The Lévy continuity theorem for nuclear groups

by

W. BANASZCZYK (Lódź)

Abstract. Let G be an abelian topological group. The Lévy continuity theorem says that if G is an LCA group, then it has the following property (PL): a sequence of Radon probability measures on G is weakly convergent to a Radon probability measure μ if and only if the corresponding sequence of Fourier transforms is pointwise convergent to the Fourier transform of μ. Bourgain [Do] proved that every locally convex space G has the property (PL). In this paper we prove that the property (PL) is inherited by nuclear groups, a variety of abelian topological groups containing LCA groups and nuclear locally convex spaces, introduced in [B1].

1. Introduction. Let G be an LCA group and Γ the dual group. The Bochner theorem may be formulated in the following way:

(a) Every continuous positive-definite function on G is the inverse Fourier transform of a (unique) finite positive Radon measure on Γ.

This theorem can be extended to inverse limits and countable direct limits of LCA groups. It was also extended to some other classes of abelian topological groups: nuclear locally convex spaces (the Minlos theorem), Hausdorff quotient groups of such spaces (Yang [Y]), locally convex spaces over p-adic fields (Myciecki [M]). Trying to give a common generalization of the corresponding results, the author introduced in [B1] the so-called nuclear groups, a variety of abelian topological groups containing LCA groups and nuclear locally convex spaces (the definition and basic properties of nuclear groups are given in Section 5 below). It was proved in [B1, (12.1)] that every nuclear group G satisfies an analogue of (a).

The Lévy continuity theorem may be formulated in the following way:

1991 Mathematics Subject Classification: 43A05, 60B10, 60B15.

Key words and phrases: Lévy continuity theorem, convergence of probability measures, nuclear groups.

Supported by KBN grant 2 P03A 001 11.
A family of Radon probability measures on Γ is tight if and only if the corresponding family of inverse Fourier transforms is equicontinuous on G.

A sequence $(\mu_n)_{n=1}^\infty$ of Radon probability measures on G is weakly convergent to a Radon probability measure μ if and only if the corresponding sequence of Fourier transforms is pointwise convergent to the Fourier transform of μ.

An analogue of (β) for nuclear groups was obtained in [B1, (12.5)]. Boulanger [Bo] proved that every nuclear locally convex space G satisfies (γ). The aim of the present paper is to complete the picture by proving that every nuclear group G satisfies (γ) (Theorem 5.3 below). The main idea of the proof is similar to that of [Bo], with vector spaces replaced by their subgroups and quotient groups. Another proof of Theorem 5.3 will be given in [BT].

The author is deeply indebted to V. Tarieladze for suggesting the problem and for many discussions.

2. Notation, terminology and preliminary lemmas. Let G be an abelian topological group (which we abbreviate to a.t. group). Following Hejcean [H], we say that a subset X of G is bounded if, for each neighbourhood U of zero in G, one can find a positive integer n and a finite subset F of G such that

$$X \subset F + U + \ldots + U.$$

For instance, every precompact subset is bounded. If G is locally compact, then X is bounded if and only if it is precompact. If G is a locally convex space, then X is bounded if and only if it is bounded in the usual sense, i.e. absorbed by every neighbourhood of zero.

By a character of G we mean a homomorphism of G into the multiplicative group of complex numbers with modulus 1. The value of a character χ at a point $g \in G$ will be denoted by $\chi(g)$ or (g, χ). The group of all continuous characters of G is denoted by G^\wedge. It is usually endowed with the compact-open topology, but we shall also consider other topologies on G^\wedge.

Let \mathcal{S} be a family of subsets of G which satisfies the following conditions:

(i) if $X \in \mathcal{S}$, then $-X \in \mathcal{S}$;
(ii) if $X \in \mathcal{S}$ and $Y \subset X$, then $Y \in \mathcal{S}$;
(iii) if $X, Y \in \mathcal{S}$, then $X \cup Y \in \mathcal{S}$;
(iv) if $X, Y \in \mathcal{S}$, then $X + Y \in \mathcal{S}$;
(v) all finite subsets belong to \mathcal{S}.

(such a family is sometimes called a boundedness on G). Typical examples are the families of finite, compact, precompact or bounded subsets. It is a standard fact that there exists a unique group topology on G^\wedge for which the family of sets of the form

$$\{x \in G^\wedge : |1 - \chi(x)| < \epsilon \text{ for each } x \in G\} \quad (\epsilon > 0, \, x \in \mathcal{S})$$

is a base at zero (only (iii) is needed here). We call it the topology of uniform convergence on elements of \mathcal{S} and denote by $\tau_\mathcal{S}$. Condition (v) implies that $\tau_\mathcal{S}$ is Hausdorff. Condition (iv) implies easily that the family of sets of the form

$$\{x \in G^\wedge : \Re \chi(x) \geq 0 \text{ for each } x \in G\} \quad (X \in \mathcal{S})$$

is also a base at zero for $\tau_\mathcal{S}$. The topology of uniform convergence on finite, compact or bounded subsets of G is called the topology of pointwise convergence, respectively; the corresponding character groups will be denoted by G_0^\wedge, G_1^\wedge and G_2^\wedge. If G is Hausdorff, then the topology of compact convergence coincides with the compact-open topology on G^\wedge. Note that the identity mappings $G_0^\wedge \to G_1^\wedge \to G_2^\wedge$ are continuous.

