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Partial retractions for weighted Hardy spaces
by

SERGEI KISLIAKOV (8t Petersburg) and QUANHUA XU (Besangon)

Abstract. Let 1 < p £ oo and let wp,w; be two weights on the unit circle such
that 1og(wuw{'1) € BMO. We prove that the couple (Hp(wg), Hp(w1)) of weighted Hardy
spaces is a partial retract of (Lp{wn), Ip(wy)). This completes previous work of the au-
thors. More generally, we have & similar result for finite families of weighted Hardy spaces.
We include some applications to interpolation.

For 1 < p < oo we can project the space L,(T) onto the (houndary)
Hardy class Hp. This can be done by an operator independent of p, for
instance, by the Riesz projection. The extreme indices p = 1 and p = oo
cannot be included.

Though regret can hardly be allowed in connection with a true math-
ematical statement, the latter assertion (about the extreme indices) may
evoke a sort of this feeling in some situations. The following fact proved in
[13] (see [11] for a simple argument) can sometimes serve as a remedy.

For every f € Hy + Hy (= Hiy) there is a linear operator firing f and
mapping boundedly Ly to Hy and Ly to Hy, with norms not exceeding a
universal constant. ‘

Later, this result was extended to weighted Hardy spaces. By a weight
we mean a nonnegative measurable function w on T such that logw € L;.
We put Ly(w) = Ly(T,wdm) (m is normalized Lebesgue measure on T),

and .
Loo{w) = {f:fu € Loc}
equipped with the natural norm ||f|le,w = [[fw™/|co. Next, let ¢ be an
outer function satisfying || = w a.e. on T. We introduce the weighted
Hardy space Hy(w), 0 < p < oo, by
Hy(w)={f: fo'/? € Hy},
Hoo(w) = {f : f‘PFl € Hoo}'

0 < p<o,
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THEOREM A. Let w be a weight satisfying logw € BMO. For every
f € Hi(w) + Hyo there exists an operator T« Ly(w) + Leo — Ha (w} + He
such that Tf = f, T maps Li(w) to Hi(w) and Ly to Hy,, and the norms
| TH 2 (w) = Ha w0)s T | 2o oo are controlled in terms of |logw|mmo-

This theorem was announced in [L0]; the proof appeared in [14] (see [8] for
simplifications). It should be noted that a detail was omitted intentionally
both in [14] and in [8] (we shall return to this later). Also, Theorem 2.1 in
[10] implies that, unless logw € BMO, the statement of Theorem A fails.
Throughout, we use the following norm on the space BMO:

lgllemo = mf{lellz. /e + 9] zeejic + g = 9 + Hep},

where H is the harmonic conjugation operator.

Theorem A is directly related to the notion of a partial retract in in-
terpolation theory. (We refer the reader to [1, 2] for standard notions and
facts of this theory.) Let (Xo,...,Xn) and (¥p,...,Yy) be two families of
compatible (quasi-}Banach spaces. Then (Yp,...,Yy) is called a partial re-
tract of (Xy,...,Xn) if for every y € Yo 4 ... + Yiv there are two operators
T:Xg+...+ Xy = Yo+...+Yyand §: Yp+.. +Yy — Xp+.. .+ X such
that TSy = y and T (respectively, S) is bounded from X; to ¥; (respectively,
from ¥; to X;) for ¢ = 0,..., N with norms majorized by a constant inde-
pendent of y. If, moreover, V; is a subspace of X; for 4 = 0,..., N and the
identity inclusion can always be taken as S, then we say that (¥5,...,Yn)
is a retractive subfamnily of (Xo,...,Xw). Thus, Theorem A asserts that
(Hy(w), Hoo) 18 a refractive subcouple of (L1 {w), L) if logw € BMO.

It is known that if (Yp,...,Yn) is a partial retract of (Xo,...,Xu),
then all interpolation properties of the latter (N -+ 1)-tuple are inherited
by the former. This statemment can be made precise if we use the notion of
interpolation functors. For the case of couples, see, e.g., [8], Corollary 2.1,
for the (easy) details, on which we do not dwell here. Partly, the statement
is justified also by the applications of Theorem 1 that are given below.

