On operator bands

by

ROMAN DRNOVŠEK (Ljubljana), LEO LIVSHITS (Waterville, ME),
GORDON W. MACDONALD (Chattanooga, TN),
BEN MATHES (Waterville, ME), HEYDAR RADJAVI (Halifax, NS)
and PETER ŠEMRL (Ljubljana)

Abstract. A multiplicative semigroup of idempotent operators is called an operator band. We prove that for each $K > 1$ there exists an irreducible operator band on the Hilbert space l^2 which is norm-bounded by K. This implies that there exists an irreducible operator band on a Banach space such that each member has operator norm equal to 1.

Given a positive integer r, we introduce a notion of weak r-transitivity of a set of bounded operators on a Banach space. We construct an operator band on l^2 that is weakly r-transitive and is not weakly $(r+1)$-transitive.

We also study operator bands S satisfying a polynomial identity $p(A,B) = 0$ for all non-zero $A,B \in S$, where p is a given polynomial in two non-commuting variables. It turns out that the polynomial $p(A,B) = (AB - BA)^2$ has a special role in these considerations.

1. Introduction. Let $B(X)$ denote the algebra of all bounded linear operators on a (real or complex) Banach space X. A subset S of $B(X)$ is said to be irreducible if the only closed subspaces of X invariant under all members of S are $\{0\}$ and X. Otherwise, S is called reducible. A set S of $B(X)$ is said to be triangularizable if there is a chain of closed subspaces that are invariant under every member of S and this chain is maximal in the lattice of all closed subspaces of X.

An operator A on a vector space V is called idempotent if $A^2 = A$. A semigroup S of idempotents on V is called an operator band. If V is a Banach space, we also assume that all operators in S are bounded. Reducibility of operator bands on Hilbert spaces has recently been studied in [2], [4], and [6]. In [2] an irreducible operator band on the Hilbert space l^2 has been constructed. After having such an example it is natural to ask about the existence of irreducible operator bands with some additional properties. Sections 2 and 3 are devoted to this question. In Section 2 we construct an irreducible operator band on l^2 which is norm-bounded. This implies that

2000 Mathematics Subject Classification: Primary 47A15, 47D03.
Key words and phrases: invariant subspaces, idempotents, operator semigroups.
there exist an irreducible operator band S on l^2 and an equivalent norm on l^2 with respect to which each member of S has operator norm equal to 1. In Section 3 we introduce a notion of weak r-transitivity of a set of bounded operators on a Banach space, where r is a given positive integer. We construct an operator band on l^2 that is weakly r-transitive and is not weakly $(r + 1)$-transitive.

In [6] it is shown that every operator band S on a Hilbert space satisfying $(AB - BA)^2 = 0$ for all $A, B \in S$ is triangularizable. This result motivates the study of operator bands S satisfying a polynomial identity $p(A, B) = 0$ for all non-zero $A, B \in S$, where p is a given polynomial in two non-commuting variables. The results of Section 4 show that the polynomial $p(A, B) = (AB - BA)^2$ has a special role in these considerations.

A reference for what follows is [7]. It should be noted that the definitions and remarks below are not needed to understand Theorems 2.2 and 2.3 and their proofs.

Define a relation \leq on an operator band S by

$$A \leq B \iff ABA = A.$$

Then \leq is a pre-order on S (it is reflexive and transitive). This (in fact, each) pre-order determines an equivalence relation \sim on S by

$$A \sim B \iff A \leq B \text{ and } B \leq A.$$

Let C_A denote the equivalence class of $A \in S$. Then C_A is a subband of S. We refer to the equivalence classes as components of S. Define the multiplication on the set S/\sim of all components of S by

$$C_A C_B = C_{AB}.$$

This operation is well defined and S/\sim is an abelian band under it. The band pre-order on S/\sim is a partial order. We denote it by \leq. It is easy to see that

$$C_A \leq C_B \iff A \leq B.$$

An ideal of a semigroup S is a subset of S which is closed under right and left multiplications by elements of S. An ideal generated by one element of S is said to be a principal ideal. A principal-ideal band is a band with identity in which every ideal is principal. Principal-ideal matrix bands have been studied in [3].

2. Norm-bounded irreducible operator bands. In [2] an irreducible operator band on the Hilbert space l^2 has been constructed. Essentially, this construction is based upon the following operators on l^2.