Let H be another a.t. group and $\psi : G \to H$ an algebraic homomorphism. We say that ψ is bounded if the image of every bounded subset of G is a bounded subset of H. We say that ψ is bounding if every bounded subset of H is the image of some bounded subset of G. If $\psi : G \to H$ is continuous, then it is bounded, which implies that the dual homomorphism $\psi^\wedge : H_0^\wedge \to G_0^\wedge$ given by $\psi^\wedge(x) = x \circ \psi$ is continuous.

Now, let H be a closed subgroup of G and $\psi : G \to G/H$ the canonical homomorphism. It is not hard to see that if G has some bounded neighbourhood of zero, then ψ is bounding. Such a situation occurs if, for instance, G is a normed space or an LCA group.

Lemma 2.1. Let G, H be a.t. groups and let $\pi_G : G \times H \to G$ and $\pi_H : G \times H \to H$ be the canonical projections.

(a) A subset X of $G \times H$ is bounded if and only if $\pi_G(X)$ and $\pi_H(X)$ are bounded subsets of G and H, respectively.

(b) The group $(G \times H)_0^\wedge$ is canonically topologically isomorphic to $G_0^\wedge \times H_0^\wedge$.

Proof. Part (a) is a direct consequence of the definitions. It is a standard fact that the formula

$$\langle (g, h), \sigma(x, \kappa) \rangle = (g, x) \cdot (h, \kappa) \quad (g \in G, \, h \in H, \, x \in G^\wedge, \, \kappa \in H^\wedge)$$

defines an algebraic isomorphism $\sigma : G^\wedge \times H^\wedge \to (G \times H)^\wedge$, and (a) implies that σ is a homomorphism between $G_0^\wedge \times H_0^\wedge$ and $(G \times H)_0^\wedge$.

By $\mathcal{M}(G)$ we denote the family of finite positive Radon measures on G, and $\mathcal{P}(G) \subset \mathcal{M}(G)$ is the family of Radon probability measures. By the weak topology on $\mathcal{M}(G)$ we mean the topology induced by all functions of
the form

$$\mathcal{M}(G) \ni \mu \mapsto \int_G f(g) \, d\mu(g) \in \mathbb{C}$$

where f is a bounded continuous complex-valued function on G. If a net (μ_α) in $\mathcal{M}(G)$ is weakly convergent to $\mu \in \mathcal{M}(G)$, then we write $\mu_\alpha \rightharpoonup \mu$. A family $\mathcal{S} \subset \mathcal{M}(G)$ is said to be tight if for each $\varepsilon > 0$ there corresponds a compact subset X of G such that $\mu(G \setminus X) \leq \varepsilon$ for each $\mu \in \mathcal{S}$.

By the Fourier transform of a measure $\mu \in \mathcal{M}(G)$ we mean the p.d. (positive-definite) function $\mathcal{F}_\mu : G^\wedge \to \mathbb{C}$ given by

$$\mathcal{F}_\mu(\chi) = \int_G \chi(g) \, d\mu(g) \quad (\chi \in G^\wedge).$$

Since μ is a Radon measure, \mathcal{F}_μ is continuous in the compact-open topology on G^\wedge.

Let (φ_α) be a net of p.d. functions on G^\wedge. If it is pointwise convergent to some function φ, then we write $\varphi_\alpha \rightharpoonup \varphi$. If (μ_α) is a net in $\mathcal{M}(G)$ with $\mu_\alpha \rightharpoonup \mu \in \mathcal{M}(G)$, then, by definition, $\mathcal{F}_\mu_\alpha \rightharpoonup \mathcal{F}_\mu$. The converse, in general, is not true, even if nets are replaced by usual sequences.

Let τ be a group topology on G^\wedge such that the functions $\chi \mapsto \chi(g)$, $g \in G$, are continuous, and let $\nu \in \mathcal{M}(G^\tau)$. By the inverse Fourier transform of ν we mean the p.d. function $\mathcal{F}^{-1} \nu : G \to \mathbb{C}$ given by

$$\mathcal{F}^{-1} \nu(g) = \int_{G^\wedge} \overline{\chi(g)} \, d\nu(\chi) \quad (g \in G).$$

Let E be a topological vector space (all vector spaces occurring are assumed to be real). We may treat E as an (additive) abelian topological group. By E^* we denote the dual space of all continuous linear functionals on E, and E^*_0 is the space E^* endowed with the topology of uniform convergence on bounded sets. If E is a normed space, then E^*_0 is just the dual space with the norm topology.

Lemma 2.2. Let E be a topological vector space. Then the formula

$$\langle x, \alpha(f) \rangle = \exp\{2\pi if(x)\} \quad (x \in E, \ f \in E^*)$$

defines a topological isomorphism $\alpha : E^*_0 \to E_0^\circ$.