Now, let X be a quasi-Banach lattice of measurable functions on T.
This means that X is complete in its quasinorm || - || and the conditions
z € X, |y| £ z together with the measurability of 3 imply that y € X and
lwli < Cllz||. We define the analytic subspace X4 of X as the intersection
of X with the set of boundary functions for the Smirnov class. Some mild
restrictions on X, which we do not mention, are needed to avoid degeneration
(see, e.g., [7, 8]). Very often we have X4 = X N H, for small » > 0. In
general, X4 is related to X nearly as H, to L,. If w is a weight, then
(Lp(w))a = Hy(w).

In recent time, a good deal of work has been done towards showing that
for many lattices X,Y of measurable functions the interpolation properties
of the couple (X4,Y4) are the same as those of (X,Y). See, e.g., [7], or
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the survey [8] and the references therein. Of course, every time we aim at
proving something of this sort, it would be ideal to verify that (X4, Y4) is a
retractive subcouple of {X,Y"). However, some problems arise in connection
with the latter statement even for weighted Hardy spaces.

If we want to extend Theorem A, the first question to be asked is about
the couples (Lp,(wo), Ly, (w1)) with po,p1 € [1,00) under the necessary
(see [10]) condition log(wy/° /wi/™) € BMO. Partial retractions can easily
be constructed if pp # p1. Indeed (see [14]}, multiplying everything by an
appropriate outer function, we reduce the problem to the case where wy =
wy = w (but this reduction fails if py = p;). Then we observe that the
operator T' of Theorem A maps Ly, (w} to Hp,(w) and Ly, (w) to Hp, (w)
by interpolation.

Until recently, we did not know what happens if pg = p1 < oo, nor did
we know the situation of the couple (L*(wp)}, L®°(w1)) (here the necessary
condition is log(wg/w1) € BMO). The following theorem fills this gap.

THEOREM 1. Let 1 < p < oo, and let wy, ..., wy be N + 1 weights on
T such that log(wiwj_l) € BMO for all 4,7 = 0,...,N. Then (Hp{wo),...
... Hp(wn)) is a retractive subfamily of (Lp(we), - ., Lp(wx))-

REMARKS. (i} Again, the condition log(wiw; '} € BMO is necessary (see
(5], [10]).

(ii) Clearly, an analogue of Theorem 1 (and of Theorem A) is true for
weighted Hardy spaces on a Smirnov domain G for which the conformal
mapping ¢ of D onto G satisfies log |¢’'| € BMO. The Hardy spaces in a
halfplane constitute quite a particular case of the situation described.

(iii) In the spirit of the discussion at the beginning of the paper, we
remark that only the cases of p = 1 and p = oo are really new in Theorem 1,
because in [9] it was proved that if logw; € BMO (i = 0,..., N), then there
is an operator R that projects Ly(w;) onto Hy(w;) for i =0,..., N and for
all p € (1, 00) at once. However, the proof of Theorem 1 depends little on a
particular value of p.

The partial retractions in Theorem A and in Theorem 1 are defined dif-
ferently. The reason (probably, well-hidden behind the formalism) is that the
specific formulas for the K-functionals of the pairs (L1, L) and (Lp(wo),
Lp(wy)) differ in principle (in the second case we must “truncate” the
weights rather than the function at which the K-functional is calculated).
Combining the methods leading to Theorem A and Theorem 1, we are able
to prove another extension of Theorem A.

THEOREM 2. Let wr, ..., wy be weights on T such that logw; € BMO,
i=1,...,N. Then (Hoo, Hi(wy),..., Hi(wn)) is a retractive subfamily of
(Lm’Ll(wl)a"le(wN))' '
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REMARK. In the spirit of Theorem L, we can replace here Lo by Loo (o)
and Hy by Heo{wg); then the condition on the weights becomes log wow; €
BMO,i=1,...,N. A change of density shows the equivalence of these two
versions.

We feel that Theorems 1 and 2 are interesting in themselves, though,
probably, the proof of the second is a bit too complicated against the back-
ground of the nonultimate nature of the statement (for instance, we do
not know what happens in the framework of Theorem 2 if several weighted
Loo-spaces are involved). But we want to explain that these two facts are
more than mere curiosities.

