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Volume ratios in L,-spaces
by
YEHORAM GORDON (Haifa) and MARIUS JUNGE (Kiel)

Abstract. There exists an absolute constant ¢p such that for any n-dimensional
Banach space £ there exists a k-dimensional subspace ¥ C E with k < n/2 such that

3 1/k
o vol(Bp) " R vol(Bg) \
ellipsoid ECB g VOL(E) = zonoid ZC Br VOI(Z) )

The concept of volume ratio with respect to fp-spaces is used to prove the following
distance estimate for 2 < ¢ < p < co:

d(F, G ~ep, nla/D(1/a-1/p)

sup inf
FCly, dim F=n GCLg, dim G=n

Introduction and preliminary notations. The classical volume ratio
of an n-dimensional Banach space with respect to the ellipsoid of maximal
volume contained in the unit ball is an important geometric quantity. It is
intensively studied in the literature, for example in the books of G. Pisier
[PSc] and N. Tomczak-Jaegermann [TJ]. More recently, the external volume
ratio with respect to linear images of the cube was investigated in [Ba, GEL,
GMP, PES, PSc} and the volume ratio with respect to zonoids in [Ba, GMP,
GIN, JU2]. As an example, let us note that the volume ratio with respect
to zonoids is related to the local unconditional structure of the underlying
Banach space.

Our aim in this paper and the closely related previous paper [(GJ] is to
develop a useful theory of volume ratios with respect to £p-spaces including
those previous concepts. For this purpose, as in [GJ], we define for an n-
dimensional (quasi-)normed space E with unit ball Bg and a Banach space
Z, the volume ratios :

vi(E, Z) ;:inf{(%‘%?%)lm
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T(Bz) C BE},
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vr(E, 8(Z)) := inf { (%)Un

vi{E, 5p) := vr(E, §(Lyp)).

Note that vr(E) = vr(F, £2) is the classical volume ratio with respect to the
maximal ellipsoid contained in Bg. Some standard inequalities between the
volume ratios follow from the theory of p-stable processes and the type 2,
cotype 2 theory, such as:

(a) 2 < p <r < oo, then vr(E, &) < vi(E, £y) because £ is (1 +¢)-
Em(s)
vt

FcCZ dimF=n, T(Br)C BE},

isomorphic to a subspace of

{(b) If 1 < p < 2, then the fact that £, has type 2 implies (see [PSc|)

1
C[)—\/FVT(E,EQ) S vr(E, 4p) < vel(E, £s).
(c) Clearly, for p =1,
vr(E,61) = 1.

(d) If 1 < p < 2, then ¢y ve{E, £3) < vr(E, S;) < vr(E, ¥£y) since cotype
2 spaces such as £, 1 < p < 2, have bounded volume ratics with respect to
ellipsoids [MiP].

(e) Although for 2 < ¢ < p < co the spaces £ arc not uniformly isomor-
phic to subspaces of £, we still have

vr{E, Sp) < co/pVr(E, 5,).

We intend to prove this inequality and the following theorem based on an
operator ideal approach to volume ratios.

THEOREM 0.1. Let 1 < p,q < o0 and n € N. Then

. n1/2—1/p iflgqg25p<oo,
su vi(F, 8,) ~ {g/2)(1/q—17p) 4
FCBp,diElF:ﬂ, ( ’ l]) “ra 1; f;flsi Sg= p< o,
28 e,

where cp, 15 an absolute consiant depending only on p, ¢. In particular, for
2<g<p<oo,

sup inf

d(F, @) r~g, nl@/A L 0-110),
FCly, dim Fen GIC Ly, dim G=n !

Here and in the following a ~, b means that cfla < b < ega with
cicp < ¢ Moreover, d(F, F} is the usual Banach-Mazur distance:
(B, F)=f{|T: B — F||-|T7': F - E|]},

where the infimum is taken over all linear isomorphisms. The last estimate
answers a question of Pietsch, which was kindly pointed out to us by A. Hin-
richs in the interesting case 2 < ¢ € p < oo. In fact the distance estimate is
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ghtained for random n-dimensional subspaces of £, where m ~ n9/2. Note
that for p and q interchanged, the corresponding expression is not known.
We deduce further information for the smallest relative projection constant
of an n-dimensional subspace of £,

