A theorem on the structure of linear operations
by
A. ALEXIEWICZ (Poznah)

In a previous paper [1] I proved a general theorem concerning
linear operations depending on a parameter?!). This theorem confains as
particular cases some theorems of Saks [7], [8] concerning the structure
of the sequences of operations with valnes in the space of measurable
functions, viz. those which deal with the behaviour of the sequences at
individual points. Some new theorems of Saks’s type were also obtained
in [1] as applications. However, the theorems of Saks, dealing with the
behaviour of the sequences in the mean, were not obtainable from the
results of [17.

It is the purpose of this paper to generalize the results of [1] so
as to fill the above-mentioned gap.

I am very obliged to Mr. R. Sikorski who has called my atite
to an error in the first draft of this paper.

1. Preliminary definitions

T will denote an abstract set in which a o-algebra € of subsets
(Halmos [8], p. 28) is defined. We suppose that u is a s-measure in G,
such that u(T)<co. Under these circumstances the measure space
(T,€,u) is defined, namely on introducing the dlstance of two sets
61,6,6 € by the formula

e(215€s) =/‘v(("1 +e5)— 3152)

we get a pseudometric space. Identifying two sets e;,6,¢€ if p(ey,6,)=0
we get a moirie space which is also denoted by (T',€,u); this space is
complete. We ghall suppose in the sequel that the space (T,C,u) is se-
par - . (it is usual to call the measure separadble in this case). By e,h,

!} This paper has many points in- common with the paper [6] of Orlicz
which also aims at deducing some theorems of Saks’ type from a general theorem.
The methods of Orlicz are different from ours and are suitable for systems of
operations depending only on a diserete denumerable parameter. Professor Orlicz
hag been the first to introduce the operation U(xz|e) (see below).
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I NN A S ‘we shall denote sets of €. I will denote an arbitrary

linear space.

By Y we shall denote an F-space (Banach [2], p. 35) which has
the following properties: the elements of ¥ are functions from T to I,
and the addition and multiplication by scalars are defined in the
usual way. Denoting by v,, for every ye¥ and ee¢€, the function defined

by the equations
y(t) for tee
Ye (t) = { ’

0 elsewhere,

we suppose the following postulates to be satisfied:
(ay) ye¥, eeC implies y,eY;

(a2)  ye¥, eeC implies [y, lI<lyll;

(as)  u{e,)—>0. implies [jy,] 0.

These postulates give to the elements of Y a certain character of
measurability. We deduce easily

(ag)  p(e)=0 implies llg,[=0,
(as5) Y, €Y, y,eY implies y, ,e¥.

Indeed, (a,) being trivial, we prove only (a;). BY (31) #5—.=¥)r—-€X,
hence y,.,=y,+¥;—. belongs to ¥ as the sum of two elements of the
space. .
X will denote a separable F-gpace. .

B will stand for an analytic set?) in Y satisfying the following con-
dition: :

(by) yeB;, eeC implies y,¢B.

In sections 3,4 we shall postulate that the set B is linear; in this
case it will satisfy the following condition:

(b2) Y€ B, y,eB implies y,,,¢B

(the proof is analogous to this of (as)).
In Theorem 2 the following condition will be needed:

(bs) Y,€B (for n=1,2,...), and e= }¢, implies y,eB.
n=1

Let U(x) be an arbitrary linear operation from X to Y. We set
U(z]e)=TU(x),-

?) By an analytic set we mean any set which is the result of the operation
4 (Kuratowski [4], p. 4) performed upon open sets.

icm

On the structure of linear operations 3

The main result of this paper (Theorem 1) states that in the case
of the operation U being linear the set 7 may be decomposed, T'=e+h,
in such a manner that for every # the element U(z|e) is “nearly con-
tained” in B and that no set A'CHh of positive measure has this property,
unless @ belongs to a set of the first category.

2, Properties of the operation U(x|e)

LeMMA 1. The operation U (xz]e) is continuous in the space X X (T,C, u).

Proof. The operation U(z|e) is continuous for fixed . This follows
from (a;). Let ®,—~>,, e,—>¢, and write V,(x)=U (»|e,). Then V,(z)is
2 sequence of linear operations from X to ¥, convergent everywhere,
whence by a theorem of Mazur and Orlicz ([5], p. 153-154)

1V al@n) — Yl o)l — 0,
which implies
U (@] 6n) — U (0] &)-

The following condition (B, &, &) will be needed.:
There is a set ¢ such that u(h—e)<<e and U(z|e)eB.