Given $k \times k$ matrices A and B, let P_{AB} be the $3k \times 3k$ matrix

$$P_{AB} = \begin{bmatrix} A & B & I \\ A & -B & A \\ I & B & I \end{bmatrix},$$

where I is the identity matrix of order k. Let T_{AB} be the infinite block-diagonal matrix

$$T_{AB} = \text{diag}(D_0, D_1, D_2, \ldots),$$

where the block D_i is equal to P_{AB} if the number i is representable in the ternary system by 0’s and 1’s only, and D_i equals the identity matrix of order $3k$ otherwise. We regard T_{AB} as an operator on l^2. One readily shows that

$$(1) \quad \|T_{AB}\| \leq 4\|AB\| + 2\|A\| + 2\|B\| + 1 \leq (2\|A\|^2 + 1)(2\|B\|^2 + 1).$$

It is easy to see that $T_{AB} = T_{C,D} = T_{A,D}$ for all $k \times k$ matrices A, B, C and D. In particular, $T_{AB}^3 = T_{AB}$.

After the publication of [2], M. D. Choi posed the question of whether there exists an irreducible operator band on a Hilbert space that is also norm bounded. This problem can be reformulated in the following way:

Problem 2.1. Let S be an operator band on a Hilbert space such that for some $K \geq 1$ we have $\|S\| \leq K$ for all $S \in S$. Is S necessarily reducible?

If we also assume that $K = 1$, then every member of S is Hermitian (see e.g. [1, Proposition 3.3]). In this case we have $ST = (ST)^* = T^* = TS$ for all $S, T \in S$, so that S is a commutative band, and hence reducible. However, for $K > 1$ the following result holds.

Theorem 2.2. Let $K > 1$. Then there exists an operator band S on the Hilbert space l^2 such that

$$(a) \quad \|S\| \leq K \text{ for all } S \in S,

(b) \quad \text{the semigroup } \mathbb{R}^+ S = \{\lambda S : \lambda > 0, S \in S\} \text{ is weakly dense in } B(l^2),

and so S is irreducible.

Proof. Let $d := \sqrt{(K - 1)/2}$ and $c := d/K$. For each positive integer n let S_n denote the set of all operators $T_{A,B}$ as A and B range over all $3^n \times 3^n$ matrices with norm at most c, and let T_n denote the set of all operators $T_{A,B}$ as A and B range over all $3^n \times 3^n$ matrices with norm at least d. It is obvious that S_n and T_n are both operator bands satisfying $S_n \subset T_n$. Furthermore, by (1) we have $\|T_{A,B}\| \leq 2c^2 + 1 = K$ for all $T_{A,B} \in T_n$.

We shall prove that $S_n T_m \subseteq T_n$ and $T_m S_n \subseteq T_n$ for all positive integers m and n with $m < n$. Pick $T_{A,B} \in S_n$ and $S \in T_m$. Then there exists a $3^n \times 3^n$ matrix M with norm at most K such that

$$S = \text{diag}(C_0, C_1, C_2, \ldots),$$

where C_i are matrices in S_n.
where the block C_i is equal to M if the number i is representable in the ternary system by 0’s and 1’s only, and C_i equals the identity matrix of order 3^n otherwise. From

$$\begin{bmatrix}
A & [B & -B & I] \\
A & [M & 0 & 0] \\
I & [0 & M & 0] \\
I & [0 & 0 & I]
\end{bmatrix} = \begin{bmatrix}
A & [BM & -BM & I] \\
I & [I]
\end{bmatrix}$$

it follows that $T_{A,B,S} = T_{A,B,M}$. Since $\|BM\| \leq \|B\|\|M\| \leq cK = d$, we conclude that $T_{A,B,M} \in T_n$. This completes the proof of the inclusion $S_n T_n \subseteq T_n$. The proof of the other inclusion is similar.

Now let S be the semigroup generated by the union $\bigcup_{n=1}^{\infty} S_n$. We claim that S is an operator band and that (a) holds. To this end, pick $S \in S$. Then S is a finite product of some members of $\bigcup_{n=1}^{\infty} S_n$. Let p be the smallest integer such that these members belong to the finite union $\bigcup_{n=1}^{p} S_n$. Using the above inclusions and the facts that S_n and T_n are semigroups, we easily conclude that $S \in T_p$. Therefore S is an idempotent with norm at most K.

