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Compound invariants and embeddings of Cartesian products

by

P.A. CHALOYV (Rostov-na-Donu), P.B. DJAKOV (Sofia) and
V.P. ZAHARIUTA (Rostov-na-Donu and Gebze)

Abstract. New compound geometric invariants are constructed in order to charac-
terize complemented embeddings of Cartesian products of power series spaces. Bessaga’s
conjecture is proved for the same class of spaces.

1. Introduction. Let o, b,E,E be sequences of positive numbers and
Ey(a), Eo(@), Ea(b), Exo(b) finite and infirite power series spaces gener-
ated by these sequences. We obtain necessary and sufficient conditions for
complemented embedding of Ey(a) x Euo(b) into Ep(a) X Fe (b) in terms of
the sequences a, b, Ei,g. Our approach is based on a construction of compound
geometric invariants in the spirit of [20]-[22].

As an imiediate corollary of our main theorem we get a cornplete isomor-
phic classification of Cartesian products of power series spaces, thus solving
the problem of finding such a classification by means of geometrical invari-
ants only ([5], Question 2). An alternative approach by using Riesz theory
is known in the case when at least one of the Cartesian factors is a Schwartz
space {18, 19]. In [4, 5] a complete isomorphic classification was given in the
general case by combining both methods: 1) geometrical invariants for the
case where at least one of the factors is isomorphic to its hyperplane and
2) Riesz theory methods otherwise. Now by considering some additional
invariants we obviate the need of Riesz theory at all.

As another application of our criterion of complemented embedding
we prove that each Cartesian product of the kind Fg(a) X Foo(b) satisfies
Bessaga’s conjecture.
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2. Preliminaries. Let us recall that if (aip)i per 18 a matrix of real num-
bers such that 0 < aj, < @i pt1, then the Kdthe space K (a4) is the Fréchet
space of all sequences z = (z;) of scalars such that x|, := 3 ;. ; [%i]asp < 00
for all p € N, with the topology generated by the system of seminorms
{!-|p: p € N}. The Cartesian product K{ax,) x K(by;) is naturally isomor-
phic to K(cip), where ¢ip = agp if & = 2k — 1, ¢ip = by i ¢ = 2k. For any
sequence a = (a) of positive numbers the Koéthe spaces

Eo(a) = K(exp (w%ak)), Eoo(a) = K (exp(pax))

are called, respectively, finite and infinite power series spaces. They are
Schwartz spaces if and only if ap — 00.

Sequences o and @ of positive numbers are called weakly equivalent (we
write a; < @;) if

1 ~
de>0: —a; <a; <cay.
c

An increasing sequence a = (o;) is shift-stable if

SUp Qip1/a; < 0.
i

Further, for any set B we denote by |B| the number of elements in B if
it is finite and the symbol oo if B is infinite.

Suppose X = K(aip, % € I) and ¥ = K(bjp,j € J) are Kothe spaces.
An operator T : X — Y is called quasi-diogonel if there exists a function
w: I — J and constants r;,1 € I, such that

Te; =ri€,n, 11,
where (e;) and (€;) are the canonical bases in X and Y. We denote by
d d
X =Y X < Y, X L Yand X LY oan embedding, a complemented
embedding (i.e. as complemented subspace}, a quasi-diagonal embedding
and a quasi-diagonal somorphism, respectively.
The next statement is well known (see, for example, [19]).

LemMA 1. If X and YV are Kéthe spaces such that X & Y andY L X,
then X 2y,

Proof. If the quasi-diagonal embeddings X By adyvy & X are
defined by (ri), ¢ : I — J and (g;), ¢ : J — I, respectively, then by
Cantor—Bernstein’s theorem there exist complementary subsets Iy, Ip C I
and Jy,Jo C J such that gp(Il) = Jy and ’I,D(Jz) =1I. Putting Te; = ’Y-ggg(-i),
where i = i, g{i) = (i) for i € I and % = @y, () = ¢7H(E) for
i € Iy, we obtain a quasi-diagonal isomorphism T between X and Y,
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For a given sequence a = (ay) of positive numbers consider the following
characteristics:

me(t) = {k € Niag <t}, pa(nt)=HkeN:r <ar <t}

LEMMA 2. If a = (ag) and @ = (Gy) are sequences of positive numbers
satisfying

(1) deVi> T3>0 palrt) < pz(r/e,ct),

then there exists an injection w: N — N such that
1 ~
(2) 50k < By < cPap  VkEN.