First, Theorem 1 (especially the case of p = oc) can be used as quite a
convenient technical tool, which simplifies some known constructions con-
siderably and makes them more natural. (We note that, by itself, Theorem 1
is a relatively simple statement.} Below we give two examples of this sort.
Second, we treat (N + 1)-tuples instead of couples not merely because our
methods allow us to do so, but also because, even interpolating between o
couple of spaces, technically it may be convenient to have partial retractions
Jor triplets. An illustration of the latter can be found in the proof of Corol-
lary 2 below. Another one is in the relationship between Theorem A and
Theorem 2.

Both in [14] and in (8], Theorem A was proved under some additional
assumptions about f. Though that restricted version of Theorem A suf-
fices for the major part of applications, it is desirable to have the result as
stated above. However, doing without those assumptions seemed to require
a cumbersome and rather ugly limit procedure, which was never published.

In the framework of Theorem 2, a similar problem also arises. Technically,
it is convenient to assume that |f|*2x(ri50 € Li(wi A ... Awy) (where
f is a function which is going to be a fixed point of the operator T in the
definition of a retractive subfamily). However, here this problem is settled
in a “more regular” way: if we mean all values of N, the above condition
is not a restriction. Indeed, we can always enlarge the collection of weights
s0 as to ensure the integrability of wi A ... A wny A wyyr (say, by taking
wn+1 = 1). Then the above condition is fulfilled for every f € Ly (wy) +
A L]_('wN_,_l) + Lo

Thus, the proof of Theorem 2 for N = 2 presented below is, apparently,
the only complete proof of Theorem A available in writing.

We pass to the applications of Theorem 1 promised above. They pertain
to the collections (Xo 4,...,Xn,4) for general Banach lattices Xj,..., Xy
of measurable functions.

A quasi-Banach lattice X of measurable functions on T is said to be
BMO-regular if for every z € X there exists w € X with |w| > «, jw|| <

icm

Weighted Hardy spaces 255

C|lz|, and |logw|pmo < C, where C' > 0 is a constant depending only
on X. This w is called a BMO-magjorant of x. See [7-8] for a discussion
of BMO-regular lattices. In particular, such are Ly(w) if 0 < p < co and
logw € BMO, and also all lattices X such that the Hilbert transformation
is a bounded operator on X for some o > 0.

It is easily seen that if X is BMO-regular, then X embeds in L, for some
r > 0. We shall assume that this embedding is continuous. Tt should be
mentioned that X4 = X N A, with this r.

Next, let {Xg,..., Xn) be a collection of compatible Banach spaces, and
let Y; be a closed subspace of X;, 41 =0,..., N. We say that the (N + 1)-
tuple (¥p,...,Yy) is K-closed in (Xy,...,Xn) if every decomposition y =
zp+.. .z of avectory € Yp+...+ ¥y can be modified to y = yo+...+un
where y; € V; and {|yi]| < Cllz;i| (€ is independent of the vectors involved).

This notion is well known for couples (see, e.g., [12], [6] and the survey
[8]), in which case it is intimately related to K-functionals (whence the term
has come). If K-closedness occurs, then (apparently) all (N + 1)-tuple real
interpolation theories that may ever arise (see, e.g., [3]) can easily be carried
from (Xg,...,Xy) over to (¥,...,YnN).

CoroLLary 1. If Xg,...,Xn are BMO-requlor quasi-Banach lattices,
then the (N + 1)-tuple (Xo,4,-».,Xn,a) is K-closed in (Xq,...,XnN).

Proof. Let f € Xoa+...+ Xn,4 be represented as f = go+ ... +
gn with g; € X;, i = 0,...N. We fix a BMO-majorant w; for g; in X;
(i =10,...,N) and treat this representation as a decomposition in the sum
Leo(wg)+. . .+ Lioo (w1) of the corresponding weighted Log-spaces. It remains
to apply Theorem 1 for p = oo, cbtaining an operator T° : Leo{w;) —
Hoo(wg) (i=0,...,N) that fixes f, etc. =

REMARK. In fact, the proof gives f; € X; 4 such that f = fo+...+ f~
and | f;] < cw; (i =0,..., N). For couples, this was proved in [8] in a different
way. It is possible to do without Theorem 1 also for (N + 1)-tuples, but the
argument will be far less compact.