In order to prove (b) we consider $T \in B(l^2)$ and $x, y \in l^2$. There is no loss of generality in assuming that $\|T\| \leq \delta^2$. For each $n \in \mathbb{N}$ there exists a $3^n \times 3^n$ matrix A_n with norm at most c such that the operators $T_n := T_{A_n,cf} \in S_n \subseteq S$ have the same upper-left $3^n \times 3^n$ corner. The rest of the proof goes along the lines of the last part of the proof from [2]. The weak density of $B^+ S$ also implies that S is irreducible.

Theorem 2.3. There exist an irreducible operator band S on l^2 and an equivalent norm on l^2 with respect to which each member of S has operator norm equal to 1.

Proof. It is well known and easily shown that for each bounded semigroup S of operators on a Banach space containing the identity, we can define an equivalent norm on the Banach space by

$$\|x\|' = \sup\{\|Sx\| : S \in S\},$$

with respect to which every member of S has norm at most 1. Now take for S any operator band obtained in Theorem 2.2, and adjoin the identity to it.

Theorem 2.2 (and therefore Theorem 2.3 as well) can be improved as follows.

Theorem 2.4. Let $K > 1$. Then there exists an operator band P on l^2 such that

(a) P is norm-bounded by K,
(b) $R^+ P$ is weakly dense in $B(l^2)$ (and so P is irreducible),
(c) P is a principal-ideal band with countably many elements, and each component of P is finite.

Proof. Let us use the notation from the proof of Theorem 2.2. For each positive integer n let $\{W_{nk}\}_{k \in \mathbb{N}}$ be a sequence of $3^n \times 3^n$ matrices that is dense in the ball of all $3^n \times 3^n$ matrices of norm at most c. Furthermore, let P_n be the natural embedding of C^3 into l^2. Define the double sequence $\{Z_{nk}\}_{k \in \mathbb{N}}$ of bounded operators on l^2 by $Z_{nk} = P_n W_{nk} P_n^*$. Let $\{A_n\}_{n \in \mathbb{N}}$ be a renumeration of the terms of the sequence

$$Z_{11}, Z_{12}, Z_{21}, Z_{22}, Z_{31}, Z_{32}, Z_{33}, Z_{34}, \ldots$$

Define an increasing sequence $\{P_n\}_{n \in \mathbb{N}}$ of semigroups inductively. Let P_1 be the operator band on l^2 generated by $T_{I, A_1, cf}$ and the identity, and let P_n be the semigroup generated by P_{n-1} and the operators $T_{P_1 A_1 P_{n-1}, cf}, T_{P_1 A_2 P_{n-1}, cf}, \ldots , T_{P_1 A_n P_{n-1}, cf}$. Since $S_n T_n \subseteq T_n$ and $T_n S_n \subseteq T_n$ for all positive integers m and n with $m < n$, we conclude that $P_n \subseteq \{I \cup T_1 \cup \ldots \cup T_n\}$, and so the semigroup P_n is an operator band. By the famous theorem of Green and Rees [4] every finitely generated band is finite, so that P_n has finitely many elements. Note that for each $n \in \mathbb{N},$

$$T_{P_1 A_1 P_n, cf} \sim T_{P_1 A_2 P_n, cf} \sim \ldots \sim T_{P_1 A_n P_n, cf},$$

and

$$T_{P_1 A_1 P_n, cf} \cdot T_{P_1 A_2 P_n, cf} \sim T_{P_1 A_3 P_n, cf} \sim T_{P_1 A_4 P_n, cf} \sim T_{P_1 A_5 P_n, cf} \cdot T_{P_1 A_6 P_n, cf},$$

for all $n > m$ and $i, j \in \mathbb{N}$. (See the proof of the inclusions $S_n T_m \subseteq T_n$ and $T_m S_n \subseteq T_n$ for $n > m$. It follows that P_n gains only one component in addition to those which make up P_{n-1}, and this component is the smallest one (with respect to \leq) of P_n. In particular, P_n is a principal-ideal band. Then $P = \bigcup_{n \in \mathbb{N}} P_n$ is a countable principal-ideal band with finite components, and so (c) holds. Since $P \setminus \{I\}$ is the union of all T_n, P is norm-bounded by K.