This is proved in [14] by using the Hall-Konig theorem. An alternative
direct proof is given in the survey [21].

CoRrOLLARY 3. If & = (ax) and @ = (@) are sequences of positive num-
bers satisfying (1), then Eg(a) can be quasi-diagonally and isomorphically
embedded into Eo(d), and Ex{a) con be quasi-diagonally and isomorphi-
cally embedded into E(a).

Notice that if a is bounded the situation is trivial:
d d
Eo(a) X2, Byla) %o

If X is a Fréchet space and s is an integer we denote by X} an s-
codimensional subspace of X if s > 0 and a product of the kind X x L,
where dim L = —s, if s < 0.

Let X, (|- |} and Y, (||-||p) be Fréchet spaces, and (z;) and (y;) sequences
of elements of X and Y, respectively. The sequences (z;) and (y;) are:

& cquivalent if
Vp 3,0 Imilp < Cliyillg
Vp3¢,C 1 lyillp < Clailg;
e guasi-equivalent if there exists a bijection o : N — N and constants
r; > 0 such that the sequences (z;) and (riy,(;)) are equivalent;
» weakly quasi-equivalent if there exist mappings o,v : N — N and

constants r;, g; > 0 such that the sequences (z;) and (riys(;)) are equivalent
and so are (1) and (gi%.())-

In general, it is an open problem whether any two bases in a nuclear
Fréchet space are quasi-equivalent. The answer is positive for the quite large
class of all Fréchet spaces with regular absolute basis. '

Dragilev [6] showed that the notion of weak quasi-equivalence is useful
for attacking the quasi-equivalence problem and proved that any two bases
in a nuclear Fréchet space are weakly quasi-equivalent. '
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Bessaga [1] generalized the result of Dragilev on weak quasi-equivalence
proving that any basis in a complemented subspace of a nuclear Fréchet
space with basis is weakly quasi-equivalent to a subsequence of the given
basgis. He also formulated the following

BEssAGA’S CONJECTURE. If X is o Kdthe space and E is a comple-
mented subspace of X with ebsclute basis (x;), then the sequence {z;) is
quasi-equivalent to a subsequence of the canonical basis of X.

Generalizing the results of Dragilev [6] and Bessaga [1] to weak quasi-
equivalence in nuclear spaces, Kondakov and Zahariuta [11], [10] (see also
[9]) proved the following

PROPOSITION 4. If X is a Kdthe space, then any absolute basis in a
complemented subspace of X is weakly guasi-equivalent to a subsequence of
the canonical basis of X.

3. Compound invariants. Suppose F is a linear space, U and V are
absolutely convex sets in £ and &y is the set of all finite-dimensional sub-
spaces of E which are spanned by elements of V. We put

AV, U)=sup{dimL: L&y, LNU CV}
It is obvious that
VeV, UcUs=pWv,Uu)<aiv,b)
and of course if T is an injective linear operator defined on E, then §(T(V),
T(U)) = 8(V,0).
Classical linear topological invariants such as approximative or diametral
dimensions (Kolmogorov [8], Pelczynski [16], Bessaga, Pelczyniski, Rolewicz

[2], Mityagin [12]) can be simply described by the following family of func-
tions, defined in terms of the characteristic 3 (see, for example, [3]):

12 = 7p(tl) = {B(V.U) : V.U e U},

where I is any fundamental system of neighborhoods of zero in the locally
convex space E. More precisely, for two locally convex spaces F and F we
define the relation vg < vp as follows:

YV AV YU 30 3> 0 Be(tV,U) < Br(ctV,T),

where V,U and 17, U7 are taken from any fundamental system I/ in B and
U in F, respectively (it is clear that the relation does not depend on the
choice of fundamental systems), Now the relation vp = yr can be defined
88 g < vr together with vp < g, so that the following statement holds.

