STUDIA MATHEMATICA 138 (3) (2000)

On pointwise estimates for maximal and singular integral operators

by

A. K. LERNER (Odessa)

Abstract. We prove two pointwise estimates relating some classical maximal and singular integral operators. In particular, these estimates imply well-known rearrangement inequalities, L^p and BLO-norm inequalities.

Introduction. For a locally integrable function f on \mathbb{R}^n, define the Hardy-Littlewood and Fefferman-Stein maximal functions by

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| \, dy,$$

$$f^\#(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - f_Q| \, dy,$$

where $f_Q = \frac{1}{|Q|} \int_Q f$, the supremum is taken over all cubes Q containing x, and $|Q|$ denotes the Lebesgue measure of Q.

We also define the Calderón-Zygmund maximal singular integral operator by

$$T^*f(x) = \sup_{\varepsilon > 0} \left| \int_{|x-y| > \varepsilon} f(y) k(x-y) \, dy \right|,$$

where the kernel $k(x)$ satisfies the standard conditions:

$$|k(x)| \leq \frac{c}{|x|^n}, \quad \int_{R_1 < |x| < R_2} k(x) \, dx = 0 \quad (0 < R_1 < R_2 < \infty),$$

$$|k(x) - k(x-y)| \leq \frac{c|y|^\alpha}{|x|^{n+\alpha}} \quad (|y| \leq |x|/2, \alpha > 0).$$

Let ω be a non-negative, locally integrable function. Given a measurable set E, let $\omega(E) = \int_E \omega(x) \, dx$. We say that ω satisfies Muckenhoupt's

2000 Mathematics Subject Classification: Primary 42B20, 42B25.
condition A_∞ if there exist $c, \delta > 0$ so that for any Q and $E \subseteq Q$,
$$\omega(E) \leq c(|E|/|Q|)^\delta \omega(Q).$$

For $\omega \in A_\infty$, it is well known (see [7, 9, 10]) that

(2) \quad \|T^*f\|_{p,\omega} \leq c\|Mf\|_{p,\omega},

(3) \quad \|Mf\|_{p,\omega} \leq c\|f^\#\|_{p,\omega}

for all $p > 0$, where $\|f\|_{p,\omega} \equiv (\int\int f(x)^p \omega(x) \, dx)^{1/p}$.

BMO estimates for T^*f go back to [15, 16]:

(4) \quad \|T^*f\|_* \leq c\|f\|_*.

For the Hardy–Littlewood maximal function a BMO estimate was established later in [4]:

(5) \quad \|Mf\|_* \leq c\|f\|_*.

These estimates were strengthened in [13] and [3] respectively:

(6) \quad \|T^*f\|_{\text{BLO}} \leq c\|f\|_{\infty},

(7) \quad \|Mf\|_{\text{BLO}} \leq c\|f\|_*.

The space BLO [8] consists of all functions $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ such that

$$\|f\|_{\text{BLO}} = \sup_Q (f_Q - \inf_Q f) < \infty.$$}

It is easy to see that $\text{BLO} \subseteq \text{BMO}$, moreover $\|f\|_* \leq 2\|f\|_{\text{BLO}}$.

Note that the estimates (2), (3) were proved in [7, 9, 10] with the help of so-called good λ inequalities. Afterwards, rearrangement inequalities for $Mf, f^\#, T^*f$ were obtained (see [1, 2, 5]), which also imply (2), (3).

The non-increasing rearrangement of f with respect to ω [6, p. 32] is defined by

$$f_*(t) = \sup_{\omega(B) = t} \inf_{x \in B} f(x) \quad (0 < t < \infty).$$

If $\omega \equiv 1$ we use the notation $f_*(t)$.

A key role in our work is played by the maximal function (see [11, 19])

$$m_\lambda f(x) = \sup_{Q \ni x} (f_Q)^*(\lambda|Q|) \quad (0 < \lambda < 1).$$

In terms of this function we establish pointwise estimates for the operators $Mf, f^\#, T^*f$. In particular, these estimates imply all the above mentioned results, namely rearrangement inequalities, L^p_ω and BLO-norm estimates (2)–(7).

Our main results are the following.

Theorem 1. For any function $f \in L^p(\mathbb{R}^n)$ $(1 \leq p < \infty)$ and for all $x \in \mathbb{R}^n$,

$$m_\lambda(T^*f)(x) \leq c_{\lambda,n} Mf(x) + T^*f(x) \quad (0 < \lambda < 1).$$

Theorem 2. For any function $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ and for all $x \in \mathbb{R}^n$,

$$m_\lambda(Mf)(x) \leq c_{\lambda,n} f^\#(x) + Mf(x) \quad (0 < \lambda < 1).$$

Inequalities (2)–(7) follow from these theorems in view of the next main lemma.