For each positive integer n define $Q_n = P_n P_n^*$. For the proof of (b) it is enough to show that each $T \in B(l^2)$ satisfying $Q_n T Q_n = T$ for some m is in the weak closure of $B^+ P$, because the set of such operators is weakly dense in $B(l^2)$. Fix $x, y \in l^2$, and $1 > \epsilon > 0$. We may assume that $\|T\| \leq \delta^2$. Then there exists $j \geq m$ such that for each $n \geq j$ the operator $T_n := T_{P_1 A_j P_n, cf} \in P_n$ satisfies the estimate $\|Q_n (T - T_n) Q_n\| \leq \epsilon$. (Note that $Q_n T_n Q_n = c A_j$.) Decompose l^2 into the direct sum of the range and the kernel of Q_n. Then the matrix of $T - T_n$ is of the form

$$\begin{bmatrix}
E_n & U_n \\
V_n & W_n
\end{bmatrix},$$

where the norm of the $3^n \times 3^n$ matrix E_n is at most ϵ. Writing $x = (x_1, x_2)$ and $y = (y_1, y_2)$ with respect to the same decomposition of the space l^2, we
have
\[(T - T_n)x, y\| \leq \|E_n\| \|x\| \|y\| + \|U_n\| \|x_2\| \|y_1\|
+ \|V_n\| \|x_1\| \|y_2\| + \|W_n\| \|x_2\| \|y_2\|.
\]

Note that by (1),
\[
\max\{\|U_n\|, \|V_n\|, \|W_n\|\} \leq \|T - T_n\| \leq \|T\| + \|T_n\|
\leq \|T\| + \sqrt{2(2\|A_j\| + 1)(2\|A_j\|^2 + 1)}.
\]

Since \(Q_nTQ_n - cA_j = Q_n(T - T_n)Q_n\| \leq \epsilon\), we have \(\|cA_j\| \leq \|Q_n TQ_n\| + \epsilon \leq \|T\| + 1\). It follows that there exists a constant \(L\) not depending on \(n\) (depending on \(\|T\|\) and \(c\) only) such that \(\max\{\|U_n\|, \|V_n\|, \|W_n\|\} \leq L\). Hence
\[
\|(T - T_n)x, y\| \leq \epsilon \|x\| \|y\| + L(\|\|x_1\| \|x_2\| + \|x_1\| \|y_2\| + \|x_2\| \|y_2\|).
\]

If \(n\) tends to infinity, then \(\max\{\|x_2\|, \|y_2\|\}\) is arbitrarily small, which implies that \(T\) is in the weak closure of \(P\). This completes the proof of (b). ■

3. Weakly-transitive operator bands. Let \(r\) be a positive integer, and let \(X\) be a Banach space. We say that a subset \(S\) of \(B(X)\) is weakly \(r\)-transitive if for each linearly independent set \(\{x_1, \ldots, x_r\}\) of \(X\) and for each weak neighborhood \(V\) of \(0\) in \(X\) there exists \(S_n \in S\) such that \(S_nx_i - y_i \in V\) for each \(i = 1, \ldots, r\). It is easy to see that a subset \(S\) of \(B(X)\) is weakly \(r\)-transitive if for each linearly independent subset \(\{x_1, \ldots, x_r\}\) in \(X\) and for each sequence \(\{y_1, \ldots, y_r\}\) of \(X\) there is a sequence \(\{S_n\}_{n \in \mathbb{N}}\) in \(S\) such that for each \(i = 1, \ldots, r\) the sequence \(\{S_nx_i\}_{n \in \mathbb{N}}\) converges weakly to \(y_i\). It is not difficult to see that a subset of \(B(X)\) is weakly dense if and only if it is weakly \(r\)-transitive for every positive integer \(r\). Furthermore, every weakly 1-transitive subset of \(B(X)\) is irreducible. On the other hand, not every bounded irreducible operator band on \(l^2\) is weakly 1-transitive, as can be quickly checked.

Let \(r\) be a fixed positive integer. In view of the above remarks every weakly dense subset of \(B(X)\) is weakly \(r\)-transitive. The converse assertion is not true, even within the class of operator bands. Moreover, the following theorem holds.

