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Generalized fractional linear transformations:
convexity and compactness of the image
and the pre-image; applications

by
V. KHATSKEVICH (Karmiel)

Abstract. The convexity and compactuess in the weak operator topology of the
image and pre-image of a generalized fractional linear transformation is established. As an
application the exponential dichotomy of solutions to evolution prablems of the parabolic
type is proved.

Introduction. The present paper consists of three parts. In Section 1
we formulate and prove a number of auxiliary statements describing some
basic properties of plus-operators in a Krein space.

In Section 2 we consider generalized fractional linear transformations
(g.f14. for brevity) F of the closed unit ball K} of the space L{Hq, Ho)
of all bounded linear operators acting from H; into Hy, where H;, Hy are
Hilbert spaces. G.£.1.t. of this type are multivalued in general. We show that
the image B and the so-called pre-image E; of F' are convex and compact
in the weak operator topology (w.0.t.} (Theorem 2.3). These results extend
both the corresponding statements on compactness obtained in [5] under
additional restrictions imposed on F, and the theorems on ccmpactness and
convexity of the image of F obtained in [6] for the case of single-valued
g.f.Lt. (called fractional linear transformations (f.1.t.) in [6]).

In Section 3 we apply the compactness and nonemptieness of By to the
study of the behavior of solutions to evolution problems in a Hilbert space
H. Namely we establish (see Theorem 3.1) the exponential dichotomy of
solutions for the so-called parabolic case (when the evolution operator is
bounded). This result extends Theorem 2.1 of [6], where the corresponding
assertion was established for the particular case of a bounded and invertible
evolution operator (the so-called hyperbolic case), and Theorems 2.1 of [7]
and 3.1 of [8], where only the particular case of a Pontryagin space H was
considered. In a way, the present paper completes the series of articles [5]--[8].

1991 Mathemuatics Subject Classification: 47TB50, 4TAB3.

{169]



170 V. Khatskevich

1. Preliminary results. First of all we formulate a statement which is
not connected with the indefinite structure of a Krein space and which uses
notions and notation of a Hilbert space.

LEMMA 1.1 [6]. Let Y = Y(R,P,Q} be the set of all operators ¥ &
L(Hy, Ha) satisfying the inequality
YRYV*+PY*+YP*+Q <0,

where R € L(Hy), P € L(Hy, Hy), Q@ € L(Hz), R> 0 and Q" = Q. Then
Y is convex and closed in the w.o.L. of the space L{Hy, Ha).

Now let us consider the case of a Krein space. Let
(1.1) H=H oH
be a Krein space with an indefinite metric [z,y] = (J2,¥), s,y € H, J =
P, — Py, where Py, Py (Py + P, = I) are the orthogonal projections onto Hy,

H,, respectively, generated by the decomposition (1.1) and (, ) is a Hilbert
inner product in H (see, for example, [1]). Set

Ry={zcH:[z,z] >0} and R_={zecH:[z2] <0}
A subset S C H is called positive or negative if z € Ry or z € R_ re-
spectively for all z € 8. Let M be the set of all maximal (with respect to
inclusion) positive subspaces (i.e. closed linear subsets) of H, and M_ the

set of all maximal negative subspaces of H. Denote by S the orthogonal
complement of a set Sin H: S+ ={z € H:[z,y]=0for all y € §}.

LEMMA 1.2 [4]. L € M if and only if Lt € M_.

Now we proceed to plus-operators in a Krein space H = Hi®Hy. A linear
bounded operator A is called a plus-operator if ARL C Ry. A is called a
minus-operator if AR_ C R_. We denote by A* the adjoint operator to A.

LeMMA 1.3. The following two conditions are equivalent:

(a) there exists Ly € M, such that A*L, C R;

{b) there exists L_ € M_ such that AL. C R_.

Proof. (a)=(b). Let A*L, C Ry for some Ly € M, and let L} € My
be a subspace such that A*L, C L}. Taking L_ = L} we have (Az,y) =

(2,A*y) =0forall z€ L and y € L. Hence AL_ C R.. by Lemama 1.2.
The proof of the implication (b)=-(a) is similar.

A plus-operator A with respect to the decomposition (1.1) has the fol-
lowing block-matrix representation:

[An AIZ}
Agy A |’

where A,'j = L(Hj,Hﬁ), i,7 = 1,2, with Aij = P;'AP“.,'.

(L.2)
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LemMA 1.4, For a plus-operator A, A*H,. C Ry if and only if
(1.3) A Al > A1 Al,.

Proof. Straightforward calculation.