The next corollary is stated for couples for simplicity, but the same
argument is applicable to finite collections of spaces, in the framework of
the complex interpolation theory presented in [4].

COROLLARY 2. Let Xo, X1 be BMO-regular Banach lattices, and let
0 < 8 < 1. If the norm of the lattice Xé*QXf is order absolutely continuous,
then we have the following formula for compler interpolation spaces:

(Xo,4,X1,4)0 = (X0, X1)e) 4.

This statement first appeared in [8]. The short argument that follov_vs
(note the use of triplets in it) should be compared with the bulky proof in



256 §. Kisliakov and Q. Xu

that paper. (The first author wishes he had had Theorem 1 at the time of
writing the paper [8]...)
Proof. Under the conditions of Corollary 2, we have
(X, X1)e = Xé_eXf with equality of norms.

We will denote the latter space by Z. Only the inclusion Z4 C (Xo,4,X1,4)0
requires a proof. We take a norm-one function z in Z4 and find positive
x; € X; such that |jz;]| = 1 and |z| < 225 7%z%. Then, for each i, we fix a
BMO-majorant w; for «; in the space X, and consider the following triplet
of spaces;
Loo(to)y  Loo{w1), Lw(wé—gwi)-

By Theorem 1, there exists an operator T° that fixes # and maps Loo(w;)
to Hoo{w;) (i = 0,1) and Leo(wi™%wf) to Heoo{wi%wf) with all relevant
norms bounded by a constant that depends eventually on the initial lattices
X; (1 =0,1) only. Let

ee={e<w; <&, i=0,1}, £>0,

and let y. = zx.,. From the specific formula for T' given in the proof of
Theorem 1 below (namely, from the weak* continuity of the £, &'s), it follows
that Ty, — Tz =z a.e. as ¢ — 0. Since T' is bounded on Lo (wg ™ wf), we

see that
Ty:| < Owouawg
uniformly in . Thus, since the norm of Z is order absolutely continuous,

Ty. — « in the norm of Z. On the other hand, ¥. € Leo(wg) M Log (w1).
Consequently,

[¥ell(Lon (o), Loo (s )y < 2-
Thus by interpolation,

1T Ye || (oo (wo) Hoo (0100 <
and, finally,

”TyE“(Xn,A,Xl,AJe <C.

We have proved that every norm-one element of Z 4 can be approximated
in this space by an element of the C-ball of (X 4, X1, 4)s, within any given
accuracy. In a standard way, this implies the inclusion announced at the
beginning of the proof. »

It is routine to write out more applications of Theorems 1 and 2 (see [13]
and [14] for some relevant patterns).

Now, we pass to the proofs of our main results.

In the sequel C' will denote a positive constant which is independent of
particular functions but may depend on the index p and on the BMO norms
of the logarithms of the weights under consideration.
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The following lemma is taken from [9] (see the arguments preceding
formula {6) in that paper).

LemMA 1. Let w be a weight such that logw € BMO. Then there exisis
a sequence {pn tnez of functions in Ho, satisfying

(1) onl < Cmin{(w/2")®, (2% /w)*}, Wnel,
(2) Z n =1
neZ

Note that by (1) we have

Also note that (1) implies
(4) Z 19911!1/4 <C
neZ
Indeed, let e = {28 < w < 2871}, k € Z. Then from (3) and (1) we deduce
that
Z |CP:'L|1/‘1 = ZZ |(Pﬂl1/4XEk
neZ neZ keZ
<oy (T2t + 3200
ned  k<n k>n
-cy (2’“ P RETRDY 2”)94%
keZ nzk n<k
<CD %o, =C.
kel

REMARK. In support of our claim that Theorem 1 is a convenient tool
in the study of interpolation of Hardy-type subspaces, we note that the
entire way to Lemma, 1 from total ignorance is reasonably short. As shown
in [9], this lemma is not difficult modulo the K-closedness property for the
couple (Hy(wo), Hy(w:)) provided that logwo,logw: € BMO. The proof of
the latter involves a trick, but otherwise is easy (see [10] and also [8] for a
simplification). If Lemnma 1 is known, the proof of Theorem 1 is not difficult
cither, as will be shown immediately.

