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The continuity of Lie homomorphisms

by
BERNARD AUPETIT (Québec) and MARTIN MATHIEU (Belfast)

Abstract. We prove that the separating space of a Lie homomorphism from a Banach
algehra onto a Banach algebra is contained in the centre modulo the radical.

The ideas in this paper were inspired by a result which is contained
in [14]. Suppose that A and B are (complex) Banach algebras and let
§: A — B be a Lie homomorphism between A and B, that is, a linear map
satisfying 8([z,y]) = [8(x),0(y)], =, y € A, where, as usual, [z,y] denotes
the commutator oy — yz. If ¢ is bijective and B is a C*-algebra, then the
separating space of @ (see below) is contained in the centre of B [14; Propo-
sition 1.9 together with Proposition 2.7]. This has recently been extended to
the case of semisimple Banach algebras A and B, but 9 still being bijective
[4]. Both results rely essentially on the notion of the “weak radical” of the
Lie algebras which are canonically associated with A and B. The interrela-
tion of this nonassociative device with the surrounding associative structure
seems to be not well understood; in particular, it is not known whether
the weak radical coincicdes with the (associative) centre of a Banach alge-
bra, even in the semisimple case. Moreover, to obtain their result in [4],
Berenguer and Villena have to appeal to the rather deep structure theory
of Lie isomorphisms in the spirit of Herstein and to use it in a somewhat
technical way. (For a large class of C*-algebras including all von Neumann
algebras their result follows directly from the structure theory contained in
[12]. For a good account on “Herstein’s Programme”, see (3].)

We felt that, since one is starting from an associative context and only
considering the derived Lie algebra structure, it should be possible, and
much stmpler, to avoid the concept of the weak radical altogether, and also
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to replace the structural approach by some more direct argument. In fact, it
turns out that it suffices o merely use a fundamental result, underlying also
the previous theorems, which has proven its usefulness in related automatic
continuity problems (see Lemma A below). At the same time, we remove
all assumptions on the Banach algebras 4 and B and, what appears to be
even more Important, do not have to assume the injectivity of . Dropping
the injectivity immediately rules out the application of the structure theory
for Lie isomorphisms. On the other hand, it is not possible to omit the
surjectivity of 6 (as illustrated by an example below) so that we obtain the
optimal result on the continuity of Lie homomorphisms.

THEOREM. Let A and B be Banach algebras and let 6: A — B be a
surjective Lie homomorphism. Then the separating space S(0) is contained
in Z(B), the centre modulo the radical of B.

To establish the above theorem, we first recollect a few notions and
known results. Extending the concept introduced in [11] we call a linear
mapping T": £ — B into a (unital) Banach algebra B defined on a subspace
E of a (unital) Banach algebra A spectrally bounded if there is a constant
M > 0 such that

r{Tz) < Mr(z) (z€E).
Here, and henceforth, r(z) denotes the spectral radius of a Banach algebra
element .

Spectrally bounded derivations are intimately tied to the noncommuta-
tive Singer-Wermer conjecture [7], [9]. There has been some recent progress
in understanding the structure of spectrally bounded mappings on Banach
algebras (see [6], [8], [15], and the references therein). Their use in automatic
continuity theory stems from the following result due to the first-named au-
thor [1], [2], which we state in a slightly more general form that we shall
need subsequently.

As is standard, we denote the separating space of a linear mapping T
between normed spaces by S(T), i.e.,

ST ={y|y= nli)n;o T'z, for some sequence z, — 0}.
The separating space is a closed subspace of the range space.

LemMA A. Let T be a spectrally bounded linear map defined on a sub-

space E of o Banach algebra. Then S(T)NT(E) consists of quasinilpotent
elements.

The proof given for the case where T is defined on a Banach algebra
in {1; Theorem 1] or [2; Theorem 5.5.1] takes over verbatim. It uses the

subharmonicity of the spectral radius in an essential way. An alternative
argument can be found in [10].
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As a consequence of a slight refinement of the statement in Lemma A and
Zemének’s characterisation of the radical, every spectrally bounded linear
map from a closed subspace of a Banach algebra onto a Banach algebra B
has its separating space in the radical of B. In particular, every surjective
Jordan homomorphism from a Banach algebra onto a semisimple Banach
algebra is automatically continuous, which extends the classical result due
to Johnson.

Since every linear mapping between commutative Banach algebras is a
Lie homomorphism, the optimal result that one can hope for states that the
sepatrating space is contained in the centre, if the irmage algebrs is assumed
to be semisimple. For an arbitrary Banach algebra B, the centre modulo the
radical, Z(B), is defined ag the inverse image of the centre of the Banach
algebra B/rad(3), where rad(B) denotes the Jacobson radical of B, Thus,
b € Z(B) if and only if [, b] € rad(B) for all € B. This is in fact equivalent
to the spectral boundedness of the (left) multiplication by b on B (see [13],

9)).

