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Hochschild cohomology groups of certain algebras of analytic
functions with coeflicients in one-dimensional bimodules

by

OLAF ERMERT (Leeds and Kéln)

Abstract. We compute the algebraic and continuous Hochschild cohomology groups
of certain Fréchet algebras of analytic functions on a domain U in C* with coefficients in
cne-dimensional bimodules. Among the algebras considered, we focus on A = A(U). For
this algebra, our results apply if U is smoothly bounded and strictly pseudoconvex, or if
I7 is a product domain.

1. Introduction. Let ' € C™ be an open, bounded set, and let 4 =
A(U) be the Banach algebra of analytic functions on U which are cou-
tinuously extendable to the boundary of U7, For each Banach A-bimodule
X, the second continuous (respectively, algebraic) Hochschild cohomology
group H2(A, X) (respectively, H2(4, X)) of A with coefficients in X is de-
fined (see [1] and [7]); there is a natural correspondence between t]:}e el-
ements of this group and the equivalence classes of Banach (respectively,
algebraic} extensions of 4 by X. If X is symmetric, then H.z (4, X )2(respec-
tively, H?(A, X)) contains the subgroup Hz2(4, X) (respectively, H; (4,X))
corresponding to the commutative Banach (respectively, algebraic) exten-
sions of 4 by X.

The purpose of this note is the computation of these groups for one-
dimensional X. It is known ([1, Proposition 4.3]) that H?(4,X) and
H?(A,X) vanish unless X is unital and symmetric, and it thl,}S suffices
to consider the case where X = C and the module action is given by a
character ¢ on A, so that z- f = f-2 = ¢(f)z for f € A and z € C. We shall
confine ourselves to the case where ¢ is the evaluation at a point w € U; we
denote the corresponding module by C,,.

Some of our results apply to certain Fréchet algebras A other than A(U}
for which there are continuous embeddings P, — A «» O(U), where P,
is the polynomial algebra in n complex variables and O(U) denotes the
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2 0. Ermert

Fréchet algebra of functions analytic on U; such algebras will be called
Fréchet algebras of analytic functions on U.

It is well known that the continuous (respectively, algebraic) Hochschild
cohomology groups of A with coefficients in C,, may be calculated by using
projective resolutions of €, in the category of Banach or Fréchet (respec-
tively, algebraic) left A-modules. One such resolution is given by the Koszul
complex, which will play a major réle in our calculations.

Hochschild cohomology for Fréchet algebras of analytic functions has
been studied by several authors, notably J. L. Taylor [21] and A. Ya. Helem-
gkii [7, 8, 9]. We wish to mention two known results that are directly relevant
to the purpose of this note.

In the case where U is a domain of holomorphy and A = O(U), the
embedding P, = A is a localization in the sense of [21, Definition 1.2], and
the results in [21] yield a complete description of both the algebraic and the
continuous Hochschild cohomology of A with coeflicients in one-dimensional
modules (see §3).

In the case where A is a uniform algebra and the maximal ideal M, of 4
corresponding to a character ¢ on A admits the decomposition M, = I+ J,
where I is a Koszul ideal in the sense of [8, p. 226], J is the kernel of a peak
set and a certain condition on the interrelation between I and .J is satisfied,
a special case of a projective resolution of C, of the Koszul type exists ([8,
Lemuma 3.6]). This result is our main source of inspiration in §5, where we
use it, in a slightly generalized version, to study the case where A is the
algebra A{U) and U is a product domain.

This paper is organized as follows. In §2 we clarify the notation we use
and give an account of the notion of a Koszul complex and its basic prop-
erties. In §3 and §4 we consider the case where w € U. The resulbs in these
two sections apply to a wider class of Fréchet algebras of analytic functions
on U and to the groups H™(A4,C,) and H™(A,C,} for arbitrary m. In

§3 we show that there are matural embeddings cln) — H™(A,C,) and

clm) s H™ (A4,C,), and give sufficient conditions for these embeddings
to be surjective. In §4 we consider the “symmetric” groups HZ(A,C,) and
H2(A,C,), and show that they vanish in certain cases. In §5 and §6 we
discuss the case where A = A(U) and w € U, the boundary of U. We give
a partial result that is applicable in the case where the maximal ideal M,
corresponding to ¥ has a decomposition M,, = I+J, with I and J ideals of
A which satisfy certain conditions; these conditions are similar to, but less
restrictive than, those in the aforementioned lemma in [8]. In particular, we
obtain a sufficient condition for the vanishing of the “symmetric” groups
HZ(A,C,) and H2(A,C,) which is not too restrictive in the case where
U is a product domain. On the other hand, we demonstrate that there are
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examples where H2( A, Cy) is non-trivial. Finally, in §7 we give a summary
of the results we have obtained.

2. Preliminaries. Let 7 C CV be an open set. We write O(U) for the
Fréchet algebra of analytic functions on U, I U is bounded, then we use
A(U) to denote the Banach algebra of analytic functions on U which are
continuously extendable to OU. We say that a subalgebra A of O(U) is a
Fréchet algebra of analytic functions on U if A contains the polynomials and
A ig a Fréchet algebra for a topology which is finer than the compact-open
topology on O(U).

We recall some notation and basic facts used in homology theory. For
general background in homological algebra, we refer to [3], [23] and, for the
continuous case, to [7] and [20]. :

Let K be a subcategory of the category of linear spaces and operators.
A (chain) complez F = (F,d) in K is a sequence of objects and morphisms

dnt1 d
FZ e "-“—)n+ FnJ’Fn_l—)’...

in K such that d, o dny1 = 0 for all n. The elements of kerd, (respec-
tively, of imd,.1)} are called n-cycles (respectively, n-boundaries). The ho-
mology of F at F, is defined as H,(F) = kerdp/imdy 1. If Ho(F) =0 for
all n, then F is called ezact. The complex F is positive if F, = C for all
n < 0. X (F,d) and (F',d’) are chain complexes in the category of linear
(respectively, Fréchet) spaces, then a morphism (respectively, continuous
morphism) of chain complezes of F into F' is an indexed set o = (en) of
lincar (respectively, continuous linear) operators an : Fp — F! such that
Q-1 0 dp = d, 0 ap for all n.

Let M be an object in K. A complez over M (in K) is a positive chain
complex F = (F,d) in K together with a morphism e : Fo — M (called an
augmentation) such that eody = 0.

We use similar terminology in the case of cochain complexes.

Let A be a commutative, unital algebra. (All algebras considered are
complex and associative.) A unital left module over A is termed an A-
module. We use A-mod to denote the category of A-modules and A-module
maps. For the A-modules M and N, we write Homa(M, N) for the vector
space of all A-module maps from M into N, and we write M @4 N for the
tensor product of M and N over A. Note that, since A is commutative,
Homa (M, N) and M ®4 N are A-modules for the operations

(a-p)m)=a-pm) and a-(m®n)=(a-m)qn,

where a € A, m € M, n € N and o € Homa (M, N). As is customary, we
use Ext ,(—, N) : A-mod — A-mod to denote the left-derived cofunctor of
the cofunctor Hom4{—, N}. An A-module P is projective (respectively, flat)
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if the functor Hom 4 (P, —) (respectively,
exact complexes into exact complexes.

Let X be an A-module. A complex F over X with augmentation ¢ :
Fy — X is called a resolution of X (in A-mod) if the complex

— ®a P) is exact; that is, if it maps

FSEX50: ..oBBp o BR5X50

is exact. Such a resolution is projective (respectively, flaf) if the F, are
projective (respectively, flat).
Let M be an A-module. We write M®® (i = 1,2,...) for the direct sum of
1 copies of M. Furthermore we use AM to denote the exterior A-algebra over
M, and we write A for the product in AM. Recall that AM = @72, A™M
is a graded A-algebra, where A" is the rth exterior product of M over A.
Let a = {a1,...,a,) be a finite sequence of elements in 4. Then the
Koszul complex K(a) ([23, p. 111)) is defined; we sometimes write K{ay,...
. s 0r ) instead of K{a). Recall that the degree p part Kp(a) of K (a) is the
pth exterior product APA®™ of A®™ over A. Let ey, ..., e, be the canonical
basis of A®™. Then the set of all elements e;, A... A e;,, where 1 < 43 <
. < ip <, is a basis of Kp(a}); in particular, K| ( a) is a free A-module of
ra.nk ( ). The differential d, ;, from K, (a) to K- 1(a) maps e;; A...Aegj, to
P (mDF g e ALAE AL .Ae;,; here &, signifies that e;, is omitted
in the product. We write H,(K(a)) for the homology of K (a). Note that,
in all cases,

(2.1) Ho(K

where (a1,...,a

= Al{as,. .-, ),

n) is the ideal generated by a1,. ., 8n.

