X were not symmetrical,
his results ave more complicated than those in §4. He examined only
the equations (58) and (60). Instead of the equations (57) and (59) he
examined the equations conjugate to (58) and (60) in the space E*. Be-
gides the equation (58), he examined, more generally, the equation??)

E(I+ATK)=&.

However, this generalization iy not essential since Lezanski’s [2]
(p. 252) determinant of this equation coincides with the determinant
D(B+AFg) of the operation I4ATp,=I+iTxK.

Notice that Theorem 2 remains true if we admit the original hypo-
thesis of Lezanskill).

The connexion between Lezafski’s [2,3] theory and Ruston’s
[5,6] theory should be discussed separately. We notice here only that
Lezanski’s formalism is more general than that of Ruston (the question
whether they are equivalent remains open). Therefore the theorem on
multiplication of determinants holds also in Ruston’s theory.
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1) (I+ART)té=§, inthe original notation of Lezafski.
1) See Sikorski [7].
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On the two-norm convergence
by
A. ALEXIEWICZ (Poznah)

G. Fichtenholz [4] has introduced in gome concrete Banach
spaces a kind of convergence weaker than that generated by norm.
In a previous paper [2] I introduced a general convergence in linear
spaces which I called two-norm convergence, containing as particular
cases the convergences of Fichtenholz. In this paper?®) I shall complete
the results obtained in [2].

1. Let X be an F-space (Banach [3], p. 35) and denote by ]|
the norm?) in X. Suppose that in X a second norm [jz|* is defined, not
stronger than |z||, i. e. such that

& lleall >0 llalf*~>0.

A sequence {m,,} of elements of X will be called ;)-convergent to @y
if it iy bounded with respect to the norm |z|| %) and if |z, —ao*=0; we
shall then write

implies

y-lima, =z, or Ty
n

Convergence y will be termed the fwo-norm convergence. The space
X supplied with this convergence will be denoted by X, — it is evidently
an L*-space (Kuratowski [5], p. 84), moreover, addition of elements
and multiplication by sealars are continuous.

A convergence generated by norm will be termed the morm-conver-
gence. The convergence y is in general not equivalent*) to a norm-con-

1) The results of which were presented on May 23th 1947 to the Polish Ma-
thematical Society, Section of Poznaf. Since that time Orlicz [7] has developed
a theory of Saks spaces which are closely related to the notion of the two-norm
convergence.

2) Here by a morm is meant an F-norm; it is a non-negative functional [xf,
satisfying the postulates: (a) [lo|=0 if and only if z=0; (b) lz+yl|<|=l+lyl;
(€) an~>ao, |ln—2oll-»0 implies |anon—agaoll 0.

3) The sequence is bounded with respect to (or under) the norm ||z] if t,~>0 implies
l[tn@nll>0. This notion goes back to Banach.

Y) Two convergences a and B in L*.space are said to be equivalent if the
classes of convergent sequences in both convergencies coincide and the limits
under both are equal.
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60 A. Alexiewicz

vergence, unless the norms ||| and llz|* are essentially the same. This
results from the propositions to follow.

1.1. If the convergence y is equivalent to & norm-convergence, it is equi-
valent to the convergence generated by the norm ||z|.

For the proof see [2], 2.2.2, p. 187.

1.2. Let X be a Banach space under the norm |x|. Each of the following
conditions is mecessary -and sufficient that the convergence y be equivalent
to a morm-convergence:

(a) gl 0 implies boundedness of the sequence {wn} under the norm
llells ' ‘

(b) the norms ||z]| and |z|* are equivalent®);

(¢) the space X is complete under the norm |o|f*.

Proof. (a) implies (b). Let |x,[*—0, then as in the proof of 1.1
we can show that |@,)->0; conversely ||z,|--0 implies [z,[*—~0 by (i).

(b) implies (¢). Indeed, X is a Banach space under the norm [jx].

(e) implies (a). Since (i) is satisfied, by a theorem of Banach ([3],
P. 41) the norms |jz] and |jz|[* are equivalent.

The sufficiency of the condition (b) is obvious. The condition (a)
is necessary. Indeed, let [a,|[*—0, suppose that |jm,|l>oco, and set Z,=
=, /||| Then ,-50, whence by 1.1 [&,/|-+ 0. This, however, is impossible,
for [inll=1.