The set of the elements  for which this condition is satisfied will
be written P(B,h,t).
LemMA 2. For every h and £>0 the set P(B,h,e) is analytic.

Proof. The set $ of the elements ee(L,E,u) for which u(h—e)<e,
is obviously open. The set @ of the couples (z,e¢) such that U(x|e)eB
is analytic, for it is the inverse image under U of the analytic set B.
Using the symbolical notation. (Kuratowski [4], p. 1-13) we can write

P(B,h,8)=1£{2 [(z,0)eQ(Xx )]},

that is, P(B,h,e) is the projection on X of the analytic set Q(X x9);
hence it is analytic too.

Levwma 3. Let the set B be linear. If the set P(B,h,¢) is of the second
calegory, then the set P(B,h,2¢) is residual.

Proof. Since P(B,h,e) is an analytic set, it fulfils the condition of
Baire; hence it containg a sphere except a set of the first category. Hence
the set W of the differences of the elements of P(B,h,s) contains a set
8=K —N where K is a sphere with centre 0 and N is of the first category.
We notice now that x,,2,¢P(B,h,e) implies %, —x,¢P (B,h,2¢), for there
are sets e;,e, such that u(h—e)<e, u(h—e)<<e, U(xile)eB, Ulx,les)e B,
hence for the set e=e; e, we have u(h—e)<<2¢ and U(z,|e)="U(z,|e,), B,
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U (2y]e)="U (@s]€y), € B. It follows now that K—NCP(B,h,2). Finally,
it is obvious that xeP(B,h,2¢) implies AzxeP(B,h,2¢), whence

Y n(K—N)CP(B,h,2:), X— Y nNCP(B,h,2),
n=1 n=1
nd denoting in these formulae the set of the elements na with aeA. The

set nN is obviously of the first cabegory.

3, Decomposilion theorems

In this paragraph the set B will be supposed to be linear.

TrroREM 1, There exists a decomposition T'=e-+h and a residual set
R in X such thal

(i) for every @ and every e>0 there exists a set ' such that u(e—e')<<e
and U(z|e')eB,

(i) for every xeR and every set h'Ch of positive measure U(z|h')
non e B.

Proof. Let F be the clags of the sets h for which the condition
(B,h,é¢) is satisfied for every x and every ¢>0, and let ¢ denote the su-
premum of the measures of the sets in &. There exist sets ¢, ¢ such
that o—1/n<u(e,). Let us write

[-~]
o= ey,

n=1

h=T—e.

The condition (i) is then evidently satisfied.

Now consider the following condition: )

(n) there exists a set h'Ch such that x(h')>0 and U(x|h')eB.

To prove (ii) it suffices to show that the set Z of the elements z
satisfying the condition (n) is of the first category. Suppose the contrary,
and denote by @, the set of the elements x for which there exists a set
h'Ch such that

u(h)>1/n and U(x|h)eB.

Clearly
Z= 2 Ons
n=1

whence one of the sets Q,, say Q,, must also be of the second category.
In the class @ of the sets XCh of measure not less then a=1/r there exists

a sequence k, composing a dense set. Let us write Xon=P(B,k,,27™),

then
@, C X X,
Nm]
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.hence for every m there is an n,, such that the set X, is of the second

category. By Lemma 3 the set P(B,k,,,2 ™) is residual. Now write

W==[] P(B,k,,, 2™, &=Ilmhk,,.
m=1

m—>c0

Then the set W is residual, and
p(e)=> Him g (f,,) > a.
M=o
Let ¢ W, then for every m there exists a set e, () such that

(b, —em(@)<2™™  and  Ulo|en())eB.

‘We may suppose freely that e,(x)Cey(2x)C... Then

/"(3"— em (m))'—‘ Hm/‘(el— €m (m)) =0,
M- 00
for we have

(' — em (@) < (3 Ty — 0 (@) < 3 1 {Jon, — o (@) <2774
‘M=) m=p
Thus WCP(B,e',¢) for every £¢>0, whence

o
WC[] P(B,e,1n)=V.
n=1

The set V is evidently linear, it satisfies the condition of Baire (being
analytic) and is residual since it includes the set W. This implies X=V.