Recall that an element a of A is called a non-zero divisor if ab is non-zero
for each non-zero element b of A. A finite sequence ay, ..., a, of elements in
A is called a regular sequence on A ([23, p. 105]) if the equivalence class @;
in A/(a1,...,a;_1) is a non-zero divisor for each j. (For j = 1 this means
that o) is a non-zero divisor.) We shall use the following elementary theorem
of homological algebra (see [15, 23]).

THEOREM 2.1, Suppose that a = (ai1,...,an) 18 a regulor sequence on a
commutative, unital algebra A. Then the Koszul compler K(a} provides a
free resolution of length n of A/{a,...,an).

Let};)X be a unital A-bimodule. Then the Hochschild complex (see [23,
p- 301

s° 5t 52
0 — X — Homg(A4,X) = Homg(A®c 4,X) —

of A and X is defined. Here § = (6%);cy is the coboundary operator. The
cohomology groups of this complex are the algebraic Hochschild cohomology
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groups HM(A,X) {n = 0,1,...) of A with coefficients in X. Following cus-
tomary notation, we write Z™(A, X) for ker 8" and B"(A, X) for the range
of §™=1, respectively. Therefore H"(4,X) = Z"(A,X)/B™(A, X), where
Z™(A, X) (respectively, B"(A, X))} is the space of n-cocycles (respectively,
of n-coboundaries) of A with coeflicients in X,

Let ¢ : A — C be a character on 4. Then C = C, is a A-bimodule
for the operations a -z = 2 -a = @(a)z (a € A, z € C). We call C, the
A-bimodule corresponding to . It is known (see [23, Lemma 9.1.9]) that

(2.2) H™(A,C,) = Bxt%(C,,C,) forn>0

in A-mod; here C,, is regarded as a left A-module on the right-hand side of
the equation.

By a Fréchet space we mean a complete metrizable locally convex space;
a Fréchet algebra is a complex algebra which is a Fréchet space such that
multiplication is jointly continucus. Let F and F' be Fréchet spaces. Then
we use F @, F to denote the algebraic tensor product of £ and ¥ endowed
with the projective temsor product topology. The completion E ®p F of
E ®, F is the projective tensor product of E and F and it has the usual
universal property of the tensor product (cf. [7, I1.4]). A continuous linear
map ¢ : B — F is called admissible if ker ¢ is complemented in £ and im ¢
is closed and complemented in F'.

Let A be a commutative, unital Fréchet algebra. A unital left Fréchet
module over A is termed a Fréchet A-module. We use A-Fr-mod to denote
the category of Fréchet A-modules and continuous A-module maps.

Let M, N be Fréchet A-modules. We write Hom g, cont (M, N) for the
A-module of continucus A-module maps from M into N. We also write
Ext 4 cont(—, N) for the left-derived cofunctor of

Hom 4, cont(—, N) : A-Fr-mod — A-mod.

A (chain) complez F in A-Fr-mod is called admissible if it splits as a
complex of Fréchet spaces. A Fréchet A-module P is projective ([7, I11.1.13])
if, for every admissible complex F, the complex Hom, cont (P, F) is exact.

Let X be a Fréchet A-module. A complex F over X with augmentatmn

: Fy — X is called a resolution (in A-Fr-mod) if the complex F —
X — 0 over X is admissible. If every module in F is projective, then such
a resolution is called a projective resolution of X (in A-Fr-mod).

Let X be a unital Fréchet A-bimodule. Then the Hochschild-Kamowitz
complex (see [7, 1.3.2])

1 — 2
0—X & Homg, cont (4, X) 5 Homg, cont{4 8p 4, X) o

of A and X is defined. The cohomology groups of this complex are the
continuous Hochschild cohomology groups H™(A,X) (n = 0,1,...) of A
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with coefficients in X. We write Z"(A4, X) for ker 6® and B™(A4, X) for the
range of §", respectively. Hence H™(4, X) = Z™(A4, X)/B"(A, X), where
Z™(A, X) (respectively, B™(A, X)) is the space of continuous n-cocycles (re-
spectively, of continuous n-coboundaries) of 4 with coefficients in X.

There is a natural embedding of Z"(4,X) in Z"(A, X), and this map
induces an obvious comparison map v, : H* (A, X) — H"(A, X). Note that,
since 4 is commutative, H"(A4, X) and H"(A4, X) are A-modules, and ¢, is
an A-module map.

Assume that X is symmelric, ie. a - 2 =x-afora e A and 2z € X,
Then the symmetric 2-cocycles (respectively, the continuous symmetric 2-
cocycles) form a subspace of Z2(A, X) (respectively, of 22(A, X)) which is
denoted by Z%(A, X) (respectively, by Z2(4, X)). The quotient

HI(A,X) = Z2(4,X)/B*(4,X)

(respectively, H2(4, X) = Z2(A, X)/B?*(A, X)) is the second symmetric (re-
spectively, the second continuous symmetric) Hochsehild cohomology group
of A with coefficients in X (see [1, 23]).

Let ¢ : A — C be a continuous character on A. Then C = C,, is a Fréchet
A-bimodule, and in analogy to {2.2) we see {cf. [7, IIL.4.12]) that
(2.3) H™(A,Cp) = Bxty 100, (Cyp, Cp)  form >0
in the category A-mod.

Let A be a commutative, unital Banach algebra. Denote by A-Ba-mod
the subcategory of A-Fr-mod consisting of unital left Banach A-modules. A
module P in A~-Ba-mod is flat ([7, VIL1. 1]) if, for every admissible complex
F, the complex F ®4 P is exact; here ® 4 denotes the tensor product of
Banach A-modules (cf. [7, 11.3]). A resolution F — X — 0 over a module
X in A-Ba-mod is flat if every module in F is flat in A-Ba-mod.

According to (2.2) (respectively, (2.3)), we may compute H" (4, C,,) (re-
spectively, H™(4,C,)) by using projective resolutions of C, in the category
A-mod (respectwely, A-Fr-mod)}. However, less is needed, as the next el-
ementary lemma shows. For a proof of part (ii) of this lemma we refer to

[10]. Although we do not have an exact reference, the result in part (i) is
surely well known to the specialist.

LEMMA 2.2. Let A be o commutative, unital Banach olgebra, and let ¢
be a character on A. Then:

(i) The A-modules Exty(C,,C,) may be computed by using flat resolu-
tions. That 15, if F — C, is a flat resolution of C, in A-mod, then

Ext3(C,,Cp) = H*(Homa(F,C,)) (n=0,1,...);

(i} The A-modules Bxt} o0(Cyp,Cp) may be computed by using flat
resolutions of C, in the category A-Ba-mod.
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Proof of (i). For each A-module M, the algebraic dual Homg (M, C)
is an A-module for the operation

(a-9)m) = w(a-m) (o€ A, pcHome(M,C), me M)

It is a basic result of homological algebra (see {3, VI.5.1], for example) that,
in the category A-mod, M is flat if and only if Home (M, C) is injective.

Now let 7 — C, be a flat resolution of C, in A-mod, and let n > 0
be fixed. Since the functor Home(~, C) is exact, Homg(F,C) is a resolution
of C,. This resolution is injective on the basis of the results attained in
the previous paragraph. Thus Ext’(C,,C,) is the nth cohomology of the
complex § = Homy (C,,, Homg(F, C)). However, it is obvious that the fune-
tors Homg(—,Cy) and Homy(C,,Homeg(—,C)) are isomorphic. We con-
clude that

Ext’} (Cy, C,) = H™(G)

as required. =

& H”(HOHIA(?, C‘P))s

Let ¢ be a continuous character on a commutative, unital Fréchet al-
gebra A. We shall be interested in the question of when the comparison
map

tnt H™(A,Cp ) — H*(A,C,)
is injective. In the case where n = 1, this is always true; in the case where

n = 2, we have the following proposition, which is a straightforward gener-
alization of [7, 1.1.19] (see also [1, Theorem 2.16]).

PROPOSITION 2.3. Let A be a unital, commutative Fréchel algebra, and
let i be a continuous character on A, Set M, = ker ¢. Then the comparison
map

g H?(4,C,) — H*(A,C,)
8 injective if and only if the product map
A:M¢®pM¢—>M§:f®g'">fQ
8 open.

Proof. First assume that 4 is open. Let ¢ be a linear functional on A
such that u = 6% is continuous. Let 19 be the restriction of 1) to Mg, and let
to be the restriction of y to M@, M, Then pg = —god. But Ais open and
4 18 continuons, and so 1y is continuous. Let vy be a continuous extension
of 3g to A such that gbl(l,.;) = u(la® lA) Then u = §*; € B2(A,C,). This
shows that Z2(A,C,) N B?(4,C,) = B*(4,C,), and hence 2 is injective.