Proof. It is a standard fact that α is an algebraic isomorphism (see e.g. [HR, (23.32)]), and it is easy to see that α and α^{-1} are both continuous. \blacksquare

Let X, Y be symmetric convex subsets of a vector space E. Suppose that X is absorbed by Y, i.e. that $X \subset tY$ for some $t > 0$ (we write $X \prec tY$). The Kolmogorov diameters of X with respect to Y are given by

$$d_k(X, Y) = \inf_M \inf \{ t > 0 : X \subset tY + M \} \quad (k = 1, 2, \ldots)$$

where the first infimum is taken over all linear subspaces M of E with $\dim M < k$.

Let p be a seminorm on E. We set

$$B_p = \{ x \in E : p(x) \leq 1 \}.$$

We say that p is a pre-Hilbert seminorm if

$$p(x + y)^2 + p(x - y)^2 = 2p(x)^2 + 2p(y)^2 \quad (x, y \in E).$$

Let E be a Hilbert space. By B_E we denote the closed unit ball of E. Let F be another Hilbert space and $T : E \to F$ a bounded linear operator. Then the formula $p(x) = \|Tx\|$, $x \in E$, defines a pre-Hilbert seminorm p on E. The operator numbers of T are given by

$$d_k(T) = d_k(T(B_E), B_F) = d_k(B_E, T(B_F)) \quad (k = 1, 2, \ldots).$$

We say that T is α-approximable, $0 < \alpha < \infty$, if $\sum_{k=1}^{\infty} d_k(T)^\alpha < \infty$.

Lemma 2.3. Let p, q be pre-Hilbert seminorms on a vector space E, with $B_q \prec B_p$, such that $\sum_{k=1}^{\infty} d_k(B_q, B_p)^\alpha < \infty$. Let Q be an arbitrary subgroup of E and let ν be a Borel probability measure on Q°_0 such that $\Re \mathcal{F}^{-1}(\nu(x)) \geq 1 - \varepsilon$ for each $x \in Q \cap B_p$, where $\varepsilon > 0$. Define

$$Z = \{ x \in Q^\wedge : \Re \chi(x) \geq 0 \text{ for each } x \in Q \cap \frac{1}{2} B_q \}.$$

Then

$$\nu(Q^\wedge \cap Z) \leq 2\varepsilon + \sum_{k=1}^{\infty} d_k(B_q, B_p)^2.$$

This is a direct consequence of [B3, Lemma 3.4]. For details of the proof see [A, Cor. 22.8].

Lemma 2.4. Let p, q be pre-Hilbert seminorms on a vector space E, with $B_p \prec B_q$, such that $\sum_{k=1}^{\infty} d_k(B_p, B_q)^\alpha < \infty$. Let Q be a subgroup of E and χ a character of Q such that $\Re \chi(x) \geq 0$ for each $x \in Q \cap B_q$. Then there exists a bounded linear functional f on E such that $\exp\{2\pi if(x)\} = \chi(x)$ for each $x \in Q$, and

$$\|f\| \leq 4 \sum_{k=1}^{\infty} d_k(B_p, B_q).$$

This is a consequence of [B2, Thm. 3.1(i)]. For details of the proof see [A, Lemma 19.13(ii)].

3. The property (PL). Let G be an a.t. group. Following [Bo], we say that G has the property (PL) if (γ) is satisfied, i.e. if $\mathcal{F}_\mu_\alpha \rightharpoonup \mathcal{F}_\mu$ implies that $\mu_\alpha \rightharpoonup \mu$, for any $\mu \in \mathcal{P}(G)$ and any sequence $(\mu_\alpha)_{\alpha=1}^{\infty}$ in $\mathcal{P}(G)$.

Lemma 3.1. Let G be an a.t. group with the property (PL) and let H be an arbitrary subgroup of G. Then H also has the property (PL).
Proof. Let \(\mu \in \mathcal{P}(H) \) and let \((\mu_n)_{n=1}^{\infty} \) be a sequence in \(\mathcal{P}(H) \) such that \(F_{\mu_n} \overset{p}{\to} F_{\mu} \). Let \(\iota : H \to G \) be the identity embedding and let \(\mu' = \iota(\mu) \) and \(\mu'_n = \iota(\mu_n) \), \(n = 1, 2, \ldots \). Then \(F_{\mu'_n} = F_{\mu'} \circ \iota \wedge F_{\mu'_n} = F_{\mu_n} \circ \iota \wedge \) for every \(n \), so that \(F_{\mu'_n} \overset{p}{\to} F_{\mu'} \). Since \(G \) has the property (PL), it follows that \(\mu'_n \overset{w}{\to} \mu' \), which means that \(\mu_n \overset{w}{\to} \mu \) (see Lemma 2.1 of [Bo]).

Let \(\pi : G \to H \) be a continuous homomorphism of a.t. groups. Consider the following two conditions:

\[(*) \quad \text{if } \mu \in \mathcal{P}(G) \text{ and if } (\mu_n)_{n=1}^{\infty} \text{ is a sequence in } \mathcal{P}(G) \text{ such that } F_{\mu_n} \overset{p}{\to} F_{\mu}, \text{ then } \pi(\mu_n) \overset{w}{\to} \pi(\mu); \]

\[(**) \quad \text{if } S \subset \mathcal{P}(G) \text{ is a family of measures such that the family } \{ F_{\mu_n} \}_{n \in S} \text{ is equicontinuous on } G, \text{ then } \{ \pi(\mu_n) \}_{n \in S} \text{ is a tight family of measures on } H. \]

If \((*) \) is satisfied, then we say that the homomorphism \(\pi \) has the property (PL). If \((**) \) is satisfied, then we say that \(\pi \) is tightening.