PROPOSITION 5. If E ~ F, then vg = vyp.
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Let F be a Kithe space and A be the set of all sequences with positive
terms. For any e = (a;) € A we define the following weighted norm (it may
be unbounded) and weighted ball:

lzlle = fmilas,
i
For calculations of invariants it is very convenient that the characteristic
B can be easily computed for weighted ballg,

LEMMA 6. If a,b &€ A, then
/@(Bm Bb) =

By={zeF |zl <1}

|{Z : G.Z/bi < l}l
Proof. Put
o0
J={i:a; < b}, Pm:Zwiei for z = Zmie,-,
iEJ i=1
and let M be the linear span of {e; : i € J}. Then, obviously, [zl < {=||s
for z € M. Hence M N By C B, and 3(B,, By) = dim M = |J|.

Conversely, suppose [ is a finite-dimensional subspace in X satisfying
LN By C By (ie |z]|a < ||2||s) for all z € L. I dim L > |J| then there
exists ¢ = ¥ .0, mie; € L, z # 0, such that Pz = 0. But then z; = 0 for
i € J and there exists ¢ € J such that @; 3£ 0. Since a; > b; for i ¢ J, we
have ||zl > [|z||s, which is a contradiction. Hence S(B,, By} = |J|.

Let us describe some geometrical constructions on pairs of absolutely
convex sets; these constructions will be used later as elementary blocks to
produce appropriate compound invariants. For a given couple of absolutely
convex sets U, V in E we consider U NV and conv(U U V), which are
obviously invariant with respect to any linear bijection. For weighted balls
U= By, V=B, a,b € A, we have the following relations:

(3) Bavy € By N By C 2B,up, COIW(B,I U Bb)

where

= Ba/\b;

aAb= (min{a;,b;}), aVb= (max{a;b;}).
These relations will be very useful for calculation of compound invariants.
Another simple construction can be obtained by power interpolation.
For a given pair of balls By, Byw, a®,aY) € A, we consider an o-
interpolation ball Bl B%,, 1= By with a(“) = (a1~ (oMo,
@& < 00. We have the following simple fact.

—00 <

LEMMA 7. Suppose B, B are Kéthe spaces, T:E — E is a linear op-
erator, and B, ), By and Ba(u), By are two pairs of balls in E and E,
respectively. If

T(Bu(o)) - Eﬁ(u), T(Bﬂm) C E’é(l),
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then for any o € (0,1) we have
T(B.&Blw) C gé(_nfﬁgu)-
Proof. Let (e;) and (&;) be the canonical bases in E and E, respectively.
Put

Tei=2£¢j'éj, t=1,2,...;
J
then since || Tx||z¢) < ||%]/ge, ¥ = 0,1, we have, for any 1,

ITeillaer = 3 [t:sla” < lleillacs = af?,
b

v=01.

Therefore by the Holder inequality it follows that
(2 NS TP L IO
I Tesllaer = D185 @) (@)
i

= (Z [t |E§O)) - ( >l ) “<af®.
J J
Hence,

ITolzw < S lail - [Teiliae < 3 lailal™ = |[z]]y-
1 7

IfE=Kap and Uy ={z € E: |z, =3, |zifap <1}, p=1,2,..., are
the corresponding unit balls, then U, = B,,, where a, = (a;p). Further, we
write USU, ™ instead of Bg, By~

Applying the characteristic 8 to some synthetic neighborhoods obtained
from the given neighborhoods as output of some multiparameter construc-
tions (composed by using the elementary constructions considered above),
we approach what we call compound invariants. In particular, we can get
the following simplest two-parameter invariants [22-24]:

B U, N1U, Uy),  B(U,, conv(t™ U, UTL,)),

or some more complicated invariants, involving also power interpolation con-
structions, for example:

BULU Nt U, N7, Uy).