The proposition 1.2 is true also if X is 2 B,-space (Mazur and
Orlicz [6]).

A convergence a in X will be said to be metrical if it i3 posgible
to introduce in X a distance g(x,y) so that z,>, be equivalent to
0 (%5 %) = 0.

1.3. Ifthe convergence y i metrical, then y is equivalent to the conver-
gence generated by the norm ||x|.

Proof. Suppose the contrary, Then there exists a sequence z,>0
such that inf|z,]|>e>0. Write xy,=kw,; clearly y-limwz,=0 for k=
n n

=1,2,...; there does not exist, however, any sequence n;— oo of indices
such that y-limay,, =0. Indeed, let ¢,=Kk", then |8, 2p,l=|2,l does
k

not tend to 0. Thus the convergence y is deprived of the following pro-
perty which belongs to all metrical convergencies: if limay,=a; for
n

%) 4. e. the convergences génerated by these norms are equivalent.
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k=1,2,.

.. and limu, =2,, then there exists a sequence n,~oo of indices
k
such that Limay,,, =z,.
k

2. Now we add two postulates. The space X is not complete under
the norm |jz||* unless the convergence v is equivalent to a norm-conver-
gence. By X* we shall denote the completion of the space X under the
norm |z[*. We now suppose the following postulates:

-(i) If the sequence {m,} is bounded under the norm [z}, zyeX™,
and ||z, — %,||*—=0, then xyeX.

(iif) I @,,mp¢ X and |lo,—al*~>0, then [z, <lim|jx,].

The postulate (ii) implies that the convergence y is sequentially
complete®) ([2], p. 189), and it is obvious that (i) is also necessary for
the sequential completeness of the convergence y.

Now we present some examples of spaces with the y-convergence
satisfying the conditions (i)-(iii)").

A. The space M,. For X=M set
1
llo* = Df ()] dt,
then X*=1I. The convergence y may be characterized as follows:

y- hmwn_xo means that esssup |z, t)l<K and hmasa;,,(t)_mo( ).

Thls follows from the fact that for eswnma.lly bounded sequences
the convergence in mean is equivalent to asymptotical convergence.
B. The space L,. For X=L write

llr* = f Ja(

then X*=4S. Conditions (ii) and (iii) are satistied by Fatou’s lemma. The
convergence y may be characterized as follows:

O+ @I dt,

1
y-lima, =, means that [|u,()|di<E and lim as a,(t)= z,(t).
n 0 n
C. The space L;. For X=L? write

Hmll*=of | (t)] dt,

) 4. e. has the following property: if py—oco, gn—>oc0 implies y-hm(mp" D)=
=0, then the sequence {w,} is y-convergent.

) For the definitions of the spaces M, L,L% S, m,s sese Banach [3], p. 9-12;
these spaces are denoted there by (M), (L), (L), (8), (m), (s).

4*
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52 A, Alexiewicz

then X*—L. We easily see that conditions (i)-(iil) are satisfied: (i) —
by the inequality of Schwarz, (i) and (iti) — by Fatou’s lemma. The
convergence y is characterized as follows:

1 1
y-lima,=u, means that [ |z,(t)*d%#<EK and [ | (8) —ao (8)| dt — O
7 0 [

D. The space V,. Let ¥V denote the space of functions x=x(t)
of bounded variation in (0,1>; the norm is defined as |jz]=|»(0)I+
L varz(t). For X=V write |jz/|* =sup |z ({)|, then X+= the space of boun-
ded functions which are uniform limits of functions belonging to V. Con-
ditions (i)-(ili} are satisfied, the convergence y is characterized as fol-
lows:

y-lim z, =%, means that var z,(t) <K and @, (f)—~=(t) uniformly in
€0,15.