In the second part of the introduction, we want to concentrate on the
more classical volume ratio vr(%, £2) and the zonoid ratio vr(E, £4,)- Recall
that a zonotope is a sum of segments, and more generally, a zonoid Z is the
linear image (B, ) of the unit ball By of . Clearly, there are far more
zonoids than ellipsoids. One application of the technique we develop here is
the following geometric result:

TurOREM 0.2. Let B be an n-dimensional Baenach space. Then there
ewists a subspace ' C K of dimension k < n/2 such that

1/m 1/k
inf vol{Bg) < ¢ in vol(Br) ,
ellipsoid ECBR 'VOl(g) zonoid ZC B VO]_(Z)
briefly
vi(BE, ) € o sup VE(E, £ )

FCE,dim F<n/2
Here ¢p 45 an obsolute constant.

The theorem hag the following geometric interpretation. If the volume
ratio with respect to ellipsoids is hig, one can find a section, at most half-
dimensional, whose volume ratio with respect to the larger class consisting of
zonoids is still big. The typical example is £, whose unit ball is a zonoid, but
{for example by Theorem 0.2) it contains proportional subspaces of distance
/7 to all zonoids. This observation is initially due to K. Ball [Ba}, who also
discovered a connection between the theory of 1-summing operators and the
maximal volume of inscribed zonoids. Our general result is motivated by
corresponding results for ﬂg, 2 < p < oo. There, we can prove the existence
of an n/2-dimensional subspace F' C £ such that

cont VP < e (F b)) < Vi(F 03) < nt/2-1/p,

We do not know whether it suffices to consider proportional subspaces
in general.

There is a close relation between volume ratios and other parameters
considered in the local theory of Banach spaces, e.g., if dim X =n,

co VE(X, £oo) VE(X ™, foo) < glp(X) < gl(X) £ xu(X) < x(X) < d(X, £3).

Here gl( X) is the nowadays classical Gordon-Lewis constant and gl, (X)
the Gordon-Lewis constant for operators on X with range in a Hilbert space
(see the next section). xy(X) and x(X) are the smallest factorization norms

through a Banach lattice and through an n-dimensional Banach space with
l-unconditional basis, respectively, Since these parameters are not further
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used in this paper, we skip the formal definition (see for example [GMP]).
A generalization of this inequality is proved in [GJ, Corollary 3.12].

In the range of the parameters vr(F, £,) the cases p = oo and p = 2 are
extremal. However, in view of uniform estimates for all finite-dimensional
subspace of an arbitrary Banach space they turn out to be equivalent in the
following sense.

TarEOREM 0.3. Let oo > 0 and X be an infinite-dimensional Banach
spoce. Then the following assertions are equivalent.
(i) There ewists o constant c; > 0 such that for alln € N and all
n-dimensional subspaces E C X,
VI‘(E,EQ) < ern®.
(1) There exzists a constant cz > 0 such that for all n € N and all
n-dimensional subspaces B C X,
W(E,em) < czn"‘.

(iii) There ezists 0 < § < 1 and e constant ¢z such that for alln € N and
n-dimensional subspaces B C X, there exists a [dn]-dimensional subspuce
FEs ¢ B such that

Vr(Eg,foo) < Csna.

Using these ideas, we get some new ingsight into the geometry of subspaces
of ﬂg’ for 2 € p < oo, which complements the results of Bourgain [Bo,
Bourgain and Tzafriri [BT| and Gluskin, Tomezak-Jaegermann and Tzafriri
[GTJT]. They were interested in finding (1+¢&)-copies of E’;, k= k(eg,p, L,m),
2 < p £ 00, in every m~dimensional subspace F of E;:“. Based on volume
ratio estimates, we can prove that there are subspaces E C Eﬁ which do not
contain subspaces F' of dimension k which are either (~isomorphic to some
£ (1 <7 < o0) or C-complemented in f{; .

THEOREM 0.4. Let 2 < p < oo ond 1 < m < L. Then there exists an
m-dimensional subspace By, C ££ such that for any k-dimensional subspace
F of En,

k < Clp, h,m, L)v/m LMPvr(F, o),

where

C(p, k,m, L) < comin{/F, (L/k)”g“l/?’}\/f% (1 Fin LT;;).