Lemma 1. Let f and g be non-negative functions on \mathbb{R}^n. Suppose that for any $\lambda, 0 < \lambda < 1$, there exists a constant $c_\lambda > 0$ so that

$$m_\lambda f(x) \leq c_\lambda g(x) + f(x)$$

for all $x \in \mathbb{R}^n$, and let $\omega \in A_\infty$. Then

(i) there exists a constant $c' > 0$ so that

$$f_*(t) \leq c' f_*(2t) + f_*(t)$$

for all $t > 0$;

(ii) if $f_*(+\infty) = 0$, then

$$\|f\|_{L^p_\omega} \leq c_p \|g\|_{L^p_\omega} \quad (0 < p < \infty);$$

(iii) if $g \in L^\infty$, then

$$\|f\|_{\text{BLO}} \leq c\|g\|_{\infty}.$$

The proof of (iii) is essentially based on the inequality

$$\|f\|_* \leq c_n \sup_Q \inf_{c \in E} (f(c\chi_Q^*)^*(\lambda|Q|))$$

which was proved by F. John [12] and J-O. Strömberg [19] in the cases $0 < \lambda < 1/2$ and $\lambda = 1/2$ respectively. For $\lambda > 1/2$ this inequality fails.

First, we prove Theorems 1, 2, and then Lemma 1.

Proof of Theorem 1. Here it is convenient to use the maximal function

$$\tilde{m}_\lambda f(x) = \sup_{B \ni x} (f_{\lambda B})^*(\lambda|B|),$$

where the supremum is taken over all balls B centered at x. It is easy to see that for any cube Q containing x there is a ball B centered at x which contains Q such that $|B| = c_n |Q|$. From this property, for any $x \in \mathbb{R}^n$ we have

$$m_\lambda f(x) \leq \tilde{m}_\lambda f(x).$$

By (9), it suffices to get the required estimate for \tilde{m}_λ. Let B be an arbitrary ball with center at x. From the definition of T^* it follows that

$$T^*(f_{\lambda B})(x) \leq T^* f(x).$$

Further, by (1), the standard arguments (see, for example, [18, p. 59]) show that for all $y \in B$,

(11) \quad $T^*(f_{\lambda B})(y) \leq cMf(x) + T^*(f_{\lambda B})(x)$.

\end{document}
On the other hand, by weak type (1, 1) of $T^* [17, p. 42]$ we have
\[
(T^*(f\chi_Q))^*(\lambda |Q|) \leq c \frac{1}{|Q|} \int_B |f(y)| \, dy \leq c M f(x).
\]
From this and (10), (11) we get
\[
((T^* f)\chi_Q)^*(\lambda |Q|) \leq c M f(x) + T^* f(x).
\]
Taking the upper bound over all balls B centered at x proves the theorem.

Proof of Theorem 2. We shall use the following elementary property of cubes: if cubes Q_1 and Q_2 intersect then either $Q_1 \subset 3Q_2$ or $Q_2 \subset 3Q_1$ (as usual, kQ denotes the cube concentric with Q and having edge length k times as large).

Let Q be an arbitrary cube containing the point x. Take an arbitrary point $y \in Q$ and suppose a cube Q' contains y. If $Q' \subset 3Q$, then
\[
|f|_{Q'} \leq |f - f|_{3Q} + |f|_{3Q} \leq M((f - f|_{3Q})\chi_{3Q})(y) + M f(x).
\]
Assume now that $Q' \not\subset 3Q$. Then $Q \subset 3Q'$ and in this case
\[
|f|_{Q'} \leq |f - f|_{3Q} + |f|_{3Q'} \leq 3^n f^*(x) + M f(x).
\]
Thus, for all $y \in Q$
\[
M f(y) = \max \left(\sup_{Q' \subset 3Q} |f|_{Q'}, \sup_{Q' \supset Q} |f|_{Q'} \right)
\leq M((f - f|_{3Q})\chi_{3Q})(y) + 3^n f^*(x) + M f(x).
\]
Using the weak type (1, 1) of the operator M, we get
\[
((M f)\chi_Q)^*(\lambda |Q|) \leq (M((f - f|_{3Q})\chi_{3Q}))^*(\lambda |Q|) + 3^n f^*(x) + M f(x)
\leq c \frac{1}{|Q|} \int_{3Q} |f - f|_{3Q} + 3^n f^*(x) + M f(x)
\leq c f^*(x) + M f(x).
\]
Taking the upper bound over all $Q \ni x$ yields the theorem.