{ ])Besides Lemma A, the second main ingredient in the proof of the above
theorem will therefore be a characterisation of the elements in Z(B) derived
from the Jacobson Density Theorem [2; Theorem 4.2.5] and Kaplansky’s
description of locally algebraic operators [2; Theorem 4.2.7]. By &, b in an
algebra B, we denote the inner derivation & : z — [x,}], and by inn{B) the
Lie algebra of all inner derivations on B.

PRrROPOSITION, Let B be a (unital) Banach algebra. Then b € B belongs
to Z(B) if and only of r(0jop) =0 for all z € B.

Proof. Suppose that b € Z(B). Then [z,b] € rad(B) for all = € B;
in particular, r([z,b]) = 0. Since left and right multiplication commute it
follows that

r(a[w‘b]) < 2r([z,b]) = 0.

Now assume that 7(8), ) = 0 for all z € B. Then limy_c 5[@,5] = 0 for
all z € B, and this is all we need in the sequel.

Let m be an irreducible representation of B as bounded linear operators
on a Banach space E. As an inner derivation leaves the kernel of m invariant,
we obtain an induced inner derivation on the irreducibly acting algel?ra w(B)
with the property that 5[’%@),”(5)1 OF = TO 5[’;,,,] for all &k € N. Since 7 is
continuous it follows that 6{;(@,”(,,)171'(3;)5 — 0as k — oo for each y € B
and each £ € E,

Suppose that, for some ¢ € E, the vectors &, n = w(b}¢, and n(b)n are
linearly independent. By Jacobson’s Density Theorem, there is z € B such
that or(z)é = 0, n(z)n = &, and 7(z)7(b)n = 1. Putting ¢ = [z, b] we have

7(e)¢ = (m{w)n(b) — m(bym(e))€ = ¢
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and
w(e)n = (x(z)m(d) — w(B)m(z))n = 0.
Consequently,
Sn(gym(b)E = (m(b)m(c) — m(c)m(B))E = 1
whence

57%@)71'(6)5 = (Gpgmd)a(c) — 7(c)drm(d))E =1
It follows by induction that 8fm(b)¢ = n for all & € N. However, this

w{c

contradicts the hypothesis §¥ — 0 as observed above. Hence, for every £ €
E, the vectors £, n(b)¢, and 7(b)%¢ are linearly dependent, wherefore, by
Kaplansky’s Theorem, there exist o, 8 € C such that w(b)? = ax(b) + 8 or
w(b) is a multiple of the identity. In fact, in the first case, we may assume
that & = 0, upon replacing b by b’ = b—a/2, which satisfles w(b')* = G+a? /4
and yields the same commutator as b.

If 7(b) is not a multiple of the identity but 7(b)}*> = §, then there exist
£ € E nonzero and = € B such that w(z)€ = £ and n(x)n(b)é = £ + n(b)¢.
Putting n = w(b)¢ and ¢ = [z, b] we get

w(e)§ = (w(z)mw(b) —w(b)m(z)) ={+n—n=¢

and
m(e)n = (n(z)n(b) — m(b)m(z))n
= m(z)m(b)*E — w(B) (€ + n(b)E) = Br(x)¢ —n — B = —n.
Therefore,
dnieym(@)n = (n(z)m(c) — m(c)m(x))n
= —zm(@m—r(l+n) =—(+n —§{+n=-2¢
whence

82T (@)m = (Sreym(z)m(e) — T()bnieym{(z))n
= 96+ 2x(c)é = 4¢.
By induction, we obtain 8%, 7(z)y = (—2)%¢ for all & € N, again contra-
dicting the hypothesis §* — 0.

This shows that w{b) has to be a multiple of the identity for all irreducible
representations . As a result, b € Z(B). n

REMARK. The above proof was inspired by that of [2; Theorem 5.2.1]
which has its roots in a result of Le Page. In fact, the Proposition extends
the quoted result since the spectrum of d ) is always contained in the set
of differences of two spectral values of [#,b]. Thus, if the spectrum of the
latter consists of a singleton, the spectrum of d[z,4) Teduces to zero wherefore
the Proposition yields b € Z(B).
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The following standard result from spectral theory (see, e.g., [14; Lem-
ma 3.1]) will be needed.

LEMMA B. Let E, F be Banach spaces and let S € L(E), R € L(F). If
there is a linear surjective mapping T : B — F satisfying TS = RT, then
r(R) < r(5).

Proof. Take A in the spectrum of R such that |A| = r(R). Since A — R
is a topological divisor of zero, the mapping A — R cannot be surjective.
This and the identity T\ — §) = (A — R)T' imply that » — S cannot be
surjective either, as T is onto. Hence, A belongs to the spectrum of § so
that »(R) =X\ £ 7(5). »

We are now ready for the proof of our main result.