Lemma 3.2. Let \((I, \leq) \) be a directed set and let \(G \) be the limit of an inverse system \(\{ G_i, \pi_{ij}, I \} \) of a.t. groups and continuous homomorphisms. Suppose that to each \(i \in I \) there corresponds some \(j \geq i \) such that the homomorphism \(\pi_{ij} : G_j \to G_i \) has the property (PL). Then the group \(G \) has the property (PL).

Proof. Let \(\pi_i : G \to G_i, i \in I \), be the canonical homomorphisms. Let \(\mu \in \mathcal{P}(G) \) and let \((\mu_n)_{n=1}^{\infty} \) be a sequence in \(\mathcal{P}(G) \) such that \(F_{\mu_n} \overset{p}{\to} F_{\mu} \). Fix an arbitrary \(i \in I \) and choose \(j \geq i \) such that \(\pi_{ij} : G_j \to G_i \) has the property (PL). We have \(F_{\pi_{ij}(\mu)} = F_{\mu} \circ \pi_{ij} \wedge F_{\pi_{ij}(\mu_n)} = F_{\mu_n} \circ \pi_{ij} \wedge \) for every \(n \), which means that \(F_{\pi_{ij}(\mu_n)} \overset{p}{\to} F_{\pi_{ij}(\mu)} \). Therefore \(\pi_{ij}(\pi_{ij}(\mu_n)) \overset{w}{\to} \pi_{ij}(\pi_{ij}(\mu)) \), i.e. \(\pi_i(\mu_n) \overset{w}{\to} \pi_i(\mu) \). Since \(i \in I \) was arbitrary, it follows that \(\mu_n \overset{w}{\to} \mu \) (see Lemma 2.3 of [Bo]).

Lemma 3.3. Let \(\varphi \) be a p.d. function on a (not necessarily abelian) group \(G \), with \(\varphi(0) = 1 \). Let \(\varepsilon \in (0, 1) \) and let \(g_1, g_2 \in G \) be such that \(\text{Re } \varphi(g_1) \geq 1 - \varepsilon \), \(i = 1, 2 \). Then \(\text{Re } \varphi(g_1 - g_2) \geq 1 - 4\varepsilon + 2e^2 \geq 1 - 4\varepsilon \).

This next easily from elementary properties of p.d. functions.

The next proposition may be treated as an analogue of the equicontinuity principle for p.d. functions.

Proposition 3.4. Let \(G \) be a (not necessarily abelian) Čech-complete group (or even a Baire group) and let \((\varphi_n)_{n=1}^{\infty} \) be a pointwise convergent sequence of p.d. functions on \(G \) such that the limit function is continuous. Then the sequence \((\varphi_n) \) is equicontinuous.

Proof. Denote the limit function by \(\varphi \). We may assume that \(\varphi(0) = \varphi_n(0) = 1 \). Fix \(\varepsilon \in (0, 1) \) and consider the closed subsets

\[X_m = \bigcap_{n \geq m} \{ g \in G : \text{Re } \varphi_n(g) \geq 1 - \varepsilon \} \quad (m = 1, 2, \ldots). \]

Since \(\varphi_n \overset{w}{\to} \varphi \), it follows that

\[V := \{ g \in G : \text{Re } \varphi(g) \geq 1 - \varepsilon/2 \} \subseteq \bigcup_{m=1}^{\infty} X_m. \]

We have \(\text{Int } V \neq \emptyset \) because \(\varphi \) is continuous. Now, a standard category argument shows that there is an index \(m \) such that \(U := \text{Int } X_m \neq \emptyset \). Then \(U \cup U \) is a neighbourhood of zero in \(G \) and, by the previous lemma, we have \(\text{Re } \varphi_n(g) > 1 - 4\varepsilon \) for every \(g \in U \cup U \) and \(n \geq m \).

An a.t. group \(G \) is said to be dually separated if \(G^c \) separates the points of \(G \). If \(K \) is a subgroup of a topological vector space \(E \), then it follows easily from Lemma 2.2 that \(E/K \) is a dually separated group if and only if \(K \) is weakly closed in \(E \) (cf. [B1, (2.3)]).

Lemma 3.5. Let \(G \) be a dually separated group and let \(\mu_1, \mu_2 \in \mathcal{P}(G) \). If \(F_{\mu_1} = F_{\mu_2} \), then \(\mu_1 = \mu_2 \).

This is a standard fact. See e.g. Theorem 2.2 of Chapter IV in [VTCh].

Lemma 3.6. Let \(G \) be a dually separated group. Let \(\mu \in \mathcal{P}(G) \) and let \((\mu_n) \) be a net in \(\mathcal{P}(G) \) such that \(F_{\mu_n} \overset{p}{\to} F_{\mu} \). If the family \(\{ \mu_n \} \) is tight, then \(\mu_n \overset{w}{\to} \mu \).