Proof of Theorem 1. Multiplying by an appropriate outer function, we
reduce the theorem to the case where wp = 1. Then the condition on the
weights turns into logw; € BMO,i=1,...,N. For notational simplicity, we
will only consider the case of N = 2, the general one being treated similarly.

Let {on}nez (resp. {¥n}nez) be the sequence obtained in Lemma. 1 with
w = w; (resp. w = wy). We fix a function f € Hy, + Hp(wi)+ Hp{wz). Given
any n, k € Z, we choose a positive linear functional £nk € (Lyp)™ of morm at
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most 1 such that

(5) Engo (] - Joal 2 10n2) = 27H1IF1] - Toon 2 lope 21,

If p = oo, we also require that &, be w*-continuous. This is needed, for

instance, in the proof of Corollary 2. Now for any g € Ly + Lp(wy) + Lp(w2),

we define

Tn k(g) — fn,k(Sgn(f)g|(Pn'l/zlwkllfz),
' e R N R T i TN

Y, k € Z,

and
T(g) = > Tni(g)pnthsf
n,kER

We are going to check that this operator T satisfies all requirements of
Theorem 1. First, observe that by (2) (applied to both {¢,} and {¢,}) and
(5), we see that Tf = f. Then we must check the boundedness of T from
Lyp(w;) into Hp(w;). Note that since the terms in the sum defining T'g are
all analytic functions, if this sum converges in Ly(w;) (with respect to the
w*-topology in the case of p = co), T'g must belong to Hy,(w;).

We first consider the case where p < oc. Fix g € Ly, -+ Ly (wy) + Ly (ws).
By Hélder’s inequality, (3), and (4), we have

(6) ITgl? < C 37 |Tnkl(g)Plon 2/ lis P4 1|2
,kEZ

Thus if g € Ly, then
ITgliZ, <C 3 1Turlo)Plllienl 2l 7113,

n,kEZ

SO Y lnnlsen(Folenl x| /2P
n,kEZ

<O Y [ lgl- lonl el 2y
nkcZT

< Clglz, (by (4)).

Therefore, T maps Ly into Hy and [|T': L, — H,| < C. Nowlet g € Lp(wy).
By (3) and (1), we get

lonlP/*w1 < Clpn M4, < C27;
combining this with (6) yields

1Tl ) S C D 1Tp(@)1P2" § lionlP/? s [P/2 | £ 17

n,keZ T
<C Y §gP @ onlP o P/ P/,
n,keZ T
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however, again by (3) and (1),
2%|nlPt < C2Mga M < Oy,
Therefore,

TGy S C D [lalPwrlion[?/4fuby P72
n,keZT

= {lgPwr Y lpalP/* |yl

T n kel
< Ollglif, gy (by (4));

so Tt Ly(w1) — Hy(w;) is bounded and of norm < €. Similarly, changing
the roles of wy and we, we prove the boundedness of T' from Lp(wg) to
Hp(’wg).

The case of p = oo is dealt with in a similar (and slightly easier) way.
Indeed, let g € L. Then by (3) and (4),

[Tgl < C S [ Tnu(9)] - ol - 9] - 7]
n,kel

=C 3 [Enilsen(Pglon2[wn*®)] - lon bl /2
n,kEL

<C Y Nglralenl™?wulM?
n,k&Z

< Cllgllre.  (by (4)).

Thus T maps Lo into H, and is of norm < €. Much as in the above case of
p < oo, we check that T is simultaneously bounded from g (w;) to Hoo (w;)
for ¢ = 1, 2. Therefore, the proof of Theorem 1 is complete. w

Proof of Theorem 2. In a sense, the argument is a combination of the
proof of Theorem 1 and a proof presented in [11] (see also [8]). We shall
construct the required partial retraction for functions f € Huo + Hy(w:) +
... Hy{wy) satisfying the additional condition |f|*2x(/s>ap € Ly (w1 A
.. Awpy) for all A > 0. It has already been explained that, really, this is
not a resiriction. Again, we only consider the typical case of N = 2 (see,
however, additional hints at the end of the proof).