Now suppose that A is not open. Set E = M. 2 Since A is a Fréchet
algebra, F is a metrizable locally convex space. Hence (see [22, Proposition
11.36.3]} the topology on E is identical to the Mackey topology. Let o denote
the quotient topology on E induced by A. Then o is strictly finer than the
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original topclogy on E because A is not open. However, the Mackey topology
is the finest locally convex vector space topology which is compatible with
the duality between E and F’', and so there exists a discontinuous linear
functional ¢ on E which is continuous with respect to o. We may extend
to a linear functional on A which we also denote by . Set y = 6%+, Then
p € Z2(A,C,) because 3 o A is continuous. Set a = p+ B*(4,C,). Then
ta(a) = 0, but a # 0 because ¥|E is discontinuous. Thus 3 is not injective. w

COROLLARY 2.4. In the situation of Proposition 2.3, suppose that M, s
algebraically finitely generated. Then the comparison map iz : H?(A4,Cy) —
H?(A,C,) is injective.

Proof. Let A be the map considered in Proposition 2.3. Set F =
M, ®p M, /ker A, and let A : F — MZ be the induced map. Let {by, ..., by}
be a finite set of generators for I\/L,J We define maps ¢ : Mg om Mg z
by o(a1,...,am) = 2oy ib; and 7 @ ME™ — F by T(a,l, ey @) =
21_1 a; ® b; +ker A. Then ¢ and 7 are contmuous surjections, and Ao7 = p.
Clearly, Mg hags finite codimension in A; in addition, it is the continuous im-
age of a Fréchet space. Hence an obvious application of the Open Mapping
Theorem gives that Mg 18 closed. Therefore, again by the Open Mapping
Theorem, ¢ is open. It follows that A, and hence alsc A, is open. By Propo-
sition 2.3, o is injective. =

We end this section with the following theorem which we shall need
in §3. The main argument in the proof is well known in the literature (see
[3, Theorem VINI.4.2], for example). Nonetheless, we provide a short proof
here for the sake of completeness.

THEOREM 2.5. Let ¢ be a continuous character on a unital, commutaiive
Fréchet olgebra A. Let a = (ai,...,0,) be o finite sequence of elements in A,
and let K = K(a) be the corresponding Koszul complex. Suppose that

(2.4) ' (0,1, v, Gm) == Ker i,
{2.5) (Ky={0} forj>0.
Then

&imc(ﬂm (4,C,)) = (:1) (m > 0).

Moreover, K is a complex in the category A~Fr-mod; if each differentiol
of K is admissible, then also -

dime(H(4,C) = (1) (m20)

Proof Let m >0, and let F denote the complex HomA(]C, C,). We see
from (2.1), (2.4) and (2.5) that X is a projective resolution of C, in A-mod.

icm
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Thus, by (2.2), the A-module H™(A,C,) is the mth cchomology H™(F)
of F. However, it follows from (2.4) that each morphism in F is zero. Hence
H™(F) is the degree m part F,, of F. Since, in addition, Ky, (a) is a free
A-module of rank (}, we conclude that

H™(A,Cp) = Fry

In particular, we see that dimg(H™(A,C,)
theorem is proved.

Each module in K is a finite direct sum of copies of A and therefore
a projective (even free) Fréchet A-module. Furthermore, it is obvious that
each differential of X is continuous. Thus K is a complex in A-Fr-mod
consisting of projective modules. If each differential of K is admissible, then
X is a projective resolution of C, in A-Fr-mod, and we may finish the proof
by using the same arguments as in the algebraic case; indeed, all we have to
do is to substitute (2.3) for (2.2) and Homg, cons(—, —) for Homa(—,~). ®

(a) C,) = celn).
= (?), and the first part of the

= HOIIIA(

3. The calculation of H"(A,C,,) and H"(A,C,) in the case where
w € U. Let A be a Fréchet algebra of analytic functions on an open set
UCCN, and let w = (wy,...,wy) € U be fixed. We wish to determine
the A-modules H"(A,C,) and H"(A,Cy), where C,, is the A-bimodule
corresponding to the evaluation at w; we are especially interested in the
case where n = 2.

Suppose that N = 2. Then it is trivial to verify that the map

oL w5 w)

is a continuous cocycle which is not a coboundary, not even in the algebraic
sense, Our next proposition generalizes this observation. Namely, we show
that, for each n < N, we have a commuting diagram

H™(A,Cy)

f®gH

H™(4,Cy)

where a, and 8, are A-linear embeddings which are given by explicit for-
mulas, and where ., is the comparison map. In fact, we prove a slightly
more general result. -

' PROPOSITION 3. 1 Let A be a Fréchet algebra of analytic functions on
an open set U C CN . Suppose that ¢ is a continuous character on A which
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has an eztension to a character on O(U). Let n € {1,..., N}, and let {e,}
N
be a vector space basis of C?("), where v runs through the set of all sirictly
increasing maps from {1,...,n} to {1,...,N}. Let
N
o €2 L,

be the unique linear map which assigns to each e the equivalence class of
the continuous n-cocycle given by

(3.1) f1®...®ancp( of1 Ofn )

Ozr(a) " Drim)

Burthermore, let B, = ty, © @n, where u, is the comparison map. Then oy
and By are A-linear embeddings.

Proof. It is easy to demonstrate that ., is a well-defined A-linear map.
What remains to be shown is that 3, = iy 0 @, is injective. To show this,

assume that 11, - . ., 7 is a finite sequence of distinct strictly increasing maps
from {1,...,n} to {1,..., N} such that

(3:2) B (i%en) — Y e = 0

im=l
for some vy, ..., € C; we have to show that 4 = ... = v, = 0. We infer

from (3.2) that there exists a linear functional Aon A®...@ A (n—1 times)
such that

©3) 3 wblen) = 04,

i=1
where, for each i € {1,...,7}, the n-cocycle @(e,,) is defined as in (3.1)
(with 7 replaced by 7;). Let j € {L,...,7} be fixed. For each i € {1,...,n},
we set

Wi=Z.u — ¢(Zr3),
where Z, ..., Zx are the coordinate functions. Certainly, we have W; € A

and @(W;) = 0 for each {. Let &,, be the symmetric group on n symbols.
Letie {1,...,r} and let o € &,,. We then have

1 ifi=jand o =id,

3.4 o o re. T = i
(3.4) Oler ) (Wo) ® ... 8 W) 0 otherwise.

We conclude from {3.3) and (3.4) that
AW ®...8W,) =7; and AW, ® ... @ W) =0

for every permutation o # id. In addition, the functions W; lie in the kerhel

icm

Hochschild cohomology groups 11
of . Hence
n—1
v = Z(_l)k Z sgn(U)A(Wa(l) ®...80 Wa(k)Wa'(k+l) ®...8 Wcr(n.))-
k=1 oeGy

However, it is obvious that

Z sgn(o) AWoy ® ... @ WoyWoiksr) ® ... @ Wo(ny} =0

cES,
for all £ = 1,...,n — 1, and consequently ~; = 0. This shows that 3, is
injective, as required. w

In the remainder of this section we consider, for each n < N, the follow-
ing two obvious questions concerning the embeddings «, and 3, in Propo-
sition 3.1.

&

N
QUESTION 1. Is O : Cw(") -+ H"(A,C,,) an isomorphism?

N
QuUESTION 2. Is vy ¢ Cﬁ(") — H"(A,C,) an isomorphism?
A simple but useful fact pertinent to these questions is stated in the next
proposition.

PROPOSITION 3.2. Suppose that Question 1 can be answered affirma-
tively, and that the comparison map v, : H™(A,C,,) — H™(A,Cy) is injec-
tive. Then we have an affirmative answer to Question 2.

Proof. This is immediately evident from the fact that ¢tn 0 = fy. =

NOTATION. In the following, we use Z1, ..., £y to denote the coordinate
functions, and we write Z — w for the sequence (Z; —w1,...,2n — WN);
recall that K(Z — w) is the Koszul complex for Z — w.

Our next proposition constitutes the basis for our atiempts to answer
Questions 1 and 2.

PrOPOSITION 3.3. Let A be a Fréchet algebra of enalytic functions on
an open set U C CV, and let ¢, be the evaluation at e point w € U. Let

o €2V (A Cy) and B o) < ER(A,CL)
be the A-linear embeddings constructed in Proposition 3.1. Suppose that
(3.5) (Zy —un,..., 2y —wn) = ker gy,
(3.6) ‘ Hiy(K(Z-w))={0} forj>0.

Then By, is an isomorphism for all n, and oy, 45 an isomorphism forn < 2.
Suppose, furthermore, that each differentiol of K(Z —w) is admissible.
Then o, i5 an isomorphism for all n.
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Proof. This is immediately evident from Theorem 2.5, Propositions 3.1
and 3.2 and Corollary 2.4. =

We now give two results which show that (3.5) and (3.6) are satisfied in
certain cases. The first is an application of Theorem 2.1 in §2.