This method, suggested in [22-24], inputs the new more geometric and prop-
erly invariant content to the method of invariant characteristics for Kéthe
spaces [21, 22], which was a natural development of Mityagin's results for
non-Montel power series spaces. In the proofs of Theorems 8 and 10 below

we shall use some multiparameter characteristics of this kind and show their
invariance. '
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4. Embedding of power series spaces. In [13], [14] (see also [15]))
B. 8. Mityagin obtained a criterion for isomorphism of non-Schwarzian #2-
power series spaces. He proved the necessity of his criterion by analyzing
the spectral properties of the operators that generate Hilbert scales corre-
sponding to the given power series spaces.

Here we consider a criterion for embedding of power series spaces, which
is a modification of Mityagin’s results. We prove the necessity by using an
appropriate compound invariant, The sufficiency follows from Lemma, 2.

THEOREM 8. Let a = (a;) and @ = (@;) be sequences of positive numbers
such that a; > 1 and @; > 1. Suppose X = Fg(a) (or X = Eo(a)) and
Y = Eg(a) (or Y = Ey(a), respectively). The following conditions are
equivalent:

i) X —Y;

(i) there emists C' > 0 such that for t > v > 0 we have u,(7,t) <
pa{7/C,Ct);

(iii) there exists an injection o : N — N such that

p 3C 1/0’2 < Eg(i)/ai < 2.

(iv) X S5 Y.

Proof. It is obvious that (iil)=(iv), (iv)=(i), and by Lemma 2 we have
(it)=>(ili). Now we prove that (i)=-{ii).

Since the proof is the same for finite power series spaces, only the case of
infinite type power series spaces is considered. For convenience we write V <
W if V' C const W. Suppose that T' : Ey.{a) = E(a) is an embedding. Let
(Up) and (V) be the systems of unit balls in B (a) and Eu(d), respectively.
Put W, = V, N R(T), where R{T) denotes the range of T. Choose indices

Pep<L<g< g <rg<r

Wy, = T(Up) = T(Ug) = Wy, = W,, = T(U,).
Then from the elementary properties of the characteristic 3 it follows that
for some constant C' > 0,

Ble™"U, N tU,, Uy} = Ble™"T(Uy) N T (T,), T(Uy))
S ﬁ(C(E_Tsz N etWT:z)ﬁ Wq1)
< B(C(e™ Vi, N e Vay), Vi)

Using (3) and Lemma 6 we estimate both sides of this inequality, from below
and above, respectively, and obtain

H% : max{exp(7 + pas), exp(—t + rai)} 1}
exp(qa;) = .
{'.i _ max{exp(7 + pabi), exp(—t + rabi) } < 20} ‘

' exp(g1b;) -

s0 that

<
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This mequality is equivalent to
13 : eTtP-dai < pmtHr—glai £ 1}
< iz emtPamaibe < 90, emtHemm <oy,

Taking logarithms we obtain

{i: T <t Hg’{z
¢—p r—gq

Hence,
AMYE>T >0 [{itr<ai StH S Hiir/M - M <G < Mt+ M)

From this, condition (iii) follows immediately. Indeed, if C' > M{M +1),
then either 7 /M —M < 1,s01/C < L,or7/M—M > 1,s07/C < /M -M.
Therefore, taking into account that @; > 1, we obtain

{t:r/M-M<E <Mt+ M}y C{i:7/C <q < Ct},

which completes the proof.

T - log2C <b < t-l-logZCH.
a1 —p2 Ta—q1

CoroLLARY 9 (Mityagin's criterion for isomorphism of power series
spaces). Let a = (e;) and @ = (&) be sequences of positive numbers such
that a; = 1 and a; > 1. The following conditions are equivalent:

(i) Eya) ~ Eo(@) (respectively Eo(a) ~ Eoo{d));
(i) there ezists C > 0 such that for t > 7 > 0 we have

pa(T:t) S pa(7/C,01),  palrit) < pa(r/C, Ct);
(i) there exists a bijection o : N — N such that
AC: 1/C? <G/ < CF.

