The continuity of Lie homomorphisms

by

BERNARD AUPETIT (Québec) and MARTIN MATHIEU (Belfast)

Abstract. We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.

The ideas in this paper were inspired by a result which is contained in [14]. Suppose that A and B are (complex) Banach algebras and let $\theta : A \rightarrow B$ be a Lie homomorphism between A and B, that is, a linear map satisfying $\theta([x,y]) = [\theta(x), \theta(y)]$, $x, y \in A$, where, as usual, $[x,y]$ denotes the commutator $xy - yx$. If θ is bijective and B is a C*-algebra, then the separating space of θ (see below) is contained in the centre of B [14; Proposition 1.9 together with Proposition 2.7]. This has recently been extended to the case of semisimple Banach algebras A and B, but θ still being bijective [4]. Both results rely essentially on the notion of the “weak radical” of the Lie algebras which are canonically associated with A and B. The interrelation of this nonassociative device with the surrounding associative structure seems to be not well understood; in particular, it is not known whether the weak radical coincides with the (associative) centre of a Banach algebra, even in the semisimple case. Moreover, to obtain their result in [4], Berenguer and Villena have to appeal to the rather deep structure theory of Lie isomorphisms in the spirit of Herstein and to use it in a somewhat technical way. (For a large class of C*-algebras including all von Neumann algebras their result follows directly from the structure theory contained in [12]. For a good account on “Herstein's Programme”, see [3].)

We felt that, since one is starting from an associative context and only considering the derived Lie algebra structure, it should be possible, and much simpler, to avoid the concept of the weak radical altogether, and also

2000 Mathematics Subject Classification: Primary 46H40, Secondary 16W10, 17B60, 46H70, 47B47, 47B48.

Key words and phrases: Lie homomorphisms, Banach algebras, spectrally bounded maps.

This work was started while the second-named author was a Marie Curie Fellow of the European Commission.
to replace the structural approach by a more direct argument. In fact, it
turns out that it suffices to merely use a fundamental result, underlying also
the previous theorems, which has proven its usefulness in related automatic
continuity problems (see Lemma A below). At the same time, we remove all
assumptions on the Banach algebras A and B and, what appears to be
even more important, do not have to assume the injectivity of \(\theta \). Dropping
the injectivity immediately rules out the application of the structure theory
for Lie isomorphisms. On the other hand, it is not possible to omit the
injectivity of \(\theta \) (as illustrated by an example below) so that we obtain the
optimal result on the continuity of Lie homomorphisms.

Theorem. Let A and B be Banach algebras and let \(\theta : A \to B \) be a
surjective Lie homomorphism. Then the separating space \(S(\theta) \) is contained
in \(Z(B) \), the centre modulo the radical of B.

To establish the above theorem, we first recollect a few notions and
known results. Extending the concept introduced in [11] we call a linear
mapping \(T : E \to B \) into a (unital) Banach algebra B defined on a subspace
\(E \) of a (unital) Banach algebra A spectrally bounded if there is a constant
\(M \geq 0 \) such that

\[
\rho(Tx) \leq Mr(x) \quad (x \in E).
\]

Here, and henceforth, \(r(x) \) denotes the spectral radius of a Banach algebra
element \(x \).

Spectrally bounded derivations are intimately tied to the noncommuta-
tive Singer–Wermer conjecture [7], [9]. There has been some recent progress
in understanding the structure of spectrally bounded mappings on Banach
algebras (see [6], [8], [15], and the references therein). Their use in automatic
continuity theory stems from the following result due to the first-named author
[1], [2], which we state in a slightly more general form that we shall
need subsequently.

As is standard, we denote the separating space of a linear mapping T
between normed spaces by \(S(T) \), i.e.,

\[
S(T) = \{ y \mid y = \lim_{n \to \infty} Tx_n \text{ for some sequence } x_n \to 0 \}.
\]

The separating space is a closed subspace of the range space.

Lemma A. Let T be a spectrally bounded linear map defined on a
subspace E of a Banach algebra. Then \(S(T) \cap T(E) \) consists of quasinilpotent
elements.