2. Generalized fractional linear transformations. Let A be a plus-
operator with block-matrix (1.2). We denote by K. the closed unit ball
of the space LKy, Hy), and by K_ the closed unit ball of L{H3, H1). Let
F = F4 be a gLlt. of the ball K, defined by the block-matrix of the
operator A as follows:

(2.1) Fk.) = {ki kL e Ky, Ap + Apk, = kL (A + Ak )}

In general the mapping F' is multivalued. Since A is a plus-operator, it fol-
lows that if Ayy -+ Aigky = 0 for some ki € Ky, then Ao + Agaky = 0.
So in this case F'(ky) = K. If ALy, € My for all L, € M, then F be-
comes single-valued (see, for example, [3]). It is worth recalling that in the
case when A is a bistrict plus-operator (that is, both A and A* are strict
plus-operators: infjy o—1[Ax, Az] (= u{4)) > 0 and inf[y,g)=1[A%®, A*z]
(= u(A*)) > 0) the formula (2.1) turns into

Flky) = (Ao1 + Anky) (A + Araky) ™!

(see [11]). Set

By ={ki € Ky : kL € F(ky) for some k.. € K},

Ey={k_ e K_:A(P,+k_)H_CR_}.
Note that B} = ImF (= F(K,)). In the particular case of an invertible
bistrict plus-operator A the operator T' = A~! is a bistrict minus-operator
and it generates the f1.t. G = G of the ball X_, so in this case B =
Gp(K-).

THEOREM 2.1. B} is conver and compact in the w.o.t. of L(Ha, H}).

Proof If B, = {, then the assertion is true.

Suppose By # 0. Let k.. € E3. From A(P, + k_)Hs C R_ we deduce
that there exists k2, such that A(Py+kX)Hy C (Pa+-kL) Ha. Hence Ajk- +
Avg =k (Ag k- + Ass) and therefore

k*_.(Ai‘lAu — A;;‘Am)k’w +- ki( IlAlg - A;lAzz)

+ (ATp A1 — AZpdn )k + (Alpd1e — A5y Az) < 0.
As AH, C R... we have ”Allmlw > ”A21.’701H for all z1 € Hy. Hence A1 411 >
A%y Apy. Now from Lemma 1.1 it follows that the set (E7)* = {k* : k_ €
E}} is convex and compact in the w.c.t. of L{Hj, Hs). As the mapping

% 1 L(Hy, Hy) — L(H2, H;) is an isomorphism with respect to the w.o.t.
and *? = Id, the set E7 is convex and compact in the w.o.t. of L{Hz, Hy).
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REMARK 2.2. The set E can be empty. A simple example is the follow-
ing: H = H; © H, with both H; and H» one-dimensional and

_ta B

=i ]

where || < |8|. Evidently, the operator A is noninvertible and nonstrict.
(Note that if jo| = |8] # 0, then By = {—a/B} # 0). The next example

presents a more complicated situation when A is an invertible strict plus-
operator, and as above E = 0:

Hy = CLin{e;}2,;,  Hy = Clin{e;}o_co,

A is a bounded linear operator on H defined by the formula

H =H, ® Hy,

Aej=e;1, JEL

In view of Lemmas 1.3 and 1.4 to obtain the nonemptieness of E; it is
sufficient to impose on A the restriction (1.3). It is interesting that the same
condition (1.3) enables us to establish the convexity and compactness of E}
in the w.o.t.

THEOREM 2.3. Suppose a plus-operator A satisfies the condition (1.3).
Then both Ej and E; are nonempty, conver and compact in the w.o.t. of
L{Hy, Hs) and L(H3, Hy) respectively.

Proof Lemmas 1.3 and 1.4 imply E # 0. The convexity and com-
pactness of £, in the w.o.t. were established in Theorem 2.1. Let us pass
to Ef. We have Y € E} if and only if Az + Asky = Y (A1 + A1eky) for
some k+ S K+. Hence YAll — Ag = (Agg - YAm)k.*.. Since Hk,;..“ < 1, we
obtain

(Aga — Y A12)(Azo — Y A12)" > (YA — Aoa) (Y Arg — Azn)”
or
Y(An Al — AAL)Y" + Y (41243, — AnAj)
+(Agp AT, — Ao1 AT Y™ + (Agr A%, — A Al,) < 0.
Now the assertion on EZ follows from Lemma 1.1.

COROLLARY 2.4. Let A be a bistrict plus-operator. Then both EI and B,
are nonempty, conves and compact in the w.o.t. of L(Hy, Hy) and L(Hy, Hi)
respectively.

Proof. Since A is a bistrict plus-operator we have A*H; C R, (see
[11]). From Lemma 1.4 it follows that the condition (1.3) holds. Now the
assertion follows from Theorem 2.3.
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3. Applications to evolution problems. Consider a differential equa-

tion

dx

in a Hilbert space H with an inner product (, ). Let the operators A(t) be
selfadjoint and have a common dense domain D C H for t € Rt = [0, 00).
The Cauchy problem (3.1) is assumed to be uniformly well posed: there
exists a bounded linear operator U(t) (an evolution operafor) such that for
every solution x(t) to (3.1) with x(0) = z¢ € D we bave «(t) = U(t)zo. If
1o does not belong to I}, then y(t) = U{t)y is called a generalized solution.