Proof. Suppose the contrary, i.e. that \(\mu_n \overset{w}{\to} \mu \). Then there is a finer net \((\mu'_n) \) for which \(\mu \) is not a weak cluster point. Being tight, the family \(\{ \mu_n \} \) is weakly relatively compact in \(\mathcal{P}(G) \) (see e.g. Theorem 3.6 of Chapter I in [VTCh]). So, there is a net \((\mu'_n) \) finer than \((\mu'_n) \) which converges to some \(\mu'' \in \mathcal{P}(G) \). We have \(\mu'' \neq \mu, \text{ otherwise } \mu \) would be a cluster point of \((\mu'_n) \). Then the net \((F_{\mu'_n}) \) is pointwise convergent to \(F_{\mu} \) and \(F_{\mu''} \); hence \(F_{\mu} = F_{\mu''} \). By Lemma 3.5, we obtain \(\mu = \mu'' \), which is a contradiction.

Lemma 3.7. Let \(\pi : G \to H \) be a continuous homomorphism of a.t. groups. Suppose that \(G \) is dually separated and \(G^c \) is Čech-complete. If \(\pi \) is tightening, then it has the property (PL).

Proof. Let \(\mu \in \mathcal{P}(G) \) and let \((\mu_n)_{n=1}^{\infty} \) be a sequence in \(\mathcal{P}(G) \) with \(F_{\mu_n} \overset{p}{\to} F_{\mu} \). By Lemma 3.4, \((F_{\mu_n})_{n=1}^{\infty} \) is an equicontinuous family of functions on \(G \) (the function \(F_{\mu} \) is continuous on \(G \) and hence on \(G^c \)). If \(\pi \) is tightening, then \((\pi(\mu_n))_{n=1}^{\infty} \) is a tight family of measures on \(H \). We have \(F_{\pi(\mu)} = F_{\mu} \circ \pi^\wedge \wedge F_{\pi(\mu_n)} = F_{\mu_n} \circ \pi^\wedge \) for every \(n \), which implies that \(F_{\pi(\mu_n)} \overset{w}{\to} F_{\pi(\mu)} \). Hence, by Lemma 3.6, \(\pi(\mu_n) \overset{w}{\to} \pi(\mu) \).
Lemma 3.8. Let G, D, H be a.t. groups with D discrete. Identify G with the open subgroup $G \times \{0\}$ of $G \times D$. Let $\pi : G \times D \to H$ be a continuous homomorphism such that the restriction $\pi|G : G \to H$ is tightening. Then π is also tightening.

Proof. Let $S \subset \mathcal{P}(G \times D)$ be a family of measures such that $\{F_\mu\}_{\mu \in S}$ is an equicontinuous family of functions on $(G \times D)_0^1$. For each $d \in D$, let $G_d = G \times \{d\}$ be the corresponding coset modulo G. For $\mu \in S$ and $d \in D$, let $\mu_d \in \mathcal{M}(G)$ be the measure given by $\mu_d(A) = \mu(A \cap G_d)$ for Borel subsets $A \subset G$. (I.e., μ_d is the restriction of μ to G_d.) Then we may write $\mu = \sum_{d \in D} \mu_d$ for $\mu \in S$. To prove that the family $\{\pi(\mu_d)\}_{\mu \in S}$ is tight, it is enough to show the following two assertions:

(I) To each $\varepsilon > 0$ there corresponds a finite subset $I \subset D$ such that $\mu(G \times I) \geq 1 - \varepsilon$ for each $\mu \in S$.

(II) For each $d \in D$, the family $\{\pi(\mu_d)\}_{\mu \in S}$ is tight.

Let $\psi_G : G \times D \to G$ and $\psi_D : G \times D \to D$ be the canonical projections. Consider the dual homomorphisms $\psi_G^* : G_0^1 \to (G \times D)_0^1$ and $\psi_D^* : D_0^1 \to (G \times D)_0^1$. We have $F_{\psi_G(\mu)} = F_\mu \circ \psi_G^*$ and $F_{\psi_D(\mu)} = F_\mu \circ \psi_D^*$ for $\mu \in S$. Therefore $\{F_{\psi_G(\mu)}\}_{\mu \in S}$ and $\{F_{\psi_D(\mu)}\}_{\mu \in S}$ are equicontinuous families of functions on G_0^1 and D_0^1, respectively. The Lebesgue theorem for discrete groups implies that $\{\psi_D(\mu)\}_{\mu \in S}$ is a tight family of measures on D_0^1.

Let $\sigma : G \to H$ be the restriction of π to G. Since $\{F_{\sigma(\mu)}\}_{\mu \in S}$ is equicontinuous and σ is tightening, it follows that

(III) the family $\{\sigma(\mu_d)\}_{\mu \in S}$ is tight.

To prove (II), fix $d \in D$ and let $\tau : H \to H$ be the shift $h \mapsto h + \pi(d)$. A direct verification shows that $\pi(\mu_d) = \tau \sigma(\mu_d)$ for $\mu \in S$. Therefore it is enough to show that the family $\{\sigma(\mu_d)\}_{\mu \in S}$ is tight. This, however, follows immediately from (III), because $\mu_d \leq \mu$ and thus $\sigma(\mu_d) \leq \sigma(\mu)$ for $\mu \in S$.