E. The space m,. For X=m denote by m={un] the generic element
of m and write

ol = 32 w11+

Then X*-=s. Conditions (i)-(iii) are evidently satisfied. The convergence
y is characterized as follows:

y-lim x, =2, means that |up,|<K and limy,=ey for n=1,2,...
P

b2
(bere = (), To=ton})-
. 3. A functional () defined in X, is said to be y-linear if it is ad-
ditive and y-lim @, =, implies lim &(z,)=&(w)-
k2 n

Every additive functional continuous under the norm llw|* s
y-linear; hence if the space X* is of By-type, then there exist non trivial
y-lineax functionals. Every y-linear functional is obviougly linear under
the morm |zj|. So it may happen that in X three kinds of- linear
functionals are defined. We shall see below that in particular cases those
types of linear funetionals may coincide. ‘

Fichtenholz has shown ([4], p. 199) that the general form of
y-linear functionals in M, is

@ - £(=) =“fﬂﬂ(f)g(i)dt

where g(t) is an arbitrary Lebesgue integrable function. The same author
has shown that the general form of y-linear functionals in V, is

. 1
&)= Ow(O)-r—ufg(t)dm(t)
with arbitrary continuous g(t).
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3.1. The general form of y-linear functionals in L} is (1) with g(?)
essentially bounded.

Proof. The sufficiency being obvious, we prove only the necessity.
If &(x) is a y-linear functional, it must be linear under the norm |z,
hence of form (1) with g()eL? (Banach [3], p. 64). Suppose, if possible,
that esssup |g(f)|=oco, then there exists a sequence {ay), such that
a,—oo, and such t]nat the set

Ent=E{a,.<ig(t)l<a,.+1}
is of positive measure. Write

[g(t){ﬂg(t)}zdt}—l for tekH,,
1,)=1 En

elsewhere.

T (
Obviously
1
[lea(2dt=1
0

and

H 1
flan (@)t = [loa ()@= [loIa] lg@pag <=t
¢ En En En A,

hence z,2>0. Now
1
f(aan) =6|'50n (t) g(t) di=1;

this, however, is impossible, for £ is y-linear.

Proposition 3.1 shows that the y-linear functionals may be identical
with the functionals linear under the norm [z|[*. The following proposi-
tion shows that those functionals may also coincide with the functionals
linear under the norm (.

3.2. The general form of the y-linear functionals in m, s
2 (@)= 21 Wyl

with Y |a,| << co.

n=1

Proof. Let the functional & be y-linear. Denoting by e, the n~th
unit vector in m, write

n
= Z U €x y
k=1
then z,7>, whence &(2,)—>&(#). Now set a,=£(e,), thus

n n o .
£(z) :]imf(z'wkek)=lim2@kuk= > g«
n \i=1 % =1 foms
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o o0
The series Y axw;, must converge for every {ugjem, hence > [ay|<co.
k=1 k=1

It follows that every linear p-functienal is of the form (2). It is obvious
that the converse proposition is also true. :

If the space X is not of By-type, all the linear functionals may be
trivial. This is shown by )

3.3. Any y-linear functional in L, is identically equal to 0.

Proof. Every y-linear funetional in L;, is linear under the norm

le1=0ﬂm(t)l dt,

hence of form (1) with essentially bounded g (). Suppose that g0, then
there must exist an ¢>0 such that

H=E{lg(t) >}
is a set of positive measure. Let H,CH, |H,|— 0, |H,|>0 and write
(|H,"signg(t) for teH,
2, (1) =
\ 0 elsewhere.
Since

lim as x,(t) =0 and } |z ()| dt=1,
n 0

we obtain y-lim 2, =0. On the other hand
n

&(,) ={%(t)y(t) dt:lHnl—;{Ig(t)l dizs,

hence &(z,)non—0, which contradicts the y-linearity of é&.

4. Let X and Y be two Banach spaces, each provided with a y-con-
vergence. An operation U(z) from X to Y is called y-y-linear if it is ad-

ditive and #,->a, implies U(2,)%U(x,). If the convergence y in ¥ is
metrical (hence equivalent to that generated by the norm |yil), any
y-y-linear operation will be termed y-linear.

An important tool in the functional analysis is the theorem of
Banach on the linearity of the limit of a sequence of linear operations
in F-spaces. That theorem does not hold for y-linear operations, as may
easily be shown on the example of linear functionals in ¥, . Hence it is
desirable to find sufficient conditions bearing on the space to engure the
validity of that theorem. One such condition?®) is

8) This condition is a generalization of a condition due to Saks {8].
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(iv) Given any >0 and #,eX -such that |jzj|<1 there is a 6>0
such that every element x satisfying the inequalities [z{<1, llwlff < 8 is
of the form m=um,—&, where |[z;]|<1, llz—azl*<e.