For p = oo, there exists an m-dimensional subspace By, C €% such thot for
all k-dimensional subspaces F C B,

L L L
k < cov/m/ gl
< eg/m 1+InkJL—m(l"HnL—m)W(F’EOO)'
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Moreover, for all 1 <r <o00,2<p <0 and F C Ez’;‘,

VI(F, £ee) < comin{d(F, £5), A, (F), gly(F)).

1. Volume ratios for subspaces and quotients of Lyp. In this sec-
tion, we investigate volume ratios and distance estimates with respect to
subspaces and quotient spaces of L,. An n-dimensional section of the unit
ball By, in L, can be represented by a measure 4 on R® such that

S 1= {o € B ol = ( | o )P dtw) " <11,

n

An n-dimensional gquotient of the unit ball B L, is given by

@ty = { | fadwant) | (§ 5P auw) ™ <1},

il R~

Note that (@p(u))° = Spr(u) where 1/p+ 1/p’ = 1. A systematic ap-
proach leads to the following four minimax quantities:

e (vOlSH ()}
V(p,q,8,8) = supinf (_—p__ = su F,8,),
( ) poow \vol(S(v)) Fc:Lp,diI:annvr( 2
. H{Qp () \ "
Vip,q,Q,8) ;= supinf (VO 2 = su F 5,
) e ov VO](Sq(V) Fquotientopr,dimF=:r( Q)
ol{Sp (1)

Vip,q,5,Q) := supinf (v vr(F, 4y),

1/n
) = sup
FCLy, dim F=n

1/n
) = sup

F quotient of Ly, dim F=n

subject to the conditions S(v) C Sp{u), Se(v) C Quplp), Qq(v) C Splu)
and @, (1) C Qp(v), respectively. Santald’s inequality and its inverse due to
Bourgain and Milman [BM] imply

(11) Vol (Sp(1))/* Vol @pr ()" ey =

Therefore, these four expressions can be reformulated in terms of external
volume ratios defined in [GJ]. In the next section, we will see that for ¢ > 1,

1 ifl<p<2,
V(pw q,8, Q) ™eq V(p’z’ 5, Q) oo {'111/2"'"1/19 if 2 Eﬁ Z 00,

(
(Qq(v)
Vip,¢,Q,Q) = supinf (% vr(F, £g)

Using the methods from [GJ] which employ the theory of p-summing
and p-nuclear operators, we are able to determine the order of growth of the
constants V(p, g, -,-) with respect to the dimension n.
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Let us recall the classical definitions of absolutely p-summing and p-
nuclear operators. An operator T' 1 & — F is said to be p-summing (T &
II,(E, F)) if there is a constant C' > 0 such that for all vectors x1,...,%,

€ E, .
(k};HT%H%)w <c s (3

lz a1 M poq

1/p

[ e)?)

Then 7,{T) := inf C where the infimum ranges over all constants C sat-
isfying the condition above. The g-nuclear norm of a finite rank operator
T . E — F is defined by
vo(T) = inf |V« £ — F|| || Dy €3 — €71 - | B B — £5,

where the infimum is taken over all m, V, R and diagonal operators D,
such that T = VD, R. For 1 € p < co and a linear map T : X — Y, the
p-factorable norm is defined by v,(T) = inf{||R{| - [S1|} where the infimum
is taken over all §: X — Ly and R: Ly — Y™ such that tyT = RS and
iy : ¥ — Y** is the canonical isometric embedding of ¥ into its bidual. The
gl-norm gl(T) is defined by

71 (5)
where the supremum is taken over all non-zero §:Y — Z. The restricted
gl,-norm is defined by restricting to operators with values in £,

71 (ST)
L(T) = —_—
Ba(T) = 32, ma(S)
As usual, we set gl(X) = gl(idx) and gly(X) = gly(idx)-
The notion of volume numbers will be very convenient for our purpose.
Given quasi-normed spaces X, Y and an operator T : X — Y, we define for
n € N the nth volume number by

v (T) o
| (228

If T is of rank less than n, we set v,(T) = 0. Similar votions were dis-
cussed by several authors: Dudley [D], Pisier [PSc], Pajor and Tomezak-
Jaegermann [TJ, PT], Mascioni [MAS], Junge [JU1, JU2] and Gordon and
Junge [GJ]. Note that for dimF =nand T': E — Y of rank n,

) VO]_(T(B )) 1/n
o (T) = (W‘ﬁm) '