Now for every zeV, £>0 the condition (B,e',¢) is satisfied, hence
¢’¢F. This, however, leads to a contradiction, since (¢'+e)eF and
ulete')=p(e)+u(e'y=0+a>o, contrarily to the definition of the num-
ber o. - )

Now the question arises whether or not the set ¢’ in the assertion (i)
of Theorem 1 might be chosen independently of x, i.e. whether (i) might
be replaced by the following assertion:

(i) for every >0 there exists a set ¢ such that u(e—e')<e and
U(x|e'yeB for every x. -

We shall show by a counterexample that the answer is negative.
Let X=1Y be the well-known space L of the Lebesgue measurable func-
tions in [a,b], U(x)==. By B we shall denote the subset of ¥ composed. .
of essentially bounded functions. This set is linear and of F, type. By
well-known theorems (i) is true with e=[a,b]; however, a set of positive

. meagure on which all functions of L are simultaneously essentially boun-

ded, does not exist.
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THEOREM
a decomposition T=e+h and a residual set RC X such theai

(i') Ulx|e)eB for every o,
(ii') TU(z|h') non e¢B for every xeR and every set h'Ch of positive
measure.

The procf is obvious.

4. Applications

Now we shall present some applications of the above theorems.
Let us denote by © the space of the sequences y={97n(t)] of real va-
Ined p-measurable funetions defined on T'. The elements of this space
may be considered as functions defined in 7, with values in the space s
of the sequences of real numbers (Banach [2], p. 10). We define the
-addition and multip]ica’nion by sealars in © ag usual, and the norm ag

a8
Iyll= Z?p [ &

then & becomes an F-space. Upon setting L=s, ¥=©& we see that the
conditions (a,)-(a;) are satisfied. A sequence y,c={17nk(t)}n=1,2w_ of elements
of & converges to y=[,(f)} if and only if

Lir0. 38 7 (t) =7 (1)

for n=1,2,...

Denote by Bj,...,B; the sets of the elements y={n,(t)} of S for
which the following conditions are satisfied respectively:

(1) the sequence {17,,(3)} is asymptotically bounded (i.e. A,—0 implies
lim as A,7,(f)=0); this is equivalent to the following condi-
n—»00

tion: for every >0 there exists a K such that for any =

u(g{lnn(m>1z])<e,

(2) the sequence {nn(t)} converges asymptotically,
(3) the sequence {n,(t)} is bounded a.e. (almost everywhere),
(4)- the sequence {n,(t)} converges a.e.,

(5) g}nn(t)lkoo a. 6. (a>0),

(6) sngf [ (B)|* <00 (a>0),

(T)  the sequence {,(t)} converges in L* (a>0),
® 5 [mrit<cs @>0).

2. Let the set B satisfy the condition (bs). Then there ewists

icm
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These sets are obviously linear; we shall prove that they are measur-
able (B). .
Ad B;. The set
Anmp=E{f‘/ ={ﬂi(t)}1ﬂ(§[|ﬂn(t)| > m}) <1/P}

v

is evidently closed and
= H 2 H  p—
p=1m=1n=1

Ad B,. The sets
Bnmpqu{y"—“{m(t
v

are closed and

)},ﬂ(fi'[lnm(t)— ] >1/p)<1/g}

Bﬂ:” H 2 ” H nmpg *
p=1 g=1 r=1 m=rn=r

Ad B;. Given any element y=mn,(f) let us write

o, (Y) =0 (Y, )= ]v:na.x |7 (8)]-

i=l..n

Then |y, —yl|—0 implies

for every n.

Tim as w, (Y, )=y (Ys,1)

800
The sequence {n,(t)] is bounded if and only if the sequence {oaly, 1)} is
agymptotically bounded, hence

7:13

z=‘ E nmp )
where '
A:mp =E{/" (?{mn(y 0> m’}) < 1/?}'
v

‘We shall prove that the sets A,., are closed. Let Y€ Anmpy YY)
and write
&= ;E{w" (Yrs?) >'m'}7

then u(ep)<<1/p. Since

lim a8 o, (Y, )=
koo

wn(Y,1),

there exists a sequence {ki} such that w, (¥, t)—>w(¥,t) a.e.