The proof given for the case where T is defined on a Banach algebra in
[1; Theorem 1] or [2; Theorem 5.5.1] takes over verbatim. It uses the
subharmonicity of the spectral radius in an essential way. An alternative
argument can be found in [10].

As a consequence of a slight refinement of the statement in Lemma A and
Zemánek’s characterisation of the radical, every spectrally bounded linear
map from a closed subspace of a Banach algebra onto a Banach algebra B
has its separating space in the radical of B. In particular, every surjective
Jordan homomorphism from a Banach algebra onto a semisimple Banach
algebra is automatically continuous, which extends the classical result due to
Johnson.

Since every linear mapping between commutative Banach algebras is a
Lie homomorphism, the optimal result that one can hope for states that the
separating space is contained in the centre, if the image algebra is assumed to
be semisimple. For an arbitrary Banach algebra B, the centre modulo the
radical, \(Z(B) \), is defined as the inverse image of the centre of the Banach
algebra \(B/\text{rad}(B) \), where \(\text{rad}(B) \) denotes the Jacobson radical of B. Thus,
\(b \in Z(B) \) if and only if \([x, b] \in \text{rad}(B) \) for all \(x \in B \). This is in fact equivalent
to the spectral boundedness of the (left) multiplication by \(b \) on \(B \) (see [13],
[9]).

Besides Lemma A, the second main ingredient in the proof of the above
theorem will therefore be a characterisation of the elements of \(Z(B) \) derived
from the Jacobson Density Theorem [2; Theorem 4.2.5] and Kaplansky’s
description of locally algebraic operators [2; Theorem 4.7.9]. By \(\delta_b \), \(b \) in an
algebra B, we denote the inner derivation \(\delta_b : x \to [x, b] \), and by \(\text{inn}(B) \) the
Lie algebra of all inner derivations on B.

Proposition. Let B be a (unital) Banach algebra. Then \(b \in B \) belongs
to \(Z(B) \) if and only if \(r(\delta_b(x)) = 0 \) for all \(x \in B \).

Proof. Suppose that \(b \in Z(B) \). Then \([x, b] \in \text{rad}(B) \) for all \(x \in B \);
in particular, \(r([x, b]) = 0 \). Since left and right multiplication commute it
follows that

\[
r(\delta_b(x)) \leq 2r([x, b]) = 0.
\]

Now assume that \(r(\delta_b(x)) = 0 \) for all \(x \in B \). Then \(\lim_{k \to \infty} \delta_b^k(x) = 0 \) for
all \(x \in B \), and this is all we need in the sequel.

Let \(\pi \) be an irreducible representation of \(B \) as bounded linear operators
on a Banach space E. As an inner derivation leaves the kernel of \(\pi \) invariant,
we obtain an induced inner derivation on the irreducibly acting algebra \(\pi(B) \)
with the property that \(\delta_{\pi(b)}(x) = \pi(x) \pi(b) = \pi(b) \pi(x) \) for all \(k \in N \). Since \(\pi \) is
continuous it follows that \(\delta_{\pi(b)}(x) \pi(y) \pi(x) = 0 \) as \(k \to \infty \) for each \(y \in B \)
and each \(\xi \in E \).

Suppose that, for some \(\xi \in E \), the vectors \(\xi, \eta = \pi(b)\xi \), and \(\pi(b)\eta \)
are linearly independent. By Jacobson’s Density Theorem, there is \(x \in B \) such
that \(\pi(x)\xi = 0, \pi(x)\eta = \xi \), and \(\pi(x)\pi(b)\eta = \eta \). Putting \(c = [x, b] \) we have

\[
\pi(c)\xi = (\pi(x)\pi(b) - \pi(b)\pi(x))\xi = \xi.
\]
The continuity of Lie homomorphisms

The following standard result from spectral theory (see, e.g., [14; Lemma 3.1]) will be needed.

Lemma B. Let E, F be Banach spaces and let $S \in \mathcal{L}(E), R \in \mathcal{L}(F)$. If there is a linear surjective mapping $T : E \to F$ satisfying $TS = RT$, then $r(R) \leq r(S)$.