PROPOSITION 3.4. Let A be an algebra of analytic functions on an open
set U CCY, and let w € U. Let My = {(2)}L; € CV 1z = w; for 1 <
i<k}, 1 <k < N. Suppose that, for everyk € {1,...,N} and every f € A
with f(UNMy) = {0}, there exist g1, ..., 90 € A with f = }:LI(Z,;-—wi)gi.
Then (3.5) and (3.6) are satisfied.

Proof. Our hypothesis (for ¥ = N) implies that (3.5) is satisfied.
By Theorem 2.1, (3.6) will follow once we have shown that the sequence
Zy =y, ..., 4N —wy I8 a regular sequence on A. To show this, first note
that Z; — w; is a non-zero divisor in A. Now let ¢ € {2,..., N}, and set
J ={Zy —w,...,Z;—1 —wi_1). Suppose that (Z; — w;)f = 0 modulo J
for some f € A. Then there exist g1,...,gi—1 € A such that (Z; — w;)f =
S _1(Z; —wy)g;. This implies that f(U NM;_,) = {0}. Thus, according to
our hypothesis, there exist hy,...,hi—1 € Asuch that f = E};ﬁ(Zj —w; )y
Hence f = 0 modulo J. This shows that Z;, —w; is a non-zero divisor modulo
J, as required.

The second tool we shall use to verify (3.5) and (3.6) is the following
deep theorem, which is a special case of a more general result stated in the
bock by J. Eschmeier and M. Putinar ([5]).

NotaTioN. Recall that Lip,, (U) is the Banach algebra of functions on U
which satisfy the usual Lipschitz condition of order «. Furthermore, C7(U)
denotes the algebra of functions f on U for which the derivatives D*(f)
exist and have a continuous extension to U for each multiindex « of order
not exceeding 7. The algebra C”(U) is endowed with the topology of uniform
convergence of all derivatives of order not exceeding r. Note that C%(U) =
C(T) and thus C°(T) N O(U) = A(U).

THEOREM 3.5 {[5, Theorem 8.1.1]). Suppose that U C TV is o bounded,
open set. Let B be one of the Fréchet algebras Lip,(U) (for some 0 < a < 1)
or C™(U) (for some 0 < v < o). Suppose further that, for each q &
{1,..., N} and each closed (0,q)-form f on U with coefficients in B, there
exists a (0,q — 1)-form u on U with coefficients in B such that Hu = f.
Then (3.5) and (3.6) are satisfied for A= O(U)N B.

Before we apply these last two results, we give an elementary lemma
which we shall use in the case where U7 is a product domain.

LEMMA 3.6. Let G C C, H C C* be bounded, open sets containing the
origin, and let f € A(G x H) be such that f{0,w) =0 for all w &€ H. Then
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there exists g € A(G x H) such that flz,w) = zg(z,w) for all z € G and
we H.

Proof. First note that, for every w € H, the function z — f(z,w) is
analytic on G; indeed, this follows readily from the uniform continuity of f
and the fact that w is the Hmit of a sequence of elements in H. We consider
the map

) = 27 f(zw) fzeG\{0}andwe H,
9z w) = 2f(0w) fz=0andweH.

Then f(z,w) = zg(z,w) for z € G and w gﬁ,_@nd g is analytic on G x H.
We need to show that g is continuous on G x H. Certainly, g is continuous
on GG\ {0} x H and on {0} x H. Now let w € H, and suppose that (zn,wn)
is a sequence in G\ {0} x H which converges to {0,w). Choose r > 0 such
that A(0,7) = {z € C: |z| < r} C G. We may assume that z, € A(0,r/2)
for all n. Then

. F(2n, wn) - = 1 grLf k
9(Zn, wn) = Z = k§=0: (k+ 1)l 8z~ +1 (0,wn) 2y
for all n. It follows from Cauchy’s estimate that
1 ak+1f . 1
e < —
oy g O < e

for all n and k. We may therefore apply Lebesgue’s Dominated Convergence
Theorem to deduce that
) o0 ) 1 ghtt f & af _
n].i{%og(zn: wn) = kZ_O T}Lﬂ;} WW(D, wn)zn - ’8‘;(01 ’U)) —_— g(O, w),

and s0 g is continuous at (0,w). =

We can now state the main result of this section, where we apply the
above theorems and propositions to certain classes of Fréchet algebras of
analytic functions.

THEOREM 3.7. Let A be a Fréchet algebra of analytic functz’oﬁs on an
open set U CCV, Let w e U, and let

N N
o €200 1 (A,Cy) and B 27 & rma, )
be the A-linear embeddings constructed in Proposition 3.1. Consider the fol-
lowing cases:
(i) U is pseudoconvez, and A = O(U).
(ii) U is a bounded product domain, and A= A(U). .
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(iii) U is bounded and strictly pseudoconver with C‘2~b%£ndary, and A=
O{U) N B, where B is one of the Banach algebras Lip,(U) (for some 0 <
a < 1) or CT(U) (for some 0 < r < 00).

In the case (i) both oy, and B, wre isomorphisms for all n. In the cases

(ii) and (iil), By is an isomorphism for all n, and an is an isomorphism if
n <2,

Proof. Suppose that (i) holds. Then [21, Proposition 4.3] asserts that
the embedding Py =+ A, where Py denotes the polynomial algebra in N
complex variables, is a localization in the sense of [21, Definition 1.2]. Thus
(by [21, Proposition 1.7]) H"(4,Cy) = H™(Pn,Cy). However, it follows
from [21, Proposition 4.5] that the vector space dimension of this latter
space is equal to (%), We conclude that ay, is an isomorphism for ali 7. The
assertion about 3, follows from [18, Theorem 4.1] and Proposition 3.4.

Suppose that (ii) is true, so that U = G4 x ... x Gy for some bounded,
open subsets Gy of the complex plane. We claim that the condition in Propo-
sition 3.4 is satisfied for A = A(U). Indeed, choose k € {1,...,N} and
f € A(U), and suppose that f(My,NU) = {0}, where M; = {(z;){, € CV :
z; =w; (1 <j <k} Then f = Zfﬂlfi, where f1,...,fr € A(U) are
defined by

fi(zl,...,zN)= f(wl,...,w,-_.l,zi,...,zN)—f(wl,...,'wi,zi_kl,...,zN)
for 1 <i <k and {z)iL; € U. For each i € {1,...,k}, we have

(zj EGJ" VS {1=!N}\{""})
Therefore we see from Lemma 3.6 that there exist gq,...,g9x € A(U) such
that f; = (Z; —w;)gi for 1 <% < k. It follows that f = E:.;l(Zi ~ W;)gs, 88
required.

Finally, we consider case (iii}, so that U is bounded and strictly pseudo-
convex with a C2-boundary. Then it is known ([12, Theorem 2.6.1]) that,
for every g € {1,...,N}, every r > 0 and every closed (0, g)-form f on U
with coefficients in CT(U), there exists a (0,g — 1)-form w on U such that
Bu = f and such that each coefficient function & of u satisfies h € C™(U)
and D7(h) € Lip,(U) for each € (0,1} and each multiindex ~ of order not
exceeding r. But this certainly implies that the coefficients of « are functions
in C"(U) NLip,(U) for éach @ € (0,1), and so the condition in Theorem 3.5

ig satisfied. Application of this theorem together with Proposition 3.3 yields
the desired result. m

Jilzn, oo Zicn, Wi Ziga, o, 2w) = 0

4. The calculation of H2(A,C,) and H2(A,C,) in the case where
w € U. As in the previous section, let A be a Fréchet algebra of analytic
functions on an open set I/ € CV, and let w € U be fixed. In this section, we
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demonstrate how the Koszul complex can be used to obtain a sufficient con-
dition on A for the vanishing of the symmetric second Hochschild cohomolgy
groups

H2(A,C,) and HZ(A,C,).

We begin with a simple lemma.

LEMMaA 4.1, Let A be a unital, commutative algebra, and let ¢ be a char-
acter on A. Suppose ker ¢ = {ay, ..., am) s algebraically finitely generated.
Let pe Z%(A,C,). Then p is a coboundary if and only if > 1~ u(b; ® a;)
=0 for all by,..., by € ker@ such that 3 .-, bia; = 0.