4. Subgroups and quotients of Hilbert spaces. Let E be a (real) Hilbert space. The scalar product of vectors $x, y \in E$ is denoted by (x, y) or just by xy. It follows from Lemma 2.2 that the formula

$$
\langle y, \xi(x) \rangle = \exp\{2\pi i xy\} \quad (x, y \in E)
$$

defines a topological isomorphism $\zeta : E \to E_0^1$. Next, let K be a closed additive subgroup of E. Define

$$
Q = \{x \in E : (x, y) \in \mathbb{Z} \text{ for each } y \in K\}.
$$

It is clear that Q is a weakly closed subgroup of E. Let $\psi : E \to E/K$ be the canonical mapping. If $x \in Q$, then $\xi(x)$ is a continuous character of E.

trivial on K; it induces a continuous character $\xi(x)$ of E/K by the formula

$$
\langle y, \xi(x) \rangle = \exp\{2\pi i xy\} \quad (x \in Q, y \in E).
$$

It is clear that the mapping $\xi : Q \to (E/K)_0^1$ thus defined is an algebraic isomorphism. In fact, $\xi : Q \to (E/K)_0^1$ is a topological isomorphism (ξ is continuous because ψ is bounded; ξ^{-1} is continuous because ψ is bounded).

Let $\iota : Q \to E$ be the identity embedding. The composition $E \xrightarrow{\iota} E_0^1 \xrightarrow{\psi} Q_0^1$ is a continuous homomorphism trivial on K, therefore it induces a continuous homomorphism $\eta : E/K \to Q_0^1$ given by

$$
\langle y, \eta(\xi(x)) \rangle = \exp\{2\pi i xy\} \quad (x \in E, y \in Q).
$$

Observe that η is injective if and only if K is weakly closed in E. If $\mu \in \mathcal{P}(E/K)$, then $\nu = \eta(\mu) \in \mathcal{P}(Q_0^1)$ and $F^{-1}{\nu}(x) = F_{\mu}(\xi(x))$ for each $x \in Q$, which can be verified directly. In what follows, by the canonical homomorphisms $Q \to (E/K)_0^1$ and $E/K \to Q$ we mean the homomorphisms ξ and η defined above.

Now, suppose we are given two Hilbert spaces E_1, E_2 with weakly closed subgroups K_1, K_2, respectively, and a bounded linear operator $T : E_1 \to E_2$ with $T(K_1) \subset K_2$. Let $\psi_i : E_i \to E_i/K_i$ for $i = 1, 2$, be the canonical mappings. Then the formula $\tau \psi_1 = \psi_2 T$ defines a continuous homomorphism $\tau : E_1/K_1 \to E_2/K_2$, as shown in the following diagram:

$$
\begin{array}{ccc}
E_1 & \xrightarrow{T} & E_2 \\
\downarrow{\psi_1} & & \downarrow{\psi_2} \\
E_1/K_1 & \xrightarrow{T \psi_1} & E_2/K_2
\end{array}
$$

We say that the homomorphism τ is induced by T.

Under these assumptions, the following is true:

Lemma 4.1. (a) Let $\mu_1 \in \mathcal{P}(E_1/K_1)$ and let $\mu_2 = \pi(\mu_1) \in \mathcal{P}(E_2/K_2)$. Let ε and r be some fixed positive numbers and let $A = 16r^{-1}e^{-1/2}B_{E_2}$.

Suppose that

$$
\sum_{k=1}^{\infty} d_k(T)^{2/3} \leq 1,
$$

Re $F_{\mu_1}(\xi_1(x)) \geq 1 - \varepsilon$ for each $x \in Q_1 \cap r B_{E_1}$.

Then $\mu_2(\xi_2(A)) \geq 1 - 3\varepsilon$.

(b) If the operator T is $2/3$-approximable, then π is tightening.

Remark. Condition (3) may be replaced by $\sum_{k=1}^{\infty} d_k(T) \leq c$ where c is some universal constant. Similarly, $2/3$-approximable operators in (b) may be replaced by 1-approximable. The proofs of these assertions need certain additional preparations and will be given elsewhere.
Proof. (a) For $i = 1, 2$, define
$$Q_i = \{ x \in E_i : (x, y) \in Z \text{ for each } y \in K_i \}$$
and let $\xi_i : Q_i \to (E_i/K_i)^w$ and $\eta_i : E_i/K_i \to Q_i^\circ$ be the corresponding canonical homomorphisms. Let $T^* : E_2 \to E_1$ be the adjoint operator given by

$$(x, T^*y) = (Tx, y) \quad (x \in E_1, y \in E_2).$$

Then $T^*(Q_2) \subset Q_1$ and we obtain the following commutative diagrams of continuous homomorphisms:

$$\begin{array}{ccc}
Q_2 & \xrightarrow{T^*} & Q_1 \\
\downarrow{\xi_2} & & \downarrow{\xi_1} \\
(E_2/K_2)^w & \xrightarrow{\pi^w} & (E_1/K_1)^w \\
\downarrow{\eta_2} & & \downarrow{\eta_1} \\
(Q_2^\circ) & \xrightarrow{(T^*)^\circ} & (Q_1^\circ) \\
\end{array}$$