Let us write
g=lime,,
7
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then u(e)<1/p and teT—e, implies tel'—e; (the sequence (%} being
extracted from {k}) Wwhence w,(y,,t)<<m. It follows that w,(y,t)<m
a. 6. in T—e,, thus

Elon(y,)>m| Céy
and ye Apnp.
Ad B, Write
wpg(¥,8)= IMax lm(t)—m(t)l
PR
and

qmnzf{/"(g{wpq(yﬂt) >1/”"‘})< 1/n}.
We can prove, as above, that the sets D, are closed; then we apply
the formula
D

pgmn

=

I
s
s
Mg
L=

3

[

-

3

]

-

Eof

i

A

L

_

—

I e

Ad B,. We write
B =E{y={m(0), [Ins(t)ds<m}.
v T

This set is closed. For, if y,,_{n,m}p 12,6 Bumy Yx—> Y, then there exists a

yvee

sequence (k] such that 7, (t)—>7,(f) a. ., whence by Fatow’s lemma

; [mp(t) "< e [ |7, ()17,

i~»00

i.¢. ye B,,. (B)-measurability of the set B, follows by formula
o 00
Be= ;E: Iil lannm-
M=l n=1 .
The proofs in the remaining cases are- gimilar.

All the sets B;-B; have the properties (b,) and (b,). The sets B,
B;,B;, By, B; have also the property (bg). '

Let us denote by © the space of measurable functions n=mn(t) de-
fined in 7, with the norm

[n(8)]
g @]

= dt.

It is an F-space (Banach [2], p. 9). An operation V(2)=V (z,t) from X
to § is linear if it is additive and #,— 0 implies

lim as V(x,,t)=0,

N0
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We shall consider any sequence {Vn(m,t)] of linear operations from X
to § as an operation U(z,t)=(V,(=,t)] from X to ©. Taking as Y the
space & we derive from Theorems 1 and 2 the
. THEOREM 3. Given any sequence [V,,(:c,t)} of linear operations from X
to S there exist decompositions T=e+hy=...=ey+hy and a residual
set B such that®):

(iy) Va(z,t) is asymptotically bounded on e, for every z,

(iiy) Va(z,t) i¢ not asympiotically bounded on every set hChy of posi-
tive measure and, every xeR,

(i) Va(z,t) converges asymptotically on es for every wx,

(ii,) Va(®,t) does mot converge asy Jmptotwally on every set hChy of
positive measure and every xeR,

(is) Va(z,t) 48 bounded a.e. in e; for every a,

(iis) Va(z,t) is unbounded a.e. in hy for every weR,

(i) Valm,t) converges a.e. in e, for every =,

(iiy) Va(2,t) diverges a.e. in h, for every zeR,

(is) X |Val,t)*<oco a.e. in e; for every =,
n=1

o0 B
(iis) 3 |Val@,t)*=00 a.e. in hy for every zeR.
=1
Moreover, for every « and e>>0 there ewist sels ¢ e'’,e""’ such thai
ules—e')<e, p(e—e")<e, ul(eg—e’’)<e and
(i) 5“PJ|Vn(m1t)|adt<°°;
n

I3

(iig) sup [|Valw,t)Pdt=co for every set hChs of positive measure
n h
and every xeR,
(i;) lim ‘J‘Vn(myt)—Vm(myt)lddtzoy
n,m->00 e”
(iig) Lim [|V,(z,t)—

n,m—»c0 b

measure and every xe R,

) f j]V,,(m,t)r'dKoo

Voulw,B)*dt>0 for every set hCh, of positive

(iig) > f |V (2,8} [P dt=oco for every set hChy of positive measure and

every xe R

% Orliez [6] deduces also all the cases considered here from a general
theorem.
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Now denote by ©, the space of the functions y=n,(t) depending
on the parameter Ae[a,b), which are continuous in A for fixed #, and
u-measurable for fixed A. The norm is defined as

max |7, (t)

=Y f o —

=0 1+ ma,x [77}. (t

where a,->b—; this space is complete. The elements of S, will be regarded
as sequences depending on the confinuous parameter A. Choosing as L
the space of the functions which are continuous in [a,b) we easily see that
we can consider S, as the space Y of type described in section 1. Denote
by Bi,...,Bs the sets of the elements of &, for which respectively

(1) the sequence 7,(f) is asymptotically bounded when A—b—,
(2) the sequence 7,(f) converges asymptotically when A-»b—,
b—
(3) J ar [ n;(t)d 1) exists,
a T
@) lim [l (a>0),
PR )
(5) [ [var (012 dt<oo®) (a>0).
T a<i<b
. All t;hese sets are linear, measurable (B), and satisfy the condi-
tions (b,), (b,); the sets B,,B, satisfy also the condmon (bs).
Slm.ﬂa.rly to Theorem 3 we can deduce now
TepoREM 4. Let V,(w,t) denote for fived Ae[a,b) a linear operation
fro'm X to S5 suppose it to be continuous in A for fived x and t. Then there
exist decompositions T=e,+hy=...=e;-+h; and a restdual set B such thay

1(11;) the sequence V,(w,t) is asymptotically bounded on e for every @,
a8 A—b—

— (D) d=0

(iiy) for every set hChy of positive measure and- every we R the sequence
Vilx,t) is not asymptotically bounded on hy, as A—>b—,

(o) Lim as™ V(2,t) exists on e, for every o,
A>b—
(iiy) ami a8 V,(2,1) does mot ewist on every set hCh, of positive measure
and every wekR.