Proof. It is obvious that the condition in the lemma is necessary for
p to be a coboundary. Conversely, suppose that the condition is satisfied,
and let M = kerip. Then there is a linear functional A on M? such that
AT biag) = — 3 ieq pulbs @ ;) for all by, ..., by € M. We may extend A
to a linear functional on A such that A(14) = 1. Then = §* X € B%(A,C,),
as required. m

Suppose that A satisfies the conditions (3.5) and {(3.6) in Proposition 3.3.
Let u € Z2(A,Cy). According to Proposition 3.3, there exist a linear map
S A — C,, distinct pairs (i1,71),...,(6n,Jn) With 1 £ & < jp € N

(1 <k < n) and complex numbers a1, ...,ay such that
| _ ", af . fg
u(f ®g)=S(fg) + ;ak 5o ) g (w)

for all f,g € A which vanish at w. But 4 is symimetric, and so it follows that
ar = p((Zi, — wi,) ® (Zj, —ws)) — wl{(Z5, —w5,) ® (Ziy, —wy,)) =0

for 1 < k < n. We conclude that u € B%(4,C,,), and therefore HZ(A,C.)
= {0}.

However, the next proposition, which is valid for general commutative
Fréchet algebras, shows that Proposition 3.3.is not needed here; this result
follows from an elementary calculation based on the definition of the Koszul
complex, and we may weaken the homological condition on K (Z -w).

PRO®POSITION 4.2. Let A be o commutative, unital Fréchel algebra, and
let ¢ be o continuous character on A. Suppose that kery = (n1,...,n)
is algebraically finitely generated, and that the first homology ~f the Koszul
complex K associated with ay, .. . ,an is zero. Then H2(A,C,) = HZ(4,Cy)

= {0}.

Proof. Let u € Z2(A,C,), and let by, ..., bn € A be such that 3°;_; ab;
= 0. Since Hi(K) = 0, there exist ¢;; € 4, 1 <4 < j < n,such that
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i-1 n
bi:Zajcji - Z G5 Ci5 (1 <4 Sn)
j=1 J=iakl
Thus
n n i1 n
S ulei@b) =) ,u(m ® (Z ajci— Y ajc,-j))
i=1 =1 F=1 Je=iqk1
n i1 n n
5 9) SICTIRRES 3P pprCren
i=1 j=1 i=1 j=i+1
n i-l noon
=YY ulay@aic) ~ Y >, wai®aei) =0,
' i=1 j=1 i=l j=itl

where the second equality from below is valid since
wlas ® ajesi) = plaics; ® aj) = pla; ® aicsi)
for all i < j. The result now follows from Lemma 4.1 and Corollary 2.4. =

COROLLARY 4.3. Let A be o Fréchet algebra of enalytic functions on an
open set U C CV | and let w & U. Then, in each of cases (1)-(iii) considered
in Theorem 3.7, both H2{A,Cy) and HZ(A,Cy) are trivial.

Proof. We have shown in the proof of Theorem 3.7 that, in each case,
the conditions (3.5) and (3.6) are satisfied, and therefore Proposition 4.2
may be applied. =

We finish this section with a further elementary result for the case A =
A(U). Here we can prove that H2(A(U), Cy,) is trivial, but we do not know
whether the same is true for HZ(A(U), Cy).

PROPOSITION 4.4. Let U C CN be an open, bounded and geometrically
convez set with C*-boundary. Then H2(A(U),Cy) = {0} for everyw € U.

Proof We may assume that w = 0. Let A = A{U), and let M =
{f € A: f(w) = 0}. According to [11, Theorem 1], M is algebraically
generated by the coordinate functions Z,...,Zn. Let p € Z2(A,Cy), and
let f1,...,fn € A be such that Z;"\;l Z:fi = 0. For each f € A and each
r € {0,1), we set U, = U +r71(1 — r)U, and we define ) e O(U,) by
f(z) = f(rz) for z € U,. Note that U, is a convex, open set which contains
U. For each 7 € (0,1} we define p,. € ZZ2(O(U,), Cp) as

pr(f @ g) = p(fIU @ g|U) - (f,9.€ Or)).

Now let 7 € (0,1) be fixed. We see clearly that Ef\;l Z'l fz.('") =0. Further-
more, since U, is geometrically convex, it is pseudoconvex. We may therefore
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conclude from Lemma 4.1 and Corollary 4.3 that

N N
(4.1) S ulZie 0y =3 mze f7) =0.
i=1

i=1

If f is any function in A, then, since f is uniformly continuous, fOT - f
upiformly on U as r — 1. Therefore (4.1) and the continuity of p imply
that Zg__l 1(Z; ® fi) = 0. The result now follows from Corollary 2.4 and
Lemma 4.1.

EXAMPLE. Let U = {(z,w) € C* : |2]*> + jw|* < 1}. Then U is geo-
metrically convex and smoothly bounded, but not strictly pseudoconvex.
Hence there are simple examples of sets U/ that satisfy the conditions of
Proposition 4.4, but to which we cannot apply Corollary 4.3.

5. The calculation of H*(A(U),C,) and H*(A(U),Cy) in the case
where w € 8U. Let A be the algebra. A(U') for some bounded, open set /' C
CN | In this section, we investigate the spaces H"™(4,C,) and H"(A4,Cy)
where w is a point in the boundary 8U of U.

1t is well known (see [2, p. 101], for example) that the maximal ideal My
of A associated with w has a bounded approximate identity if and only if w
is a peak point for A (ie. there is f € A such that f(w) =1 and |f(z}| <1
for z € U \ {w}). Our first proposition shows that this is the “easy” case in
our situatien.

The part in the proposition which concerns H™(A,Cy) is certainly well
known (see [14, Proposition 1.5]); however, we provide a proof for both the
continuous and the algebraic situations because the argument is valid in
both cases.

PROPOSITION 5.1. Let A be o unital, commuiative Banach algebra, and
let @ be a character on A. Suppose that M = kerp hos a bounded approri-
mate identity. Then

(5.1) HM(A,C,) = H'(4,C,) = {0} (n21).

Proof. Since M has a bounded approximate identity, it is flat in
A-Ba-mod ([7, VIIL1.5)) and in A-mod ([24, Theorem B]). Therefore
0-MAHASLC,,

where & is the inclusion map, is a flat resolution of C, in both categories.
Thus Lemma 2.2 implies that (5.1) is true for every n > 2. Furthermore,
M = M? by Cohen’s factorization theorem, and hence (5.1) is also true for

n=1 m
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C:OROLLARY 5.2. Let U € CN be o bounded, strictly pseudoconvez do-
main with O%-boundary. Then

HM(A(U),Cy) = HHA{U),Cu) = {0} (wedl, n21)

Proof. It is known ([18, VI1.1.14]) that every boundary point of U is a
peak point for A(U} in this case. =

Simple examples show that the maximal ideal M, may fail to have a
bounded approximate identity and that, consequently, Proposition 5.1 is not
applicable. For instance, consider the case where A = A(U) is the polydisc
algebra. Then w = (w;), € 8U if jw;| = 1 for some 1 <4 < N, and w
is a peak point if |w;| = 1 for all 1 < ¢ < N, which in turn is equivalent
to w lying in the Shilov boundary A of A. However, we always have the
decomposition

(52) Mw=<Zi1 —"wil,...,z.,:k '_'Wzk>+J,

where {i1,...,i} is the set of indices j such that |w;| < I, and J is the
kernel of the peak set A = {{z); € D" z; = wy; for § & {&1,...,9%}}
Decompositions of this kind have been studied by A. Ya. Helemskif (cf.
[8]). We follow his approach here to show that a description of the spaces

H*(A,C,) and H"(A,C,,) can be given whenever we have a decomposition
of My, of the type given in (5.2).

DEFINITION. We say that a sequence ay, ..., ax of elements of a Banach
algebra A is a strongly regular sequence on A if ay,...,ax is a regular se-
quence on A in the algebraic sense and, for each ¢ € {1,...,k}, the ideal
{ay, ..., a;) generated by a1,...,6; is closed and complemented in A.

ReMaARK. Our notion of a strongly regular sequence on A corresponds
to the notion of Koszul ideals used in [8].

Before we proceed, let us introduce the fellowing two basic notions from
homological algebra.

NoTATION. (i) Let A be a commutative, unital algebra. Let (F, ¢} and
(G,v) be chain complexes of A-modules. Then the fensor product chain
complex F®4 G of F and G is defined (cf. [23, 2.7.1]). Recall that the degree
n part (F @4 G)p of F®4 G is EBH_ B ®4 Gi. On F; ®4 Gy (with
i+ j=mn), the differential d, from (F ®4 G)» into .7'" R4 G)n—1 is the 2610
map to Fs ® 4 G: unless 1 = s or j = t. From F; ®AG to Fio1 ®a Gj it s
i ®id, and from F;@4G; to F;®4G;.1 it is (— 1)“id®1pj. As is customary,
we identify an A-module M with the complex

—}(}_«>M-w+0——>

concentrated in degree 0; in particular, the tensor product chain complex
F @4 M is defined for each A-module M.
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For a definition of the tensor product of chain complexes in the contin-
wous case, we refer to [7, 11.5.25].