The results of Section 2 enable us to generalize Theorem 2.1 of [6], where
the evolution operator U(t) was assumed to be invertible. In this section we
will establish an analogous statement without this assumption.

Let Lo (R, H) be the set of functions z : Rt — H which are Bochner
square integrable with respect to a positive locally integrable weight w =
w(t). Denote by N the set of generalized solutions belonging to L ,,(R*, H).
Set No=1{h € H:h=y(0), y € N}. Let [z,y]; be the indefinite metric on
H (depending on t) given by

[.ac,y]t = (J(t)m,y),

where J(£) = Py (t) — Pa(t), Pi(t) = Sigc dE\(t), Pa(t) = S[ide)\{t), and
E,(t) is the spectral function of {A(t)}. For every t € RT we denote by C;
{so-called bicone) the set

Cr ={wo € H: [U(t)yo, U{t)o] < 0}.

A bicone ;" is said to be of rank d < oo if it contains a subspace L € H
with dim L = d, and does not contain subspaces of greater dimensions (see
9], [10)).

Suppose that J(t) is strongly differentiable. Consider the derivative of
the solution «(¢) to (3.1) along the trajectory:

(), 2(£)]; = 2Re[A(t)x(t), w(t)]e + (J'(E)a(t), m()).

Hereafter we will assame that {z(t), z(t)]; is qualified positive (see the con-
dition (3.2) below).

z,y € H,

THEOREM 3.1. Suppose that the Cauchy problem (3.1) is uniformly well
posed, and the metric [, |4 satisfies the following conditions:

(a) J(t) is strongly differentiable, the limit lime— oo dim Py(t)H = d_
exists and -

(3.2) Hifll—f-l {Re[A(t)z, 2] + 1(J'(H)2,2)} Zw(t), teR;
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(b) for every t € RY,
(3-3) Un (1)U (2) = Ur2(8)Ur2(t),
where Uy; (t) = Bi(t)U () P;(t), 1, = 1,2.
Then the generalized solution y(t) = U(t)yo, vo € H, has the following
properties:
1) Ny 2 Cg ={Nyep Cr » where CZ, 45 a bicone of rank d_;
2) for any y(t) € N,
=% b4
[ ws)ly(s)I? ds < I(y) exp(——2 fusts) ds),
¢ 0
where 1(y) = 157 w(e)]u(s) | ds
3) for anywo € N\Co,

(3.4) (e > [va, v]o exp (28 w(s) ds), teRT.
0

COROLLARY 3.2. Let the conditions of Theorem 3.1 be satisfied, and
| w(t)dt = co.
0
Then oll the statements 1)-3) are frue, and moreover, Ny is a closed sub-
space of H with dim Ny = d_.

Proof. Denote by U(Z,s) the operator assigning to each ¥ € D the
value y(t, s) of the solution to the equation (3.1) which satisfies the initial
condition y(s, s) = yg. For brevity we denote U(t,0) by U(t). From (3.2} we
get ‘

¢
U, 7)yo, Ut )wole = o, wolr = 2 Jw(s)|U (s, 7)ol ds

e

(3.5)

for any v < ¢t (€ R7) and yy € D. By continuity of U(t,7) the inequality
{3.5) holds for any y € H. Hence we obtain (keeping in mind ||U (£)yol|* >
(U ()yo, U(t)yo]: and setting y(t) = U(t)yo)

t

ly@)11* 2 2§ w(s) ly(s)1* ds + w0, wolo-
0

Taking yo € H \ Oy and arguing as in the Bellman~Gronwall lemma (see
[2]) we get (3.4) (see [6]).

Now let us turn to the bicones Cy . In view of (3.3) and Lerama 1.3 the
bicone €, is of rank d = dim Hy(t) = dim Py(t)H and is closely related
to the set Ey . Namely, k. ¢ By if and only if the maximal negative
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subspace LY. = Hy(t) + k* Hy(t) C C;. By Theorem 2.1 we see that E[}(t)
is nonempty, convex and compact in the w.o.t. Now using the property of
dim P»(t)H (sce condition (a)) it is easy to check (by letting t — oc) that
O3, is a bicone of rank d_. The remaining part of the proof is the same as
the corresponding part of the proof of Theorem 2.1 of [6].
The proof of Corollary 3.2 is the same as that of Corollary 2.1 of [6].
Our last remark is that Theorem 3.1 also generalizes Theorem 2.1 of [7]

and Theorem 3.1 of [8].
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