Theorem 3.1. Let \(r\) be a positive integer. Then there exists a principal-ideal operator band \(R\) on \(l^2\) that is weakly \(r\)-transitive and is not weakly \((r + 1)\)-transitive.

Proof. For each positive integer \(n\) satisfying \(3^n > r\), let \(R_n\) denote the set of all operators \(T_{A,B}\) as \(A\) and \(B\) range over all \(3^n \times 3^n\) matrices such that the rank of \(A\) is at most \(r\). Denote by \(\mathcal{R}\) the union of the identity and all \(R_n\). It is easy to verify that \(\mathcal{R}\) is a principal-ideal operator band.

To prove that \(\mathcal{R}\) is weakly \(r\)-transitive, choose linearly independent vectors \(x_1, \ldots, x_r \in l^2\), and choose any vectors \(y_1, \ldots, y_r \in l^2\). Then there exists an operator \(R \in B(l^2)\) of rank at most \(r\) such that \(Rx_i = y_i\) for all \(i = 1, \ldots, r\). For each \(n \in \mathbb{N}\) satisfying \(3^n > r\) there exists an operator \(R_n := T_{A_n,B_n} \in R_n\) such that the rank of \(R - R_n\) is of the form
\[
\begin{bmatrix}
0 & U_n \\
V_n & W_n
\end{bmatrix},
\]

where the 0 is an \(3^n \times 3^n\) zero matrix. Choose any vector \(z \in l^2\), and write \(z = (z_1, z_2)\) (1 = 1, \ldots, \(r\)) and \(z = (z^{(1)}, z^{(2)})\) with respect to the above decomposition of the space \(l^2\). Then, for any \(i = 1, \ldots, r\),
\[
\|(R - R_n)x_i, z\| \leq \|U_n\| \|x^{(2)}_i\| \|z^{(1)}\|
+ \|V_n\| \|x^{(1)}_i\| \|z^{(2)}\| + \|W_n\| \|x^{(2)}_i\| \|z^{(2)}\|.
\]

Note that
\[
\max\{\|U_n\|, \|V_n\|, \|W_n\|\} \leq \|R - R_n\| \leq \|R\| + \|R_n\|
\leq \|R\| + \sqrt{3(2\|A_n\|^2 + 1)}
\leq \|R\| + \sqrt{3(2\|A_n\|^2 + 1)}.
\]

If we let \(M := \|R\| + \sqrt{3(2\|A_n\|^2 + 1)}\), we have
\[
\|(R - R_n)x_i, z\| \leq M(\|z\| \max_{1 \leq j \leq r} \|x^{(2)}_j\| + \|z^{(2)}\| \max_{1 \leq j \leq r} \|x^{(2)}_j\|)
\]
for any \(i = 1, \ldots, r\). If \(n\) is sufficiently large, then \(\max\{\|x^{(1)}_i\|, \|x^{(2)}_i\|, \|z^{(2)}\|\}\) is arbitrarily small. Since \(Rx_i = y_i\), it follows that the semigroup \(\mathcal{R}\) is weakly \(r\)-transitive.

Next we demonstrate that \(\mathcal{R}\) is not weakly \((r + 1)\)-transitive. Let \(e_1, e_2, \ldots\) be the standard ortho-basis vectors of \(l^2\). Define \(x_1 = e_i\) for \(i = 1, \ldots, r + 1\), \(y_1 = e_i\), \(y_2 = e_i\), and \(y_i = e_i\) for \(3 \leq i \leq r + 1\) (provided \(r \geq 2\)). Suppose that \(\mathcal{R}\) is weakly \((r + 1)\)-transitive. Then for each \(n \in \mathbb{N}\) there exists \(T_{A_n,B_n} \in \mathcal{R}\) such that
\[
\|(T_{A_n,B_n}x_i - y_i, z_\delta)\| \leq 2^{-n}
\]
for all \(i, k = 1, \ldots, r + 1\). Denote by \(P\) the natural embedding of \(C^{r+1}\) into \(l^2\), and by \(\tilde{e}_1, \ldots, \tilde{e}_{r+1}\) the standard ortho-basis vectors of \(C^{r+1}\). We then conclude that the sequence \(\{T_{A_n,B_n}P\}_{n \in \mathbb{N}}\) converges in the operator norm to the operator \(J\) on \(C^{r+1}\) defined by \(J\tilde{e}_1 = \tilde{e}_1, J\tilde{e}_2 = \tilde{e}_1, J\tilde{e}_3 = \tilde{e}_3\) for \(3 \leq i \leq r + 1\). In particular, there exists an integer \(n\) such that the operator \(P^* T_{A_n,B_n}P\) on \(C^{r+1}\) is invertible. But the matrix of this operator
is a principal $(r + 1) \times (r + 1)$ submatrix of the matrix A_nB_n which has rank at most r. This contradiction completes the proof.