(ii) Let o : (F,) = (G,%) be a morphism of chain complexes in the
category of linear spaces. Then (cf. {23, 1.5.1]) the mapping cone of  is the
chain complex whose degree n part is F,_; @ G,; the differential is given by

dn(a:b) = ("%-1(‘1),%(5) - a(a))'
ReEMARK. The notion of a “mapping cone” is a generalization of the
topological mapping cone of a simplicial map (see [23, p. 19}).

The following result is implicitly contained in [8] (cf. also [7, Lemma
V.1.2]). However, we provide a brief proof for the convenience of the reader.

LemMMA 5.3. Let a : (F,p) — (G,¢) be o continuous morphism of
chain complezes in the category of Fréchet spaces. Suppose that, for some
n, on and Yne1 are admissible, and H,(F) or Hn(G) is zero. Then the
(n + 1)th differential of the mapping cone of & is admissible.

Proof. Set ¢ = ¢, and ¥ = ¥,41. It follows from our hypothesis that
there are continuous linear maps ¢’ : F,_y — F, and ¢’ : G, — Gry1 such
that ¢ = oy op and ¢ = oy o1h. Let g denote the (n+1)th differential
of the mapping cone of a. For a € F,1 and b € G, we define

¢'(a,b) = (—¢'(a), ¥’ (b) — (¢ © om0 ¢'){a))-
Then ¢ : Fp-1 ® G — Fn & Gpy1 Is a continuous linear map. A straight-
forward computation shows that p = po g’ 0 p — 7, where
(a,b) = (0, ((idg, — ¥ 0¥ )an(idr, ~ ¢' 0 9))(a)) (@€ Fu, b€ Gnia).
Since H,(F) =0 or H,(G) =0, 7 is the zero operator. Hence ¢ = go o op.
We conclude that g is admissible, as required. =
We can now state the main result of this section.

THEOREM 5.4. Let A be a commutative, unital Banach algebra, and let
M, be the kernel of a character  on A. Suppose that M, = I+ J, where I
cmd J are ideals of A and I is algebroically finitely genemted by ay,--., Gk

If
(i) J s flat in A-mod,

(i) a1,...,0k is o reqular sequence on A, and
(i) IJ =INJ,
then

H(4,C,) = Bome(J/(M,), ©2(5) @ ¢
If, furthermore,
(iv) J is closed, and flat in A-Ba-mod,

(n>0).
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(v) @1,. .-, 0% is a strongly regular sequence on A, and

(vi) {ay,...,0;)J is closed and complemented in J (i=1,...,k),
then

n o~ 77 (k) @)
H™ (A, C,) = Homg, cont (J/ My, C)%\n=1) @ Cy (n = 0).
Proof. Suppose first that (i)~(iil) are satisfied. Let X be the Koszul

complex for the sequence ay, . .., ag. By tensoring the inclusion J < A with
K, we obtain the map

a: K@aJ +K@s A=K
of chain complexes; note that X ®4 J is the Koszul complex for the pair
(J,a), where a = (ay, ..., ax) is regarded as the k-tuple of operators on J of
multiplication by the a;’s (cf. [21, p. 210]). In particular, we see that K®4 J
coincides with the continuous tensor product of K and J as defined in [7].

Let F be the mapping cone of . By [23, 1.5.2 and 1.5.3], there is a long
exact sequence

o Ho(K) = Ho(F) = Hyor (K @4 J) D Hoot(K) — ...
in A~mod, where § is the map induced on homology by a. By Theorem 2.1,
condition (ii) implies that H, (K} = {0} for n. > 1. Hence H,{K®a J) = {0}
also applies for n > 1 because J is flat. It follows that Hn(F) = {0} for
n > 2, and that there is an exact sequence

(5.3)  0— Hi(F) = Hy(K®a J) 5 Hy(K) = Ho(F) — 0.
By [23, 4.5.2], Ho(K ®4 J) = J/JTI and Hp(K) = A/I. Since § is induced
on homology by a, it is the map
J/JI— AT ;a4 JI —a+ 1

The kernel of this map is JNI/JI, which is the zero space by condition (iit).
Hence & is injective, and we conclude from (5.3) that Hi{F) = {0} and

Ho(F) = (A/D)/((I+ )/ I) = A/(I+ J) = A/ M, = Cy,
where we have made use of the fact that A, = I + J in the second-to-last
equality.

We have shown that H,(F) = {0} for n > 1 and Ho(F) = C,. Thus F
is a resclution of C, in A-mod. By the definition of a mapping cone, the
degree n part of F is
(5.4) Fo=(K@AJ)n1® Ky = (K1 84 J) © K.

But J, K,..1 and K,, are flat A-modules, and therefore F,, is flat. Conse-

quently, F is a flat resolution of C,, and by Lemma 2.2 and (2.2) we see
that

(5.5) HMA,C,) = H*(Homa(F,C,)) (n>0).
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The differential d,, from F), into F, _y is the map which sends a pair (a®ab, ¢}
(where a € K,,_1,b € J and c € K,,) to

(5.6) (—¢n-1(a) ®a b, ¢n{c) = b-a),

where ¢ = (¢,) is the differential of K. We can easily verify that, for ev-
ery n > 0, each ¢ € Homga(F,,C,) vanishes on the image of dni1. How-
ever, this only means that Hom,(F,C, ) is a complex with zero morphisms.
Thus H"(Homu(F,C,)) is the degree n part of Homa(F,C,), which is
Hom 4(Fy, C,}. Hence we see from (5.4) and (5.5) that, for each n > 0,

(5.7) HR(A,CW) %HomA(Kn_l &4 J,(C(p) EBHomA(Kn,CCP)
~ Homa(/, C,) 20 @ €20),

It is obvious that Homg(J,C, ) is isomorphic to Home (J/(M,J),C), how-
ever, and we have therefore proved the first part of the theorem.

Now suppose, furthermore, that the conditions (iv)-(vi) are satisfied.
We claim that F is a flat resolution of €, in A-Ba-mod. Indeed, since J is
closed and flat in A-Ba-mod, F is a complex in A-Ba-mod consisting of
flat modules. Moreover, we already know that Ho(F) = €, and Hp.(F) =0
for n > 1. Hence it remains to be shown that each differential d, of F is
admissible. We infer from (v) (respectively, (vi)) and [21, Proposition 4.1]
that every differential of the complex K (respectively, K ®4 J) is admis-
sible, and that H,{k) (respectively, H, (X ®4 J)) is zero for all n > 1. We
conclude from Lemma 5.3 that d,, is admissible for all n > 2. Moreover, d;
is admissible because Hy(F) = 0 and imd; = M, is of finite codimension
in Fy = A. Thus d,, is admissible for all », as required.

It follows from Lemma 2.2 and (2.3) that

H™(A, Cp) = H*(Homa, cons(F, Cp))  (n20).

The second part of the theorem may now be proved by a computation which
is completely analogous to (5.7). m

REMARKS. (i) The resolution F in the proof of the theorem coincides
with the resolution which is studied in [8] with the aim of determining
dhaC,, the projective homological dimension of C, in A-Ba-mod. It is
shown in [8] that, under the assumption that A is a uniform algebra, J is
the kernel of a peak set and conditions (ii) and (iii) of Corollary 5.5 below
are satisfied, JF is a projective resolution of C, in A-Ba-mod.

(i) In the situation of the theorem, dim(J/(M,J)} < 1. Indeed, let ¢
and % be linear functionals on J which vanish on M,J. There then exists a
linear functional ¢ on J® 4 .J which sends a®4 b to ¢(a)(b). The flatness of
J implies that there is a linear functional 6 on A such that §(ab) = dla)w(h)
for all a, b € A. It follows that ¢(a)i(b) = ¢(b)ti(a) for all a,b € A, and thus
¢ and ¢ are collinear, as required.
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COROLLARY 5.5. Let A be a commutative, unital Banach algebra, and
let M, be the kemel of a character ¢ on A. Suppose that M, =1+17,
where I and J are ideals of A and I is algebraically finitely generated by

son. If

(1) J has a bounded approzimate identity,

(i) ay,...,ax is a strongly regular sequence on A, and
(iii) (al, e ,az) N J is complemented in J (i=1,...,k),
then

H"(A,C,) & H™(A,C,) & 2 (o).

Proof. We have already observed that (i) implies that J is flat in both
A-mod and A-Ba-mod. Moreover, Cohen’s Factorization Theorem asserts
that J = J2 C M,J and {a1,...,a)J = (@,...;ai) N J for 1 < i < k.
Hence the result follows from Theorem 5.4, w

We shall apply Corollary 5.5 in the case where A = A(U) and U =
Uy % ... x Uy C C¥ is a product domain. Then for w = (wi)il; € OU
there is a partition (F, @) of {1,..., N} such that w, € U, for r € F and
w, € 8U, for 5 € G, and the results in §3 show that, for k = card(F), there
are explicit embeddings

w02 (4, Cy) and B, : TS o HY(A,C,)

such that the diagram

(n=0,1,...)