It is quite useful to compare the volume numbers with Mascioni’s [MAS]
notion of volume ratio numbers. For an operator 7 : X — Y the nth volume

ECcX,T(E)YCFCY dimE = dm}F = n}.
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ratio number is defined by

vra(T) i= sup (v_ol(qs (T{Bx))))”“
VOl(By/ S)
where the supremum is taken over all subspaces S € ¥ such that dim(Y/$)
=n, and gg : ¥ — Y/S denotes the corresponding quotient map. We will
need several facts. For an operator T on a Hilbert spaces H, the volume
mumbers can be calculated using the singular values (2;(T)) jen of vT*T in
decreasing order, i.e. the approximation numbers of T (see [GJ)):

(1.2) viR(T) = v (T) = (f[aj (T))l/k.
j=1

If T: X — £, then the volume ratio numbers are decreasing due to
the Aleksandrov-Fenchel inequalities [PSc]. Moreover, using an appropriate
orthogonal projection, one has
(1.3) (T} < vro (T).

In K-convex Bamach spaces there are still “good” projections on finite-
dimensional subspaces [PSe¢, JUL]. A Banach space X is said to be K-convez
[PSc] if the projection

P = gk®gk:L2(F,HD)—~)L2(F,P)
k
extends to a continuous operator on Ly{I', P, X). Here {gx} are orthonormal
gaussian variables. The K-convexity constant is the norm of this extension:
K(X) = ||P®idx ||.

Clearly, K-convexity is a self-dual property. Pisier [PS1] proved that K-
convex. spaces are cxactly those not containing £7's uniformly. Typical ex-
amples are the Ly-spaces which satisfy

(1.4) K (Ly) € /max(p, ).

Geometrically, we have the following characterization of this notion (see
(PS¢, TUL]). For any n-dimensional subspace E C X there exists a projection
P X — F such that

1/n
(1.5) (X%i%ll) < oK (X).

We will uge the following fact probably known to experts. For complete-
ness, we add a short proof.

Facr 1.1 Let T : X — Y be an operator and n € N,
(1) un (1) ~ey vER (T} and v, (T™) ~e vin (T).
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(i) If X is K-convez, then vin(T) < co K (X )un(T).
(iii) If ¥ is K-convez, then va(T) < co K (V) vrn (1.

Proof. (i) The inequalities
n{T) < o vrn(T™) and vin(T) € covn(TT)

follow from Santalé’s inequality and its inverse (see [PScj), together with
the usual duality between subspaces and quotients. Combining these two
estimates and the principle of local reflexivity imply

un(T) < covin(T%) £ Gun(T™) = ciun(T).

The other equivalence in (i) is proved similarly.

(iii) Let T(E) = F C Y with dim E = dim F' = n. Since Y is K-convex,
there exists a projection P : ¥ — F such that vro(P) < coK(Y). From the
submultiplicativity of the volume ratio numbers vry, [MAS], we obtain

vol(T{Bg))\ /™ . (vol(PT(Bx)) Uﬂmw o ‘
(vol(BF) ) S( vol(Br) ‘) = vip(PT) € vin(P) vrn(T)

< oK (Y ) vrn (1.
(it) follows from (iii) by duality. =

Tn the sequel, we will use classical volume estimates for operators on
Hilbert spaces. Volume estimates are usually obtained using the entropy
numbers e, (T) defined for an operator T': X — ¥ between Banach spaces
X and Y as follows:

2n~—1
en(T) = inf{s1§ly1,...,y2n-1 €Y such that T(Bx) C U Yj +eBy}.
j=1
Note moreover the obvious inequality
(1.6) vn(T) < 2- 2%/ (T).

One crucial tool for entropy estimates is the rad-norm or the £-norm of
a map u: £3 — X (see [CP]):
1/2
ap)™"

rad(u ( HZnu(em
£u) —-( ”ngw(e1 1 dP)

where the r; are independent Rademacher variables with P(r = £1) = 1/2,
and the g; are independent normalized gaussian variables. A consequence
of Carl-Pajor’s and Pajor-Tomczak's inequalities (see [PSc]) is that for all
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kEeN,
(1.7) \/?;max{ek(u), ex{u”)} < c14/1 + In(n/k) rad(u),
(1.8) \/Emax{ek(u),ek(u*)} < e1b(u).
In the sequel, we will also use special cases of this inequality for operators
between L, and f;. Except for the constant, they can be deduced from

classical volume estimates of Dudley and Urysohn. For the constant in the
following lemma, we refer to the proof of Theorem 0.2 [GJ, pp. 21-24].