Moreover, for every x and =>0 there emist sets e ,e'ye"" such that
nles—e')<e, ul(eg—e”)<e, ple;—e'"")<e and

b— t
9 Jeld)di= lim [g(A)di.
a t>b—a

®) var g;= Sup var ¢
a<a<d a<Ai<b agusd

icm
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b—
(is) [ @A[ Va(e,t)dt ewists,
a 4

b— .
{iis) [ dA f Vi(w,t)dt does nmot ewist for every set hChy of positive
a h -

measure and every wekR,
(iy) Hm _ﬂVl(m 1)—V, (w t)*di=0,
Ap—»b——e .

(iiy) Lim f]VZ(m )=V, (,8)|"dt>0 for every set "hChy of positve
Ap—>b—h

measure and every veR,
(is) [ [ var V,(w,1)]dt<<oo,"
& a<i<b .

(iis) f [var‘ Vi@, 1) Pdt=c0 for every set hChs of positive measure

and every a;'eR

Now let us denote by X a separable F-space composed of funcbwns
w=x(t) of the complex variable f, defined for |{|<1, continuous on every
radius arg{=const, and measura,ble for |{|=const. Suppose further that
llz,|[—0 implies hmas 2, (re%)=0 for fixed ». Suppose that the addition

and multlphcamon are defined in X as usual and that z(f)e X, he€ implies
¢, (9) z(ré"")e X, where o (p) stands for the characteristic function (of the
variable ¢) of the set h. Then setting V,(z,t)=2(i¢?) we deduce im-
mediately from Theorem 4 the

THEOREM 5. There ewist decompositions T=e;+h,=e;+h, and a re-
sidual set R such that

(iz) the sequemce m(Ae¥) is asymptotically bounded on e; as A—~1—,

(iiy) the sequence x(c) is mot asymplotically bounded on every set

~ hChy of positive measure and every weR,

(i) lim as x(A6%) ewists on e, for every m,

A1

(ii,) lim as (Ae¥) does not exist on every set hChy of positive measure
A—>1l—

and every wek.
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Sur les fonctionnelles. multiplicatives
par

T, LEZANSKI (Warszawa)

Introduction

Ce travail est une continuation de mon article précédent [2]. Noug
y congidérons un sous-espace linéaire fermé £ de I’espace X conjuguné
4 un espace X du type B; un espace linéaire fermé & d’opérations liné-
aires de £ & Z; enfin un espace linéaire M de fonctionmelles linéaires
dans &, qui satisfont & D'axiome qui était désigné dans [2] par (F). Cet
axiome sera cité plus loin sous la condition (12). A toute fonctionnelle F
qui appartient & M, nous faisons correspondre une opération Ty linéaire
de £ & &, notamment . .
. ' Tpows By lyr-gy) (pe5, ve X)
(voir [2], Introduction).

Nous étudions ensuite 'équation ¢+Tro=y (@,peX), en faisant
correspondre & opération I+7T5un nombre D(F) qu'on appelle le dé-
terminant de cette équation.

En général, on ne peut pas demander que le nombre correspondant
& Déquation (I+4+Ty)I+Tx)p=1y soit égal & D(F,)-D(F,), vu que la
fonctionnelle ' et, par conséquent, D(F)ne sont pas déterminées par T'.

Nous introduisons ici une sorte de ,multiplication” des éléments
de M, de maniére que P'on ait

T popoy=TgarTyw pour FOeM (i=1,2);
nous démontrerons que la fonctionnelle D(¥F) vérifie ’équation
D(FD)-D(F)=D (PO PO 4 FOFE)
pour tout couple F®, F® d’éléments permutables de M 2).

I. Considérations générales

Soit 20 un anneau du type (B), c’est-i-dire un anneau linéaire avec
une norme homogéne [|A| satisfaisant & Dinégalité ||4-B||<C|[4|||Bi
pour A¢2, Be?; regardé comme espace linéaire, cet anneau est un es-

1) M. R. Sikorski a remplacé la condition de permutabilité d’éléments F,
F(® par une autre, moins restrictive.
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