%H“(A,Cw)
(CE(“) — lbn
Ba H”(A,Cw)

commutes, where i, is the comparison map. We conclude this section with
a corollary which shows that o, and 8, are isomorphisms in many cases.

COROLLARY 5.6. Let A be the algebra A{U) for some bounded product
domain U = U X ... x Uy CCY, and let w = (w;)}L, € 8U. Suppose that,
for each i € {1,..., N} such that w; € OU;, w; is a peak point for A(U3).
Then

H(4,C.) 2 HMA,C,,) 2 CF
‘where k=card{i € {1,..., N} :w; € U;}.
Proof. We may suppose that w; € U; for 1 <i < k and that w; € dU;
fork < j < N.Set fi = Z;—w; (1 < i < k), and let J be the set of f € Asuch

that f(z1,...,2k Whel,-..,wy) = 0 for all z; € U;, 1 £ 5 < k. We claim
that conditions (i)-(iii) of Corollary 5.5 are satisfied. Set I; = (f1,...,fi)

(n=0,1,...},
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(1 <1 < k). We see from Lemma 3.6 that, for each i € {1,....k}, I;
is the kernel of the set {wr} x ... x {w;} x Uy % ... x Uy . It follows
that I; is closed, and that M,, = I + J. Our hypothesis concerning w im-
plies that J is the kernel of a peak set; therefore (i) is satisfied. We have
already shown (see the proof of Theorem 3.7) that fi,..., fr is a regular
sequence on A. Moreover, we note (as was done, in the case where A is the
polydisc algebra, in [8, p. 231]) that, for each ¢ € {1,...,k}, the set M;
of functions not dependent on z1,...,2; is a Banach space complement for
I in A, and that M; N J is a Banach space complement for I; NJ in J.
Hence (ii) and (iil) are also satisfied. The result now follows from Corol-
lary 3.5. m

6. The calculation of HZ(A(U),C,) and H2{A(U),C,) in the case
where w € OU. As in the previous section, let A be the algebra A(U)
for some bounded, open set U € CV, and let w € 8U. In this section, we
consider the symmetric Hochschild groups H2(A4,C,,) and HZ(A, Cy).

Suppose that J is a closed ideal of A which is contained in M,,. Then
C,, is a Banach J-bimodule, as well as a Banach A/J-bimodule, in a canon-
ical way; thus we may consider the spaces H2(A4/J,Cy), HZ(4,Cy), and
H2(J,C,) and their algebraic counterparts. The next elementary propo-
sition gives us some information on how these spaces are related to one
another.

PROPOSITION 6.1. Let ¢ be a character on a commutative, unital Banach
algebra A. Suppose that J is a closed ideal of A contained in ker . Set

K ={p€ ZJ(A,Cp) : p{J &c J) = {0}},
L ={T € Homg(A,C) : T|J € Homx (J,C,)}-

Moreover, let IC (respectively, L) be the set of elements of K (respectively,
L) which are continuous. Then there is a commuling diagram with ezact
rOWs

0 —> Hom (J, C,) —s HY(J,C,) = K/6* (L) -~ H3(4,C,) »~ H2(J,Cy)

0-Hom cons(J, Cp ) > HL(J, Cp) = K /ML) = HZ(A, Cp) = Hi(J.Cyp)

where oy and oy are inclusion maps, o3 is the map which sends o coset
k-i-él(ﬁ) to k+64(L), and o4 and o5 are the comparison maps forH2(A,Cy,)
and H2(J,C,), respectively.

Suppose further that J? =
exact rows

J. Then there is o commuting diagram with
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O%HE(A/J,CQ;)-—~—>-H§(A,C<P)—~W—>'H§(J,(E‘P)

T ! |

0 ——>H3(A/J,Cp) —=HZ(4,Cp) —>HI(J,C,)
where the vertical maps are the reapective comparison maps.
Proof. We first construct linear maps g1, .. ., g4 such that the sequence
(6.1) 0 — Homa(J,C,) & HY(J,C,) & K/§*(L)
% H(A,Cp) B H2(J,C,)
is exact. We choose g1 to be the inclusion map, and we define
os(p+6*(1)) = p+ B*(A, Cy) (h€ K),
o+ B*(A,Cp)) = pl(J@c J) + B3(4,Cp) (1€ Z2(A,Cp)).
For gs we choose the map which sends ¢ € H*(J,C,,) to 6*¢ + 61 (L), where
¢ is an extension of ¢ to a linear functional on 4; it is obvious that go is
well defined. It is then trivial to verify that the sequence (6.1) is exact.
Analogously, we may choose linear maps 71,. .., 74 such that the second
row of the diagram in the first part of the theorem is exact; we note, however,
that the Hahn~Banach Theorem is required for the definition of 5. The
commutativity of the whole diagram is then immediately obvious.
Let s : A — A/J be the quotient map, and let k ® k : A Qc A —

(4/7J) @¢ (4/J) denote the linear map which sends a ® b into x(a) ® x(b).
We. define

ba(p+ BHAILC,)) = po (k@ ) +81(L)
ba(p+ BA(A/J,Cp)) = po (s @ k) + 6 (L)
We then have the commuting diagram

(1€ Z2(A/J,C,)),
(1 € ZJ(A/J,Cy)).

HZ(A/J,Cp) —> K /6*(L)
(6.2} Tr Icrs
H(A/T,C) — K /6 (L),
where 7 is the comparison map and o3 is defined as in the statement of the
theorem.
Now suppose that J = J2. Then clearly both H(4,C,) and H(A4,C,)

are trivial, and it can easily be verified that the maps 6; and 8, in (6.2)

are isomorphisms. Hence the second part of the theorem follows from the
first. w

REMARKS. (i) The proof of this result carries over to the more general
case where €, is replaced by a finite-dimensional, symmetric Banach A-
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bimaodule E which is annihilated by J. Moreover, there is a similar result
for the Hochschild groups H*(4/J, E), H*(4, E), and H?(J, E) and their
algebraic counterparts in the “non-commutative” situation where A is a
Banach algebra, .J is a closed ideal of A, and E is a finite-dimensional Banach
A-bimodule which is annihilated by J.

(ii) Results analogous to Proposition 6.1 can be found in the theory of
group cohomology (see [23, 6.8.3]) and in the theory of Lie algebra coho-
molgy (see [23, 7.5.3]). In these two cases, the result may be obtained by
an application of Grothendieck’s Spectral Sequence Theorem, and it is thus
conceivable that this is also true for Proposition 6.1.

Our next theorem, which is true for general Banach algebras, shows
that the symmetric Hochschild groups of A with coefficients in C,, vanish
in the case where M,, is decomposable into a part which is finitely alge-
braically generated and a part which is, intuitively speaking, “near” to hav-
ing a bounded approximate identity. Note that the conditions on M, that
we need are similar to the conditions on M,, in Theorem 5.4.

THEOREM 6.2. Let ¢ be a character on a commutative, unitel Banach
algebra A, and let M, = ker . Suppose that M, admits the decomposition
M, = I+ J, where I and J are ideals of A and I is algebraically finitely

generated by a1, ..., ax. Suppose, furthermore, that
(i) J=JT=J%
(i) H2(J,Cp) = HH{(J,Cp) = {0},
(iii) a1,-..,ar is a regular sequence on A, and

(iv) (al,...,a_,-) nJ= (a,l,...,aj)J (j = 1,...,k).
Then H2(A,C,) = H2(A,C,) = {0}

Proof. By Proposition 6.1, Corollary 2.4 and Proposition 4.2, it suffices
to show that the sequence ay +J, ..., ax +J is regular on A/J. To do this,
let i € {1,...,k} be fixed. Let I be the ideal which is algebraically generated
by a1,...,ai_1, and let b € A be such that

ab+Je€log+J,...,01+ Ty =T+ J

Then it follows  from (iv} that there are by,... . bi-1 € A and b; € J such
that
i—1
a;(b+b;)+ Z bija; = 0.
j=1
But now (iii) implies that b+b; € I. Thus b+ J € (a1 + J,... ,Gi—1+ J), as
required. m

COROLLARY 6.3. Suppose that U = Uy x ... x Uy € CV 4s ¢ bounded

product domain, and that w = (w;)lL; € OU where, for each i such that
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w; € AUy, w; s o peok point for A(UY). Then HZ(A(U), Cu)
= {0}.
Proof. We have shown, in the proof of Corollary 5.5, that M., admits

a decomposition M, = I -+ J such that conditions (i)—(iv) in Theorem 6.2
are satisfied. m

=HZ(A(U),Cy)

In the remainder of this section, we consider the case where N = 1 and
consequently U is an open, bounded set in the complex plane. We demon-
strate that there are examples where HZ(A4,C,) # {0} in this situation; in
particular, this shows that the assertion made in Corollary 6.3 does not hold
for arbitrary product domains.