Consider the measure $\nu_2 = \eta_2(\mu_2) \in \mathcal{P}(Q_2^\circ)$. We have

$$\mathcal{F}^{-1}\nu_2 = \mathcal{F}\mu_2 \circ \xi_2 = \mathcal{F}\mu_1 \circ \pi^w \circ \xi_2 = \mathcal{F}\mu_1 \circ \xi_1 \circ T^*\nu_2.$$

Let p be the continuous pre-Hilbert seminorm on E_2 given by

$$p(x) = r^{-1}\|T^*x\| \quad (x \in E_2).$$

Then

$$d_k(B_{E_2}, B_p) = r^{-1}d_k(T^*) \quad (k = 1, 2, \ldots).$$

A standard argument based on the polar decomposition of T^* shows that there exists another continuous pre-Hilbert seminorm q on E_2 with $B_{E_2} \prec B_1 \prec B_q$ and such that

$$d_k(B_q, B_p) = \epsilon^{1/2}d_k(T^*)^{1/3},$$

$$d_k(B_{E_2}, B_q) = \epsilon^{-1/2}d_k(T^*)^{2/3} \quad (k = 1, 2, \ldots).$$

Since $d_k(T^*) = d_k(T)$, from (3) we obtain

(6) \quad $\sum_{k=1}^{\infty} d_k(B_q, B_p)^2 \leq \epsilon,$

(7) \quad $\sum_{k=1}^{\infty} d_k(B_{E_2}, B_q) \leq \epsilon^{-1/2}.$

If $x \in Q_2 \cap B_p$, then $T^*x \in Q_1 \cap rB_{E_1}$. Hence, by (5) and (4), we have

(8) \quad $\text{Re}\mathcal{F}^{-1}\nu_2(x) \geq 1 - \epsilon$ \quad for each $x \in Q_2 \cap B_p$.

Set

$$Z = \{ \chi \in Q_2^\circ : \text{Re} \chi(x) \geq 0 \quad \text{for each } x \in Q_2 \cap B_q \}.$$

Applying Lemma 2.3, (8) and (6), we obtain

(9) \quad $\nu_2(Q_2^\circ \setminus Z) \leq 3\epsilon.$

Now, take an arbitrary $\chi \in Z$. By Lemma 2.4, there exists a bounded linear functional f on E_2 such that

(10) \quad $\exp(2\pi if(x)) = \chi(x)$ \quad for each $x \in Q_2,$

(11) \quad $\|f\| \leq 4 \sum_{k=1}^{\infty} d_k(B_{E_2}, B_q) \leq 16r^{-1}\epsilon^{-1/2}.$

Let $y \in E_2$ be given by $f(y) = (x, y)$ for $x \in E_2$. By (11) and (7), we have

$$\|y\| = \|f\| \leq 10 \sum_{k=1}^{\infty} d_k(B_{E_2}, B_q) \leq 16r^{-1}\epsilon^{-1/2}.$$

Thus $y \in A$. Condition (10) means that $\eta_2\psi_2(y) = \chi$. Since $\chi \in Z$ was arbitrary, it follows that $Z \subset \eta_2\psi_2(A)$. Hence

$$\nu_2(Z) = \eta_2(\mu_2)(Z) = \mu_2(\eta_2^{-1}(Z)) \subset \mu_2(\eta_2^{-1}(\eta_2\psi_2(A))) = \mu_2(\psi_2(A))$$

because η_2 is injective (K_2 was assumed to be weakly closed in E_2). In view of (9), this completes the proof of (a).

(b) Let $S \subset \mathcal{P}(E_1/K_1)$ be a family of measures such that $\{\mathcal{F}\mu : \mu \in S\}$ is an equicontinuous family of functions on $(E_1/K_1)^w$. Suppose that $\sum_{k=1}^{\infty} d_k(T)^{2/3} < \infty$. Using the polar decomposition of T etc., we can find a Hilbert space E_2 and bounded linear operators $T' : E_1 \to E_2'$ and

$$T'' : E_2' \to E_2$$

with $T = T''T'$ such that $\sum_{k=1}^{\infty} d_k(T')^{2/3} \leq 1$ and T'' is compact. Let K_1 be the weak closure of $T'(K_1)$ in E_2. It is not hard to see that $T''(K_2') \subset K_2$. We obtain the canonical commutative diagram

$$\begin{array}{ccc}
E_1 & \xrightarrow{T} & E_2' \\
\downarrow{\psi_1} & & \downarrow{\psi_2} \\
E_1/K_1 & \xrightarrow{\pi'} & E_2/K_2' \\
\end{array}$$

where $\pi''\pi' = \pi$.