(iv) Bo(a) & Eg(@) (respectivly Eoo(a) © Fou(3)).

5. Main result. In [4], [5] a complete isomorphic classification of the
Cartesian products of the kind E}{a) x EX (B) is obtained by combining
two methods: the method of compound invariants (following [17]) and the
method of Fredholm operator theory (following {18, 19]. The first method
also works in the case where the Cartesian factors are non-Montel spaces
~ (when the second method just fails), but if both Cartesian factors are Montel
spaces some important information is lost: by this method it was only shown
that the relation

Eo(a) % Boo(b) = Ey(3) X Boo(b)
implies

(4) Bo(a) = By(@,  Eoo(b) = Buo ()™
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with some integer s1, $2; here, following [19], for every locally convex space
X and an integer s we use the notation X ©) for any s-codimensional closed
subspace of X if s > 0 or any product of the kind X x L, where dim L = -8,
if s < 0. In contrast, the Fredholm operator method gives more [19] in this
case: the possibility to choose 51, 2 so that 57 4 83 =0 (this fact is based
on the stability of operator index under strictly singular perturbations).

The question “How to get this precise information by using invariants
only?” (stated in [5], Question 2) is solved here by considering an additional
compound invariant. Moreover, we have the following complete characteri-
zation of complemented embeddings of Cartesian products Eq(a) x Eo(b)
by means of invariants only.

THEOREM 10. Let X = Ey{a) X Exo(b) and Y = Ey(@) x Eno(B). Then
the following statements are equivalent:

(i) X S Y,

(ii) there exist C > 0 and 75 > 0 such that for 7o < 7 <t we have
(5) pa(Tt) < pa(r/C, Ct),
(6) p(T,1) < g(r/C, Ct),

Eamnd
-3
3

ma.(t) + mb(T) < mz(CH) + mE(GT)’

(iif) X & v,

Proof. The Cartesian products Ep{a) X B (b) and Ep(a) X Ey(b) are
naturally isomorphic to the Kdthe spaces F = K(e;p) and F = K(dyp),
where

o = EP(—a/p), i=2k~1, __ [em(~a/p), i=2k-1,
T | exp(pby),  i= 2k, P Lexplpbs),  i=2k.
Thus it is sufficient to prove the theorem for K, F instead of X, Y.

First we prove that (i)=>(ii). Suppose T : B <> F is a complemented
embedding. Let Z ¢ F be a complementary subspace to T'(#), that is,
F=T{(E)® Z. We denote by (Uy) and (V,) the systems of unit balls in E
and F, respectively. Put W), = ¥, N Z and choose indices

p<p<g<q<rp<r<s<s, 2p<g 2q<ry
so that
Voa = T(Up) @ Wy =~ T(Ug) & Wy = Voy - Vi
>' T(UT-) @ Wr. >’ T(Ug) @Wg >' Vs‘l'

Then from the elementary properties of 3 and Lemma 7 it follows that for
some constant ¢ > 0,
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(8) BUYPUN?ne U, N T, Uy)
S ﬂ(C.V]-Dlz/ZVT'}z/Q m e—T‘V‘pz al eth2’%1)’
©)  B(U, conv(UYUN? Ue Uy UeTUs))
< ﬁ(ch,canv(V:?ll/QTf’sll/z Ue 'V, Ue™V,,)),
(10)  Bleonv((UPUL2 netU, ) U e UL, Uy)
< ﬁ(conv((V]j;/zV];/z N eth) Ue Ve, ), Vi)

We show that (8), (9), (10) imply (5), (6), (7}, respectively. Estimating
the left-hand side of (8) from below and the right-hand side from above by
using (3), the elementary properties of 5 and Lemma 6 we obtain

2 1/2 -
{i: max(c% A2 e ey, e i) < 1}’