Proof. Take λ in the spectrum of R such that $|\lambda| = r(R)$. Since $\lambda - R$ is a topological divisor of zero, the mapping $\lambda - R$ cannot be surjective. This and the identity $T(\lambda - S) = (\lambda - R)T$ imply that $\lambda - S$ cannot be surjective either, as T is onto. Hence, λ belongs to the spectrum of S so that $r(R) = |\lambda| \leq r(S)$. ■

We are now ready for the proof of our main result.

Proof of the Theorem. Step 1. We first show that every $b \in \mathcal{S}(\theta)$ satisfies $r(\delta_b) = 0$. To this end, define $T : \operatorname{inn}(A) \to \operatorname{inn}(B)$ by $\delta_a \mapsto \delta_{\theta(a)}$, $a \in A$. Since θ is surjective, this is a well-defined surjective Lie homomorphism because

$$T(\delta_{a_1})T(\delta_{a_2}) = [\delta_{\theta(a_1)}\delta_{\theta(a_2)}] = \delta_{\theta(a_1)\theta(a_2)} = \delta_{\theta(a_2)a_1} = \delta_{\theta(a_2)a_1} = T(\delta_{a_1}\delta_{a_2})$$

for all $a_1, a_2 \in A$. For all $x \in A$, we have

$$\theta \delta_b(x) = \theta(x, a) = [\theta(x, a)] = \delta_{\theta(a)}\theta(x),$$

that is, $\delta_a = \delta_{\theta(a)} \theta$. By Lemma B, it follows that $r(\delta_{\theta(a)}) \leq r(\delta_a)$ for all $a \in A$. Consequently, T is spectrally bounded (with constant $M = 1$) as a linear mapping from $\operatorname{inn}(A) \subseteq \mathcal{L}(A)$ into $\mathcal{L}(B)$. Thus, $r(\delta_b) = 0$ for all $\delta_b \in \mathcal{S}(T)$ by Lemma A.

Let $b \in \mathcal{S}(\theta)$ and take a sequence $(x_n)_{n \in \mathbb{N}}$ in A such that $x_n \to 0$ and $\theta(x_n) \to b$. Then $\delta_{x_n} \to 0$ and $\delta_{\theta(x_n)} \to \delta_b$, wherever $\delta_b \in \mathcal{S}(T)$. Consequently, $r(\delta_b) = 0$ as claimed.

Step 2. The surjectivity of θ yields that $\mathcal{S}(\theta)$ is a Lie ideal in B. Hence, by Step 1, for all $b \in \mathcal{S}(\theta)$ and all $x \in B$, we have $r(\delta_{x, b}) = 0$. By the Proposition, each $b \in \mathcal{S}(\theta)$ belongs to $\mathcal{Z}(B)$, which completes the proof. ■

Remark. In the case of C^*-algebras A and B, we can avoid the Proposition, and hence all the representation theory, in Step 2. Let $b \in \mathcal{S}(\theta)$. Then $c = [b, b^*]$ is a self-adjoint element in $\mathcal{S}(\theta)$. By Step 1, $r(\delta_c) = 0$ and since $\exp(i\delta_c)$ is an isometry for every real t, this entails that $\delta_c = 0$, contradicting the hypothesis $\delta_c \neq 0$. Therefore, c is central and $[b, [b, b^*]] = 0$ yields that $r(c) = r([b, b^*]) = 0$ by the Kleinecke–Shirokov Theorem. But a central quasinilpotent element in B has to be zero, wherever b itself is normal. This shows that every element in $\mathcal{S}(\theta)$ is necessarily normal.
Consequently, \([\delta_b, \delta_{b^*}] = \delta_{[b,B]} = 0 \) and
\[
\rho(\delta_{b+b^*}) = \rho(\delta_b + \delta_{b^*}) \leq \rho(\delta_b) + \rho(\delta_{b^*}) \quad (b \in S(\theta)).
\]
If we define \(\theta^* : A \to B \) by \(\theta^*(a) = \theta(a^*)^* \), \(a \in A \), we obtain a surjective Lie homomorphism such that \(S(\theta) = S(\theta^*)^* \). It follows that, if \(b \in S(\theta) \), then \(\rho(\delta_{b^*}) = 0 \) by applying Step 1 to \(\theta^* \) in place of \(\theta \). By the above, \(\rho(\delta_{b+b^*}) = 0 \) for every \(b \in S(\theta) \), which implies \(b + b^* \) central as before. Similarly, we have \(b - b^* \) central, from which we conclude that every element \(b \) in \(S(\theta) \) belongs to the centre of \(B \) as claimed.