" We suppose in the sequel conditions (i), (i), and (iv) to be sa-
tisfied, and the spaces X, Y*, Y to be Banach spaces.

4.1. If the operations Uy,(x) are y-linear and converge n X,, to Ul(x),
then U(x) is also y-linear.

Proof. Denote by S the solid sphere |jz[|<<1 in X. If we define the
distance in § as ||z, — %,|[", 8§ becomes a complete metric space. For reS
write

Val@)=Un(zl8),  V(2)=U(l8).

‘We observe that ,,%,,2;+2.€8 implies Vo (81 89) =V (#1) = Vi (@)
V (0,-+2,) =V (%)L V (z,). The operations V, are continuous in § and
converge in § to V; hence they are equicontinuous at one point x, (see
for instanee [1], p. 5). Thus, given #>>0, there exists an ¢>0 such that
llo—w,)<e, meS implies [V, (x)—Vy(m)|<y for n=1,2,... We choose
now by (iv) a 6>0 corresponding to ¢ and . If ||z[*<8, weS, then
there are x,,%,¢S such that z=z,—,, Jloy — 2ol <e, |lwy —||* < ; hence

[V (@) =11 Vn(221) — Vi @) [ W 03) — V@) | -1 V) — Vo) | <27
Now the continuity of V in the sphere § follows easily and this
implies the y-linearity of U in the space xX,.
4.2. If the operations U,(w) are y-y-linear and converge in X, to
U(x), then U(x) is y-y-linear.
Proof. To prove the proposition it suffices to show that
U, (z,) 5 0.

Lot 2, 0,9,0; then &,=s,1% With s,==1. Write V,(#)=1,Un(®);
these operations fulfil the condition that
[V (2)| =0
Indeed, choose t{,—>oco so that {i,z.)l—0, then Vp(tnzn)_y,.O, whence
W2 Vo (fn 20| = | Vpl2)l| = 0. Now, [[Va(z)]—0 for every x, since 7,—>0.
By the Banach Theorem ([3], p. 80)

sup || V()| <K,
llel<t
whieh implies liﬁnUn(mn)"=”Vn(8nann)”—>0~

Thus the sequence {Un(wn)] is bounded with respect to the norm

lyll. The operations are y-linear as operations from X to Y*; hence as

w50 implies

Il —0  implies for p=1,2,...
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in the proof of 4.1 there is & >0 such that | Un(m)]* <e if ||z <0,
leli<1. :
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Analytic operations in real Banach spaces
by
A, ALEXIEWICZ and W. ORLICZ (Poznan)

In the treatise Functional Analysis and Semigroups Hille [5] has de-
velopped a complete theory of analyfic operations in complex Ba-
nach spaces. The fact that the spaces under consideration are complex
is essential for the methods used by Hille, for they are grounded on the
use of the theorem of Hartoggs. On the other hand in many applications
of Functional Analysis analytic operations in real Banach spaces play
an essential role. Therefore it seems worth while to transfer the theory
of Hille to the case of real Banach spaces. That is the purpose of this
paper. We show that mutatis mutandis the main theorems of the theory
can be restored in real Banach spaces. In the development of the theory
we follow closely the ideas of Hille: we consider firstly the series of
discontinuous powers (called the p-powers) and then pass to the conti-
nuous powers. The paper is divided into two parts. In the first, after
introductory considerations, we establish some properties of analytic
operations, in the second, sections 5 and 6, we formulate the
extension principle and by its use we extend locally every convergent
power series o a power series in an appropriate complex Banach space,
converging also locally. Although the results of the first part of the
paper might be obtained from the extension principle, we preferred to
exhibit them independently, and so to use the extension principle only
in the cases where its use seems to be indispensable. The principal tool
in tackling the real case is the use of Leja’s theorems on sequences of
polynomials.

1. Preliminary theorems.In this section we present the auxiliary
theorems dealing with the polynomials of real and complex variables
taking on values from Banach spaces. Those theorems are well known
for numerically valued polynomials.

Let

n
Plu)= 3 au®
k=0
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