C,;q

1/2 1/2 _r _
{'i: ma,x(dim dis, » € dipy, € “dir, ) < 40}‘.
df'h

It follows that
1/2 172

o “es . ~ta.
(11) 1{% w T o 1, Cip <1, € "Cip < 1}‘
Cz-q Cig Cig

1/2 A/2

oy ed; e~ td;
< Hﬁ c -2 e g C PR < g 2L 4c}
dilh ig1 dicn

The first inequality cn the left-hand side of (11) is c:fcy 2 < Cig- For the

even indices 1 = 2k it is equivalent to (p+r —2¢)by < 0, which is impossible
because 7 > 2q. For i = 2k — 1 it is equivalent to (2/g — 1/p — 1/r}ax <0,
which is always true because g > 2p. Therefore, the left-hand side of (11)
equals
(12)

T | t

ki————<ap < —}

H 1/p—1/q g—1/r
Consider now the right-hand side of (11), The first inequality there is
d:z{f d:ff < 4cdyg, . For 4 = 2k it is equivalent to
br < Ty i= (2logdc)/{p2 + 72 — 2q1).
In this case the other two inequalities imply
<T, < t+10g4c’

. q1— D2 T2 4
therefore for v > 7 1= (g1 — p2) + log 4ec the triple of inequalities on the
right-hand side of (11) does not hold for even indices.

T~—logde _~
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For ¢ = 2k — 1 the first inequality on the right-hand side of (11) is
equivalent to (2/q1 —1/p2 —1/ra)ay < 2log de, which is always true because
@1 > 2p2 (we can assume without loss of generality that ¢ > 1). Therefore
the right-hand side of (11) equals for 7 > 7 the expression

T —logde t+ log2e
13 k: —™—2 R~
(s) H L/p2 —1/q1 1/q — 1/7‘2}

Since for 7 > 7o the expression (12) is less than (13), there exists a con-
stant C' > 0 and a 79 > 7 such that (5) holds. In an analogous way (9)
implies (6).

Finally, we prove that (10) implies (7). Estimating as above both sides
of (10) we obtain

<@ <

. 1/2 /2 _ -
{i' mm(max(cip/ cw/ L ety ), e eir) < 1}

Cig

i 1/2 472 . —r
< H’& : mm(max(di;{2 difz e i, ) e iy ) < 2a}

diG’l

H

which is equivzilent to

1/2 172

. Gy G e tey ey
{z: <, “”gl}u{v.:_—"gl}
Ciq Cig Cig

el P ~tq. -,
{i : "‘:; T2 < 9, ﬁddwz < 26} U {z £ ddm < 26}
11 iq1 g

Since the inequality c/2t? < ¢ig holds only for the odd indices i = 2k — 1

% ir =

the left-hand side of (14) equals, for t > 7,

0 [l

The first inequality on the right-hand side of (14) is d;;f: dilf < 2cdig,. It
holds for cach odd index ¢ == 2k — 1, and for ¢ = 2k it is equivalent to
b < 73 = 2(log2¢)/(pa + ra — 2¢1). Therefore for 7 > (ry — g1)73 the

right-hand side of (14) equals

4+ log2c } { 'r-l—logZC}
16 k:ap < ———oee kb € —m7=>—
(16) H akml/%—l/?‘z ’+‘ At S

so, obviously, there exist C' > 0 and 75 > 0 such that (7) holds.
Now we show that (ii)=>(ii). '

(14)

<

k)
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Take any tg > 7y and define
My:={keN:a; >t}, Ml ={keN G > t/C},
My :={keN:b > to}, My = {k € N:by, > t/C},
Ly={i=2k—1:keM} Ii:={i=2%-1:kelf),
Ly:={i =2k : k € Mz}, Lyi={i=2k: ke M},
Ly =N\ (L1 ULy), Ly =N\ (L1 U Ly).
By Lemma, 2 there exist injections o, :'M,, — Mu, v = 1,2, such that
2 /C? < Goypy £ CPar, k€ M,
be/C? S bgypy < C%by, k€ M.