REMARK. Recall that A is the set of functions in C(U) which are holo-
morphic on U. Thus A contains A(U), the set of functions in C'(U) which are
holomorphic on the interior int(T7) of U. Of course, A = A(T) if U = int(T),
or, more generally, if int(TU) \ U is analytically negligible. There are cases,
however, where A # A(T). The following example demonstrating this was
communicated to me by Professor Heinz Kénig. Let F' C [0,1] be the Can-
tor set, and let f : [0,1] — [0,1] be the Cantor function. Then the func-
tion g(z) f(Rz) is holomorphic on (0,1) \ F x (0,1) and continuous on
U = [0,1] x [0,1]; however, g is not holomorphic on the interior of U.

We start with an elementary lemma, which is implicitly contained in
[17]. Before we can state our lemma, we need to introduce some additional
notation.

NOTATION. Let ¢ be a character on a commutative Banach algebra A.
Recall that the elements of Z'(A,C,) are called point derivations. Thus a
linear functional d on A is a point derivation if

d(ab) = p(a)d(b) + d{a)e(d) (e, € A).

A point derivation of order n at @ is a sequence (di)}_, of linear functionals
on A, with dy = i, satisfying

k
s(ab) =Y di(a)de—;(d) (a,b €4, ke {0,...,n}).
=0 i
An infinite order point derivation at ¢ is a sequence (dy)$2, such that, for
eachn € N, (dg)7_, is a point derivation of order n at ¢. A point derivation
(dx) of some order at ¢ is degenerate if dy = 0, and continuous if each linear
functional d,, in the sequence is continuous.

LEMMA 6.4. Let A be o commutative, unital Banach algebra, and let ¢
be a character on A. Suppese that H2(A,C,) = {0}. Then for each contin-
uous point derivation d at ¢ there exists a continuous infinite order pomt
derivation (dg)iey ot @ such that dy = d.
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Proof Let » € N, and suppose that (dg)?_, is a continuous point
derivation of order n at ¢ such that dy = d. Clearly, it suffices to construct
a continuous functional dni1 on A such that (d)}L; is a continuous point
derivation at ¢ of order n + 1. To this end, we consider the continuous
functional

n
pAB, A-Cia®b ) dila)dnyii(b).

k=1
It is easy to verify that
plab@c)= > di(a)d;{b)dr(c) = ula®be)
1<4,5,k<n.
i+ 4k=n+1

for all a, b, ¢ € ker i, and it follows that u € 22(A,C,). By our hypothesis,
there exists a continuous linear functional dy,q such that

w(a)dnt1(b) Z dr(a

for all a,b € A; however, this means that (dk)z:é is a continuous point
derivation at ¢ of order n + 1, as required. =

— dpy1{ab) + p(b)dn.a{a) = An+1—k(D)

In [6, Theorem 3.7], a simple example is given for a compact set X in
the complex plane such that R(X) (the uniform closure in C(X) of rational
functions with poles off X'} admits a continuous point derivation at 0, but

_also such that there is no continuous non-degenerate second order point

derivation of R(X) at 0. It is not difficult to see that the example in [6] has
the properties that X is the closure of its interior, and that R(X) = A(X).
Hence R(X) = A(U), where U denotes the interior of X, and the following
theorem is thus a consequence of Lemma 6.4 and the result in [6].

THEOREM 6.5. There exists an open, bounded set U C C such that, for
some w € U, HZ(A(U),Cy) # {0}.

We see from this example and from Lemma 2.2 that the maximal ideal
M, corresponding to a point w € AU need not be flat in A-Ba-mod. In
fact, we have the following characterization of flat maximal ideals in the
one-dimensional case.

THEOREM 6.6. Let U C C be an open, bounded set; let w € U and
let M, be the maximel ideal in A = A(U) corresponding to w. Then the
following are equivalent:

(i) My, 4s flat in A-mod;

(i) H*(4,Cw) = {0}

(iii) dim M, /M2 <'1;

(iv) My, is projective in A-Ba-mod;

{v) My is flat in A-Ba-mod;
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(vi) H?(A,Cu) = {0}
(vil) w is a peak point for A, or there exists an open neighbourhood V of
w such that each f € A is analytic on V.

Proof. (i)=(ii) and (v)=>(vi). These follow from Lemma 2.2.

(if)=>(iii). This follows from the simple fact that, for two linear function-
als ¢ and ¢ on A which vanish on M2 @Cly, the cocycle f® g+ &{f)d(g)
is a coboundary if and only if ¢ and 3 are collinear. (See [17, Proposition 3]
for an analogous argument in the continuous case.)

(iil)=>(vii). In the case where M, = M, w is isolated in the norm
topology on U induced by A. Hence (see [2, Corollary 3.3.10 and p. 205))
w is a peak point for A. In the case where M, # M2, we see from 4,
Theorem 3.1] that all powers of M,, are closed, and that dim M3 /MY =1
for every k > 1. By the main theorem in [19], therefore, w is the center of a
one-dimensional analytic disc. Using the fact that the maximal ideal space
of Ais U (see [2, Theorem 3.5.7]), we conclude that there exists an open
neighbourhood V' of w such that each f € A is analytic on V.

(iv)=(v). This follows from the general theory (cf. [7]).

(vi)=(vil). In the case where M, = M7, the product map = from
My, &, M,, into M, (which maps an elementary tensor f @ g into fag)is
onto by [17, Propesition 1]. It follows that w is isolated in the norm topology
on U induced by A. Hence, as above, w is a peak point for A. In the case
where M, % M2 w is the center of a one-dimensional analytic disc by 17,
Theorem 2].

(vii)=(iv) and (vii)=>{i). In the case where w is a peak point, (iv) is
true by [8, Theorem 1]; moreover, My, has a bounded approximate identity
in this case, and therefore (i) holds by the result in [24]. In the case where,
for some open neighbourhood V' of w, f|V is analytic for each f € A,
M, is a principal ideal. Then (i) is easily verified, and (iv) is true by [16,
Theorem 1]. =

REMARK. [t would be interesting to know whether the conditions in
Theorem 6.6 are equivalent to the vanishing of the “symmetric” group
H2(A,C,), or of H2(A,Cy).

7. Suminary. The results attained in the previous sections allow us to
prove the following general theorem about the calculation of the Hochschild
groups for A = A(U), and about the splitting of extensions of this algebra.

THEOREM 7.1. Let U C CV be an open, bounded set, and let A = A(U).
Suppose thai either

(i) U is a strictly pseudoconvex domain with C?-boundory, or
(il) U = Uy % ... x Uy is a product domain and, for every 1 <i <N,
each w € 8U; is a penk point for A(U;).
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Then:

(a) Let w € U. For each iy € Z%(A,Cy), there ewists a linear functional
S on A such that p— 65 is a linear combination of 2-cocycles of the form
of . Og
o7, (w)gg(w),
where 1 <& < J < N. In the case where y is continuous, § mey be chosen
to be continuwous. In particular, H*(A,C,) = H*(4,Cy) = {0} in the case
where N = 1.

(b) Let w = (ws)iL, € 8U. In the case (i), H?(A,Cy) = H*(4,C,)
= {0}. In case (ii),

f®gwr

%k
(A, ) = HHA,C,) = €00
where k = card{z : w; € U;}.
(c) For each w € U, H2(A4,Cy) = H2(A,Cy) = {0}.
(d) The following statements are equivalent:

o Each finite-dimensional Banach algebra extension of A splits
strongly.

o Each finite-dimensional algebraic extension of A splits algebroic-
ally.

e« N =1.

(e) In case (i), each commutative, finite-dimensional Banach algebra
(respectively, algebraic) extension of A splits strongly (respectively, alge-
braically). The same is true in case (i) if the mozimal ideal space of A
isU.

Proof. Assertion (a) follows from Theorem 3.7, (b) follows from Corol-
lary 5.2 and Corollary 5.6, and (c) is a consequence of Corollary 4.3, Corol-
lary 5.2, and Corcllary 6.3. In case (i), the maximal ideal space of A(U) is
U (see [18, Theorem VIL.2.1] and [13, Theorem 7.2.10]). We have already
observed that this is also true, for arbitrary U, in the case where N = 1.
Hence we see, from [1, Theorem 4.4], that (d) (respectively, (e)) follows from
{a) and (b) (respectively, {c)). =

The partial positive result in part (e) of the theorem notwithstanding
we have the following counterexample.

TuBOREM 7.2. There ezists an open, bounded set U C C such that A(U)
admits o one-dimensional, commutative Banach -algebra extension which
does not split strongly.

Proof. This follows from Theorem 6.5 and [1, Theorem 4.4]. .
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