Proof of Lemma 1. Choose λ so that $c(2^n \lambda)^c = 1/4$, where c, δ are the constants from the definition of A_{∞}, and put $c' = c_0$.

Let E be an arbitrary set with $\omega(E) = t$. Applying the Calderón–Zygmund decomposition to the function χ_E and number λ, we get pairwise disjoint cubes Q_i such that
\[
\lambda |Q_i| < |E \cap Q_i| \leq 2^n \lambda |Q_i|.
\]
From the definition of A_{∞} it follows that
\[
\omega(E) = \sum_i \omega(E \cap Q_i) \leq c \sum_i \left(\frac{|E \cap Q_i|}{|Q_i|} \right)^c \omega(Q_i) \leq c(2^n \lambda)^c \omega \left(\bigcup_i Q_i \right).
\]
So, we have $\omega(\bigcup_i Q_i) \geq 4t$. From this and the left-hand inequality of (12) we obtain
\[
\inf_{x \in E} |f(x)| \leq \inf_{x \in 3E \cap Q_i} |f(x)| \leq \inf_{x \in (f\chi_{Q_i})^*} (\lambda |Q_i|)
\leq \inf_{x \in (f\chi_{Q_i})^*} m_{\lambda, f}(x) = \inf_{x \in \bigcup_i Q_i} m_{\lambda, f}(x) \leq (m_{\lambda, f})^*(4t).
\]
Taking the supremum over all sets E with $\omega(E) = t$, we get $f^*_\omega(t) \leq (m_{\lambda, f})^*(4t)$.

From this and simple properties of rearrangement it follows that
\[
f^*_\omega(t) \leq \lambda \omega(2E \cap Q_i) \leq \lambda \omega(2t) + f^*_\omega(2t).
\]
So, we get (i). Iterating this inequality we obtain (ii) in a standard way (see, for example, [14]).

It remains to prove (iii). This follows immediately from the following BLO criterion.

LEMMA 2. Let $\lambda \leq 1/2$. Then a non-negative function f belongs to BLO iff $m_{\lambda, f} - f \in L^\infty$. Moreover,
\[
\|f\|_{BLO} = \|m_{\lambda, f} - f\|_{\infty}.
\]

Proof. Define $A = \|m_{\lambda, f} - f\|_{\infty}$. It is clear that
\[
\inf_{Q} ((f - c)\chi_Q)^*(\lambda |Q|) \leq ((f - c)\chi_Q)^*(\lambda |Q|) = (f\chi_{Q})^*(\lambda |Q|) - \inf_{Q} f \leq A.
\]
Since $\lambda \leq 1/2$, by John and Strömberg's theorem (see (8)) it follows that $f \in BMO$ and $\|f\|_{\infty} \leq c A$. Further, note that for any cube Q, $\omega(Q_i)$.
\[
f_q \leq \inf_{x \in Q} \left(|f(x) - f| + |f(x)| \right) \leq \left(\frac{|f - f_q| + |f(x)|}{|Q_i|} \right)^* (\lambda |Q|)
\leq ((f - f_q)\chi_{Q})^*(\lambda |Q_i|/2) + (f\chi_{Q})^*(\lambda |Q_i|/2) \leq 2\|f\|_{\infty} + (f\chi_{Q})^*(\lambda |Q_i|/2).
\]
From this and (13) we get
\[
\|f\|_{BLO} = \sup_{Q} (f - f_q) \chi_{Q} \leq \sup_{Q} (2\|f\|_{\infty} + (f\chi_{Q})^*(\lambda |Q|) - \inf_{Q} f) \leq (2c + 1) A.
\]
Conversely, let $f \in BLO$. Then
\[
(f\chi_{Q})^*(\lambda |Q|) \leq ((f - f_q)\chi_{Q})^*(\lambda |Q|) + f_q
\leq \frac{1}{\lambda} \|f\|_{\infty} + \|f\|_{BLO} + \inf_{Q} f \leq (2/\lambda + 1) \|f\|_{BLO} + \inf_{Q} f.
\]
Thus,
\[m_{\lambda}f(x) \leq (2/\lambda + 1)||f||_{\text{BLO}} + f(x). \]
The lemma is proved.

Acknowledgements. This work was done during my stay at the Institute of Mathematics of Wroclaw University in the Spring Semester of 1999. I would like to thank Professor A. Hulanicki for his hospitality.

I am grateful to Professor V. I. Kolyada for useful discussions about the subject of this paper.

References