Assuming that (i) is true, we are going to construct a permutational iso-
morphic embedding T : B — F in the form

(17)

(18) Te; = €503),
where ¢ : N — N is an injection that will be constructed by using the

injections ¢, and {e;}, {€&]} are the canonical bases in E, F, respectively.
First we define the injection

201(“;1) ~1 ifie L,
(19) (i) = Z.
| 20’2("2—)

acting from L; U Ly into L; U Ly. Now we have to consider separately the
following two cases:

ifie Ly,

(¢) Y is non-Montel, that is, at least one of the sequences @, & does not
tend to oo;

(8) Y is Montel.

Consider the case (). Choose ty so large that at least one of the sets
N\ M,, v = 1,2, is infinite. Then L is infinite ~and we can extend (19) to
some injection o : N — N by mapping s into L3. It is easy to check that
the corresponding operator (18) is an isomorphic embedding.

Consider the case (8). From (7) it follows that the sequences a and b also
tend to 00,80 1= |Ls| < oo. We can assume, without loss of generality, that
a,b,d,b are non-decreasing (if not, one can reorder them). Moreover, we can
assume that the injections oy and oy are increasing (1f not, one can modify
them to be increasing preserving the relation (17)). It := [N\ o' (L UL,)| >
l, then, mapping the set Ls into N\ ¢/ (L, U Ly) we obtain an extension o of
o' such that the corresponding operator (18) is an isomorphic embedding.
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In the case where I < I and at least one of the sequences a and bis
shift-stable, we can easily modify o or 02 so as to have [ <[ (e.g. f @ is a
shift-stable sequence then we can interchange o1 (k) with I + Fo1(k)).

Finally, we consider the case when ! < [ and neither & nor b is shift- stable.
Then from (17) it follows that also @ and b are not shift-stable. Since | < oo
there exist I, € M, v=1, 2, such that

’

o (k+D)=a,k)+1, k>1,r=1,2
So, there exist integers &7, sy such that
(20) oulky=s,+k k>1l,v=12
From (17) we get ap = @5, +x and bg = by, 4x. Therefore
E(a) % Eoo(b) Z Ey(@)) x Eop (5)02) £ (By(&) x Foy (B))(o1+2),
Thus it remains to prove that
(21) s51+s2=>0.

Since a and b are not shift-stable, there exist k, > I, v = 1,2, such that
C% by < bryt1-

Therefore, using (17) and (20), for 7 = Cag, and t = Chy, we obtain
my(t) = ka, mg{C7) = k1 s1, mz(Ct) = kg + s3.

Now (7) yields (21). The theorem is proved.

4
c Apy < Ok, 41,
Mg (T} = k1,

As a corollary we get the following criterion for isomorphism of Cartesian
products of power series spaces.

COROLLARY 11. Let X = Eg(a) X Foo(b) and ¥ = Ey(@) X Eoo(B). Then
the following statements are equivalent:

HX=Y,
(ii) there exist C' > 0 and 1o > 0 such that for 7o < 7 <t we have

(22) Ma(Tﬂ t) < P’E(T/Cs Ct)1 ,U"E.('Ty t) < .U*a('r/c’: Gt}a
(23) pp(r,t) < pg(r/C, C),  py(m,t) £ we(/C, CF),
mq(t) + me(7) < mz(Ct) + mz(Cr),

4 mg(t) - mz(T) € me(Ct) + mp(CT);

@) x Ly
COROLLARY 12. Bessaga’s conjecture is true for any Cartesian product
of the kind FEg(a) X Eo(b).
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Proof. Let F C Ep(a) x Ex(b) be a complemented subspace with abso-

lute basis (f,,). By Proposition 4 the basis (fi) is weakly quasi-equivalent
to a part of the canonical basis of Eg(a) X Eu(b). Therefore we have

FE By(a*) x Eoo(b)

for some sequences a*,b* (obtained by repeating some of the terms of g, b,
respectively). Then the statement follows from Theorem 10.
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