By Lemrma 1 (applied to w = wy/ws), we choose a sequence {%itrez C
Hao such that

. P \® [ w \?
(7) |q/);¢|5(3’mm{( o ) ,(—ﬁw—z) , kei,

(8) D k=1

keZ
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‘We put
. Pwy\* [ w !
{9) ak:mm{(ﬂ)i ) '\ 2oy , keZ
Then

sup ||agllr. €1 and suplllogax|imo < co.
kEZ kEZ

Now, we take a function f € Heo+Hi (wq )+ H1(w2) satisfying |f|1/2x{kf|>)\}
& L]_('UJ]_ A wg) for all A > 0.

LEMMA 2. With the above notation, for any k € Z and A > 0 there exist
two analytic functions gy, by such that fibr = gy + he and

i 5cf\i¢kimm{~*{i,%},

S|hk|1/2w1SC S ml/zailzwl_

T {{fI>Ar
Proeof. Since the BMO-norms of the functions log(wla,lc/ 2) are uniformly

bounded, by [8, Lemma 3.1] we may choose C > 0, 0 < ¢ < 1, and some
funetions uy such that

(10)  CThwi<un<Cwy,  [H{weey ")) < Clura/)?,

where ‘H denotes the Hilbert transformation on the unit circle T. From now
on and till the end of the proof of the lemma, we assume that & is fixed.
Choosing an integer ! such that 1/2 > 1/p, we put

Y (i) + it {(urey)?)
a=max{l, 5 , F= 7 - T
a(ura,’ ) + it {a(ua, "))
Then it is easy to check that F' is an analytic function in H., and, by (10),
(11) |IF| < Cla<O.
‘We define
G=1-(1-F", go=Gfte, Me=(1-GC)fpr.

Clearly, fir = gi + h#, and the gp’s and hy's are analytic. By (11) and the
definition of «,

|95 < CIf]- [/ = C|f] - [w| min{L, (\/|F)%}
= CA[g| min{| 7|/, /| f]}-
As for hy, by (11) and the choice of I (I/2 > 1/p), we have
VIl 2wy = {11 — G2 £ 2 e 2y
T T

<c { PP MurC
{t£1>2} {lFi=a}y

L= F 2] £[2 e P
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The next to the last term is already good; so it remains to estimate the last
one. To this end, by (7), (9)—(11), the boundedness of H on the (unweighted)
space Ly/,, and the observation that o = 1 on the set {|f| < A}, we get

V= PR 2 P,

HESY:
<o {1 - FMea %,
{1£1<2}
_ L/2y0y11/0
< a2 S |H((x 1)(“;;/5;;; )9 aiﬂuk
{112} Uk O, '
< OA2 [((o— 1) (upay®)2) e
T

<o (AN 4Dua?
{|fl=2}

<o | (7N 2upey?
{If1=>2}

<Cc § M0 w.

{Ifi>A}
Thus, we have obtained the desired estimate for hg, and so have finished
the proof of Lemma 2.

Now we continue the proof of Theorem 2. Putting A = 2" (n € Z), we
obtain two corresponding functions gn  and hpx as in Lemma 2. Next, let
Prk = Intlk = Gnjey THEE L

Then @n x I8 in Hoo; also note that ¢n g = hog — Ptk It is easy to see
that

> ong = fir, VEREZ

nek
so by (8),
(12) Z Pnk = .

n,kEZ

On the other hand, by Lemma 2,
(13) liom, k] < G2 |4y min{|f|/2", 27 /[ f},
and
(14) Vonpl 2w <0 | 1F12%0;  un.

T {If1>2"}
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Now we can define the desired operator T. Setting 2, = {|f| > 2"}, for
any g € Loo + L1(w1) + L1{ws) we define
[, sen(DalfI"2a "un

{q, [11/2a "0
which is understood as 0 if |2,| = 0, and
T(g) = Y Tnpl{8)pnp-
n,keZ

By (12), Tf = f (observe that if |12, = 0, then ¢n 3 = 0). We are going to
estimate various norms of T'. Let g € Lo, with {|g[|z.. < 1. Then
S, [£17H %03

{i, F1/20
so by (13), (4) (applied to {¢4}) and the argument leading to {4) (applied
to the sum over n), we get

ITgl < Y 27onsl < C Y lahel Y min{|fi/2%,27/|f]} < C.
nkEZ keZ  neZ

Since all ¢, 3’s are analytic, as an operator from L, to Hyo, T' is bounded
and its norm is majorized by a constant C.
Next, let g € L1(w1). Then by (13), (14),

fIT@lhor < 3 1Tus(0)] ] i phos

Tn,k (g) = ) n, keZ,

-1,
?