4. Operator bands satisfying a polynomial identity. Throughout the section, V denotes a real or complex vector space. In [6] the following results on commutators in operator bands have been shown.

Theorem 4.1. Let S be an operator band on V. Then $(AB - BA)^2 = 0$ for all $A, B \in S$.

Theorem 4.2. Let S be an operator band on a Banach space satisfying $(AB - BA)^2 = 0$ for all $A, B \in S$. Then S is triangularizable.

We remark that the preceding theorem is proved in [6] in a Hilbert space setting. However, it is clear from that proof that the theorem is true in a Banach space setting as well. Note also that every operator band on a vector space is algebraically triangularizable (see [6]).

The above results motivate the consideration of operator bands S on V satisfying a polynomial identity $p(A, B) = 0$ for all $A, B \in S \setminus \{0\}$, where p is a given polynomial in two non-commuting variables. We first observe that the subband generated by A and B has at most 6 elements: $A, B, AB, BA, ABA,$ and BAB. Hence, we may assume with no loss of generality that the polynomial p has the form

$$p(A, B) = s_1A + s_2B + t_1AB + t_2BA + u_1ABA + u_2BAB,$$

where at least one of the scalars $s_1, s_2, t_1, t_2, u_1,$ and u_2 is non-zero. We shall now state the main result of this section.

Theorem 4.3. Let p be as above, and let S be an operator band on V with more than one non-zero component such that $p(A, B) = 0$ for all $A, B \in S \setminus \{0\}$. Then $(AB - BA)^2 = 0$ for all $A, B \in S$. In a Banach space setting this implies that S is triangularizable.

The following proposition covers the special case of Theorem 4.3 when $s_1 = s_2 = 0$.

Proposition 4.4. Assume that at least one of scalars $t_1, t_2, u_1,$ and u_2 is non-zero. Let S be an operator band on a vector space such that

$$(2) \quad t_1AB + t_2BA + u_1ABA + u_2BAB = 0$$

for all $A, B \in S$. Then $(AB - BA)^2 = 0$ for all $A, B \in S$.

Proof. We may assume that S is non-zero. Putting $A = B \neq 0$ in (2) we obtain

$$t_1 + t_2 + u_1 + u_2 = 0.$$
PROPOSITION 4.5. Assume that at least one of the scalars \(s_1, s_2, t_1, \) and \(t_2 \) is non-zero. Let \(S \) be an operator band with exactly one non-zero component such that
\[
(3) \quad s_1 A + s_2 B + t_1 AB + t_2 BA = 0
\]
for all non-zero \(A, B \in S \). Then \((AB - BA)^2 = 0\) for all \(A, B \in S \).

Proof. If \(A, B \in S \setminus \{0\} \), then \(A = ABA \) and \(B = BAB \), so that
(3) implies \(t_1 AB + t_2 BA + s_1 ABA + s_2 BAB = 0 \). Hence Proposition 4.4 completes the proof. \(\square \)

Acknowledgments. The first author would like to thank Professor M. D. Choi for posing Problem 2.1. The support of the Ministry of Science of Slovenia is gratefully acknowledged by the first and the last authors, while the support of NSERC of Canada is acknowledged by the other authors.

References

Faculty of Mathematics and Physics
University of Ljubljana
Jadranska 19
SI-1000 Ljubljana, Slovenia
E-mail: roman.drnovsek@fmf.uni-lj.si
peter.semr@fmf.uni-lj.si

Department of Math and CS
Colby College
Waterville, ME 04901
U.S.A.
E-mail: l.livshits@colby.edu
dbm@maths@colby.edu

Department of Math and CS
University of Prince Edward Island
Charlottetown, PEI
C1A 4P3, Canada
E-mail: gmacdonald@upei.ca

Received May 24, 1999
Revised version January 4, 2000 (4336)