Simple examples show that the surjectivity in the Theorem cannot be dropped.

Example. Let \(A \) be an infinite-dimensional unital commutative Banach algebra and take two linearly independent linear functionals \(f, g \) on \(A \) such that \(f|_{\ker f} \) and \(g|_{\ker f} \) are unbounded. For instance, let \(\{ e_i \ : \ i \in \mathbb{N} \cup I \} \) be a vector space basis, indexed by the disjoint union of \(\mathbb{N} \) and some suitable set \(I \) and contained in the unit ball of \(A \), and put \(f(e_i) = n \) for all \(n \in \mathbb{N} \) and \(f(e_i) = 0 \) for all \(i \in I \), while \(g \) is defined by \(g(e_n) = n \) for all \(n \in \mathbb{N} \) even and \(g(e_i) = 0 \) for all other \(i \in I \). Let \(B = (K(H) \oplus K(H))[[1] \) be the unitisation of the direct sum of the compact operators \(K(H) \) on the separable infinite-dimensional Hilbert space \(H \) with itself. Fix \(c \in K(H) \) nonzero. Then \(\theta(a) = (f(a)c, g(a)c), a \in A \), defines a Lie homomorphism from \(A \) into \(B \) such that \(S(\theta) \cong \mathbb{C}^2 \) is not contained in \(Z(B) = \mathbb{C}1 \).

For each Banach algebra \(A \), the centre modulo the radical, \(Z(A) \), clearly is a closed Lie ideal of \(A \). We denote by \(\tilde{A} = A/Z(A) \) the canonically associated Banach Lie algebra obtained by quotienting out \(Z(A) \). Every surjective Lie homomorphism \(\theta : A \to B \) induces a surjective Lie homomorphism \(\tilde{\theta} : \tilde{A} \to \tilde{B} \) since \(\theta(Z(A)) \subseteq Z(B) \). This is derived from the Proposition and the proof of the Theorem as follows. If \(a \in Z(A) \) then \(\rho(\delta_{[a, a]}) = 0 \) for all \(a \in A \). As observed above,
\[
\rho(\delta_{\theta(a)}(a, a)) = \rho(\delta_{\theta(a)a}) \leq \rho(\delta_{[a, a]}) = 0,
\]
wherefore \(\rho(\delta_{[y, y]}(a)) = 0 \) for all \(y \in B \) by the surjectivity of \(\theta \). Hence, by the Proposition, \(\theta(a) \in Z(B) \). Since \(\tilde{\theta} \) is continuous if and only if \(S(\tilde{\theta}) \subseteq Z(B) \), we obtain the following immediate consequence of the Theorem.

Corollary. Let \(\theta \) be a surjective Lie homomorphism from a Banach algebra \(A \) onto a Banach algebra \(B \). Then the induced Lie homomorphism \(\tilde{\theta} \) from the Banach Lie algebra \(\tilde{A} \) onto \(\tilde{B} \) is continuous.

This result was obtained in [4] under the hypothesis that both \(A \) and \(B \) are semisimple and that \(\theta \) is bijective.

Acknowledgements. We are indebted to Angel Rodríguez Palacios for a helpful discussion in the course of the preparation of this paper.

References

Département de Mathématiques et de Statistique
Université Laval
Québec, Québec, G1K 7P4
Canada
E-mail: baupetit@mat.ulaval.ca

Received June 21, 1999
Revised version October 19, 1999