[Tk (9 < 19ll2e

T n,keZ T
<C Y 1Tan(@)127? | 1£1M2a Py
n,kEZ 2n
<C Y 2 gl 1F17 ey P
n,kEZ {2,

by the argument proving {4}, we get

Zaglc/zsc;

kEE
on the other hand, sefting e; = {27 < || < 27+1}, we have

L R D DD o T

nez 2y neZ izne;
<O | lohnz 2 Y 1
JeZ e ngj
< CS |g|ws.

T
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Combining the preceding inequalities, we get the boundedness of T' as an
operator from Li(w;) into Hy(wy).

Finally, to prove that T maps Ly (ws) into Hy (w,) boundedly, we observe
that by (13), (7}, and (9),

| on el s < Co™M 2| 2 < €222 R0y

50, if g € L1(ws), then

JT(@hwe < D7 Tuw(@)l | lonshos

T 1n,kEZ T
SC Y ITan(@)2"227% {lipn u [ 2s
n,kEZ T

<C ST P HT (o) A% e (by (14))

n,kEZ 2
<0 ST 2k {g]- £ e .
n,kEEZ 2,

Now by (9) and an argument similar to the proof of (4), we see that

ZZ"ka,lc/zwl < Cua,
keZ

so, as before for {; |T'g|w,, we deduce that

[1T(g)lws < © 32272 | gl 1£17 /w2 < O lglwn.
i ned 2, T

Thus T : Ly(ws) — Hi(wsz) is bounded and of norm < C. Therefore, we
have completed the proof of Thecrem 2 for N = 2 under the additional
assumption |f|*3x 1151523 € Ln(ws A wa).

We give some hints to the proof for N = 3, Let f € Hoo + Hi{w1) +
Hy(wy) + Hy(ws) satisfy the condition [£"2x (521 € Ln{wi Awa A ws).
Along with {4}, we find a sequence {&x} € Hao satisfying (7) and (8) with
wy replaced by ws, Next, along with the ay (see (9)) we define by in a similar
way, again with ws in place of wy. Then the decomposition in Lemma 2 will
change in the following way: fix&; = gr,j + h,;, where

|gw 5| < Ol min{| £/, /| fi}

9
[hesun <€ | 17FPa
T HEERS

We omit the further details. m
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An example of a Fréchet algebra
which is a principal ideal domain

by
GRACIELA CARBONI and ANGEL LAROTONDA (Buenos Aires)

Abstract. We construct an example of a Fréchet m-convex algebra which is a principal
ideal domain, and has the unit disk as the maximal ideal space.

1. Introduction. In the sequel, if not stated otherwise, we consider
Hausdorff locally multiplicatively comvex (LMC) commutative C-algebras
with identity (denoted by 1), and we identify the set of scalar multiples of
the identity with C. A Fréchet m-convez olgebra A is a complete metrizable
LMC algebra; in this case the topology of A can be defined by an increasing
sequence of algebra seminorms {(see [5]).

If I is an ideal of A, we denote by I™ the ideal of A generated by all
products of the form zy ... ¢, (z; € I). We say that I is finitely generated if
there exist elements 1, ..., 2, in A such that I = Z’;:l Az, and we write
[=(z1,...,2,); when r =1 we say that I = (x) is principal.

As usual, A is noetherian (resp. principal) if every ideal is finitely gen-
erated (resp. principal}. '

There are many proofs of the fact that a noetherian Banach algebra
is finite-dimensional, and hence semilocal (see [6], [11] for instance). For
Fréchet m-convex algebras all these proofs break down; in fact the algebra
of formal power series C[[X]] (with the topology of €M) is a principal ideal
domain (sce also [4] and observe that all these examples are local rings).

Reeall that the finiteness conditions on all ideals are somewhat rare in
the LMC-coutext; for instance, if K is a connected compact set in C then
the algebra O(K) of holomorphic germs is a principal ideal domain, but
it is not mefrizable. On the other hand infinite-dimensional examples of
complete metrizable locally convex division algebras cannot exist, since the
Gelfand-Mazur theorem is true for such algebras ([2], [13]).
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