Proof of the Theorem. STEP 1. We first show that every b € &8(f) satisfies
r(6y) = 0. To this end, define 7' : inn(A) — inn(B) by 8, — Og(a), a € A.
Since @ is surjective, this is a well-defined surjective Lie homomorphism
hecause

[T(8a,): T(8as)] = [Ba(ar): S6(az)] = Slo(aa) 6au)
= 59([::2,&1]) = T(‘S[az,ad) = T([ba,, aaz])
for all @1, ay € A. For all z € A, we have
§64(z) = 0([z,a]) = [6(z), 6(a)] = dg(a)8(x),

that is, 88, = Sp(ay0. By Lemma B, it follows that r(8a(s)) < 7(da) for all
a € A, Consequently, T is spectrally bounded (with constant M = 1) as
a linear mapping from inn(4) € £(4) into L£{B). Thus, r(8) = 0 for all
5 € S(T) by Lemma A.

Let b € S(f) and take a sequence (zn)nen in A such that z, — 0
and 6{z,) — b. Then &, — 0 and do(z,) — 5, wherefore 8, € S(T).
Consequently, 7{d;) = 0 as claimed.

Smp 2. The surjectivity of 8 yields that S(f) is a Lie ideal in B. Hence,
by Step 1, for all b € S(8) and all z € B, we have r(fjz5) = 0. By the
Proposition, each b € §(#) belongs to £ (B), which completes the proof. m

REMARK. In the case of C*-algebras A and B, we can avoid the Propo-
sition, and hence all the representation theory, in Step 2. Let b€ S (6). Then
¢ = [b,b*] is a self-adjoint element in & (#). By Step 1, r(d.) = 0 and since
exp(itd,) is an isometry for every real £, this entails that 6, = 0 [5; 10.17).
Therefore, ¢ is central and [b, [b,5*]] = 0 yields that r{c) = r([b,d*]) = 0 by
the Kleinecke-Shirokov Theorem. But a central quasinilpotent element in B
has to be zero, wherefore b itself is normal. This shows that every element
in 8(8) is necessarily normal.
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Consequently, [0y, 0p+] = dpp+ ) = 0 and
r(Opgpe) =70 + 0o ) <7(8) +7(0s+) (b€ S(H)).

If we define 6* : A — B by 6*(a) = 6(a*)*, a € A, we obtain a surjective Lie
homomorphism such that S(f) = §(8*)*. It follows that, if b € S(0), then
r(dp+) = 0 by applying Step 1 to 6* in place of §. By the above, 7(8p14+) =0
for every b € S(8), which implies b+ b* central as before. Similarly, we have
b—b* central, from which we conclude that every element b in S(#) belongs
to the centre of B as claimed.

Simple examples show that the surjectivity in the Theorem cannot be
dropped.

EXAMPLE. Let A be an infinite-dimensional unital commutative Banach
algebra and take two linearly independent linear functionals f, g on A such
that flwerg and glker s are unbounded. For instance, let {e; | i € NUI} be
a vector space basis, indexed by the disjoint union of N and some suitable
set I and contained in the unit ball of A, and put f(e,) =n for alln € N
and f(e;) = 0 for all ¢ € I, while g is defined by g(e,) = n for all n € N
even and g(e;) = 0 for all other i € NUL Let B = (K(H) © K(H))[1]
be the unitisation of the direct sum of the compact operators K (H) on the
separable infinite-dimensional Hilbert space H with itself. Fix ¢ € K(H)
nonzero. Then f(a) = (f(a)c,g(a)c), a € A, defines a Lie homomorphism
from A into B such that S(f) 2 C? is not contained in Z(B) = Cl.

For each Banach algebra A, the centre modulo the radical, Z (A), clearly
is a closed Lie ideal of A. We denote by A = A/Z(A) the canonically asso-
ciated Banach Lie algebra obtained by quotienting out 2 (A). Every surjec-
tive Lie homomorphism 6 : A — B induces a surjective Lie homomorphism
¢ : A — B since §(Z(A)) C Z(B). This is derived from the Proposition and
the proof of the Theorem as follows. If a € Z(A) then 7(8[z,0)) = O for all
x € A. As observed above,

™(8o(@),0(a)1) = T (6 ((z,a])) < T(0fz,a) =0,

wherefore (8 g(a))) = 0 for all y € B by the surjectivity of 6. Hence, by the

Proposition, §(a) € Z(B). Since 8 is continuous if and only if S(¢) C Z(B),
we obtain the following immediate consequence of the Theorem.

COROLLARY. Let 0 be a surjective Lie homomorphism from a Banach
algebra A onto a Banach algebra B. Then the induced Lie homomorphism
6 from the Banach Lie algebra A onto B is continuous.

This result was obtained in [4] under the hypothesis that both A and B
are semisimple and that 8 is bijective.
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