Take an arbitrary $\epsilon > 0$. Since $\xi_1 : Q_1 \to (E_1/K_1)^w$ is a topological isomorphism, $\{\mathcal{F}\mu : \mu \in S\}$ is an equicontinuous family of functions on Q_1. So, there is some $\delta > 0$ such that $\text{Re}\mathcal{F}\mu(\xi_1(x)) \geq 1 - \epsilon$ for every $x \in Q_1 \cap rB_{E_1}$ and $\mu \in S$. Let $A = 16r^{-1}\epsilon^{-1/2}B_{E_2}$ and let $X = \psi_2(T''(A))$. Then X is a compact subset of E_2/K_2. Now, take any $\mu \in S$. By (a), we have $\pi'(\mu)(\psi_2(A)) \geq 1 - 3\epsilon$. Hence

$$\pi''(\mu)(X) \supset \pi''(\mu)(\psi_2(T''(A))) = \pi''(\pi'(\mu)) = 1 - \epsilon.$$
By an EKD-group we mean a group of the form $(E/K) \times D$ where D is a discrete abelian group and K is a weakly closed subgroup of a Hilbert space E. We shall identify E/K with the corresponding subgroup of $(E/K) \times D$.

Lemma 4.2. Let $G = (E/K) \times D$ be an EKD-group. Then the group G'_{∞} is Čech-complete.

Proof. By Lemma 2.1(b), the group G'_{∞} is topologically isomorphic to $(E/K)'_{\infty} \times D'_{\infty}$. Let Q be defined as in (1). Since the canonical mapping $\xi : Q \to (E/K)'_{\infty}$ is a topological isomorphism, the group $(E/K)'_{\infty}$ is Čech-complete. Hence G'_{∞} is Čech-complete because D'_{∞} is compact. ■

Let $G_1 = (E_1/K_1) \times D_1$ and $G_2 = (E_2/K_2) \times D_2$ be EKD-groups and let $\pi : G_1 \to G_2$ be a continuous homomorphism with $\pi(E_1/K_1) \subset E_2/K_2$. We say that π is α-approximable, $0 < \alpha < \infty$, if the restriction $\pi_{E_1/K_1} : E_1/K_1 \to E_2/K_2$ is induced by an α-approximable operator $T : E_1 \to E_2$ (see diagram (2)).

Lemma 4.3. Every 2/3-approximable homomorphism of EKD-groups has the property (PL).

Proof. Let $\pi : (E_1/K_1) \times D_1 \to (E_2/K_2) \times D_2$ be a 2/3-approximable homomorphism of EKD-groups. Then the restriction $\sigma : E_2/K_2 \to E_2/K_2$ of π to E_2/K_2 is induced by a 2/3-approximable operator $T : E_1 \to E_2$. Lemma 4.1(b) says that σ is tightening. Hence π is tightening according to Lemma 3.8. It is now enough to apply Lemmas 3.7 and 4.2. ■

5. Nuclear groups. Nuclear groups were defined in [B1, (7.1)] (an equivalent definition is given by Lemma 5.1 below). They form a class of a.t. groups with the following properties:

(1) every LCA group is nuclear;

(2) a topological vector space G is nuclear if and only if G is a nuclear locally convex space;

(3) every subgroup of a nuclear group is nuclear;

(4) every Hausdorff quotient group of a nuclear group is nuclear;

(5) the product of an arbitrary family of nuclear groups is nuclear;

(6) the direct sum of a countable family of nuclear groups is nuclear.

The proofs of these assertions are given in [B1, Sect. 7]. Moreover, if G is a Čech-complete nuclear group, then the group G'_{∞} is nuclear [A1, (20.36)].

Let F be a vector space and τ a topology on F such that F is an additive topological group. We say that F is a locally convex vector group if it is separated and has a base at zero consisting of symmetric convex sets. A locally convex vector group F is called a nuclear vector group if to each symmetric convex neighbourhood U of zero in F there corresponds another symmetric convex neighbourhood V with $d_0(V, U) \leq k^{-1}$ for every k.

Lemma 5.1. An a.t. group G is nuclear if and only if it is topologically isomorphic to a group of the form H/K, where H is a subgroup of a nuclear vector group F and K is a closed subgroup of H.

This follows from [B1, (9.4) and (9.6)].

Lemma 5.2. Let K be a closed subgroup of a nuclear vector group F. Then the quotient group F/K is topologically isomorphic to a dense subgroup of the limit of an inverse system (G_i, π_{ij}, I) of EKD-groups with the following property: to each $i \in I$ there corresponds some $j \geq i$ such that the homomorphism $\pi_{ij} : G_j \to G_i$ is 1/2-approximable.

This is a reformulation of Theorem 3.4 of Galindo [G]. The number 1/2 may be replaced here by an arbitrary $\alpha \in (0, \infty)$.

Theorem 5.3. Every nuclear group has the property (PL).

Proof. Let G be a nuclear group. By Lemma 5.1, there exist a nuclear vector group F and a closed subgroup K of F such that G is topologically isomorphic to a subgroup of F/K. By Lemma 3.1, we may assume that $G = F/K$. That F/K has the property (PL) follows from Lemmas 5.2, 3.1, 3.2 and 4.3. ■

References

On the reflexivity of multigenerator algebras

From the contents:
1. Introduction
2. N-tuples of linear transformations in finite-dimensional space
3. Toeplitz operators on the polydisc and the unit ball
4. Subspaces of weighted shifts
5. Joint spectra for N-tuples of operators
6. Algebras of operator weighted shifts
7. Functional calculus for N-tuples of contractions
8. Dual algebras, invariant subspace problem and reflexivity
9. Reflexivity of jointly quasinormal operators and spherical isometries
10. Reflexivity and existence of invariant subspaces for tuples of contractions
11. Questions and open problems