LemMa 1.2, Let 1 < p < oo, fi,o . fn € Lp(p), V=31, i®e :
Lyt — £ be the associcted linear operator and K =V (By ). Then
P

- [ wlE) rfvel(BE) M
(s () )
< min{max(+/p — 1, l),\/ﬁ}(s (i ifi\z)pﬂ d;.&)l/p
0 i=1
< min{max(y/p — 1,1}, v/n}m, (V).

To simplify notation let us introduce

F, = i
VI‘( ’ QSP) Qquotlil;_llft of L VI(F, S(Q))
We will need the following crucial observation derived from [GJ, Theo-
rem 3.10]:

Lemma 1.3 Let 1 <p < oo, 1/p+1/p' =1, X be a Banach space and
n € N. Then
1
sup vi{F,5,) < sup M
CO\/.F) FCX,dim F=n viX £y Vp’('v)

<ep sup

vi(F, 5,
FeX, dim FP=n ( ’ P)

and
sup Y on(v) e p sup

vr{F, Q5y).
v X by Mp'\V ( FcX, dini F=n TR
In particular, for eny finite-dimensional subspace F' C X,

vr(F, Q8,) < vr(F, ) < cor/max{p,p'} vr(F,Q5y).
Proof Let F ¢ X be of dimension n. According to [GJ, Theorem 3.10],
there is a map v : F' — £8 such that vy (v) < 1 and
vr(F, 8,) < epy/Bvnug(v: F — £3).
By the definition of the p’-nuclear normn, there exists an extension V : X —
25 C £y of v with 1v,{V) < 1. Since V|p = v, we get vn(v) < vn(V) and
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obtain the left hand inequality. For the right hand inequality, let v : X =4y
and F © X be of dimension n. Then o(F) is contained in an n-dimensional
subspace H of £5. Therefore [GJ, Theorem 3.10] implies

VR Un (0| F) < cove(F, Spvp (vir) < vi(F, Sp)vp (v)-
Taking the supremum over all F' implies the right hand inequality.

For the last inequality, let @ be a quotient of Lp, ¢ : L, — @ a
quotient map, G C @ an n-dimensional subspace and o : G — F he

a linear isomorphism which is a contraction. Then w = Py pac satisfies
v (w) < vpe(v) and admits an extension W: @ — H such that Wlg = w
and v (W) < (1+&)up (v). In particular, Bg C Bg implies, by Lemma, 1.2,

Vaug{w) € Vv, (W) = Vv, (Wq)
< max{ /7 = L, Ly (Wa) < (1+2)7/8 v (v).
Since £ > 0 is arbitrary, we obtain the last assertion. =

REMARK 1.4. By the well known inequality vy (v) < vy (v) for p < g, the
lemma immediately implies that for any n-dimensional Banach space F,

vi(F, Sp) < co/Pvr(F,S,).

Moreover, the second assertion implies, for any n-dimensional quotient
@Q of £y, the existence of a linear image T(Bg) C Bg, £ C £y, such that

vol(Bg) in
——— <ec .
(vol(T(BE)) < ey
Clearly, this inequality cannot hold with a constant for p = 1, which can be
used to show that the order /9’ is optimal.
For the upper estimate in Theorem 0.1, we use an inequality of Carl.

LEMMA 1.5. Let 2 < ¢,p < o0 and o = min{g/(2p),1/2}. Then any
q' -nuclear operator v : L, — o satisfies

sup n® vr,{v) < vy (v).
2]

Proof. It is sufficient to consider ¢ < p. Then the remaining case p < ¢
follows easily from v (v) < vy (v}. Now, let H be an n-dimensional subspace
of £y, Py its orthogonal projection and (e;)%., an orthogonal basis of H.
Using Carl’s [Ca] inequality
{1.9) vp {Prv) £ n(‘I/z)(lfp’_lfq’)yq,(PH'U),

we deduce from Lemma 1.2 that

oy 'Dl(l HL(EL )) 1/
1/2 < R Tt ’
T Urn(PH'U) - n( VOl(Bn) <"“ P (P-H rU) <— VP (PH U)

< nl@/DO/F -1y (Pry) < pt/2d/ )y, (),
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REMARK 1.6. A further consequence of Carl's inequality (1.9) is the
distance estimate for an n-dimensional subspace F' C L, if 2 < g < p < oo

1 i {q/2)(1/q—1/p)
(1.10) Gceq,ldni”fn G=nd(F’ G zn '

Here d(F,G) = inf{||ul} - lu™?||} is the Banach-Mazur distance between
Banach spaces. This was obtained in collaboration with F. Hinrichs who
communicated to us Pietsch’s question to find the right order of growth of

sup inf d(F, Q).

FCLy, dim F=n GGy, dim G=n

Combined with the trivial estimate
d(F,G) 2 vr(F, 5y),

the following proposition will show that the upper estimate (1.10) is es-
sentially best possible. We add a proof of the distance estimate (1.10) for
completeness.

Proof of (1.10). Let F C L, be n-dimensional. By Kwapieri’s factoriza-
tion theorem [PIE] the minimal distance of F' to subspaces of £, equals the
best constant € such that

mq(u) < Cmlu™)

for all operators u : X — F. Moreover, X can be assumed to be n-
dimensional since F' is n-dimensional. By trace duality applied to Carl’s
inequality (1.9) combined with Kwapied's estimate for the p-summing norm
[PIE] with values in F' we obtain

Tq(u) < n(@/z)(l/G’*l/P)Wp(u) < n(Q/Z)(l/Q~1/p).,rp(u*)
< n(a/2)(1/q—l/p)7rq(u*)_ -
The proof of Theorem 0.1 relies on the following rather precise estimates.
ProrostTioNn 1.7. Let 2 < g < p<oo,n € N andm > n. Then a

random n-dimensional subspace FP C LT satisfies

. ~ [
Pve(F?, 08,) > — s,
I vr (£ ,(291)-\/:5 Jamii

Moreover, for p = oo,

mife JR
VLt log(mfn) amiT+
In particular for m = nd/? for2 < g < p < oo, resp. p = 00,

¢
Evr(FP,QS,) > —=m'/9=1P ~ . nla/2)(1/e=1/p)
( d VPq °

Bvr(F®,Q8,) = ¢
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n
1+1lon’

respectively. Here ¢ > 0 is an absolute constant.

EVI(FOO,QSQ) 2

Lo

Proof. Let O(m) be the unitary group in R™ and ey, ..., & be the unit
vectors. We will consider expectations with. respect to the normalized Haar
measure on O(m). Given u € O(m) the space

F, = span{ule1),...,u(en)} C &'

is a (random) n-dimensional subspace. With every u, we associate a random
partial isometry operator 4, : R — R™, A, (e;) = ufe;), i =1,...,n. Our
aim is to estimate

Vvinun(Ailr, : Fu — £3)
vo(Ag 0p — 07)

The crucial point is the following two norm estimates:

E|LA7 : € — 6]  com™/2(am™* /),
Erad(A, : 5 — £) < cor/Bvmt P2,
In both estimates, we can replace the random unitary w by m™'/?@, where
G = (gij)%___l is a random gaussian matrix with independent normalized

entries (see the comparison theorem of Marcus-Pisier [MaP]). Hence, we
deduce by Chevet’s inequality, as in [BG],

VmE|AL £ 3]l < canH S e ®e ) — 63

te=l, . m, J=1,...n
m [

seol®] 2o, + 2| Soei],)
im<l dezl “

< co(/am* 7+ /).

As an immediate application, we get

+E
q

Evg (Ay 1 £ = 63) Svp (i : £35 — £7)E[ A7 - £77 — L5
< ml/Q’—IIZCO(\/&ml/q 4 /7).

For the second estimate, we invoke again Marcus-Pisier’s result and obtain
by the symmetry of the gaussian variables and the corresponding Khinchin
inequality
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m ks
VimnErad(Ay : £ = ) < coBy B (373 ryg

o\ 1/p
i=1 j=1 )
m " m n
= cOIE,.IEg(Z; ’ ergﬁ P)I/P _ coIEg(Z ‘ Zgja;
= jzl i=1 " j=1

T n
< 60( Z]Eg Zgﬁ
=l el
Together with (1.6) and (1.7) this implies
Ev/nv,(Ay : €5 — ') <4Byne,(A,) < 4 Erad(A4,)

< 46061\/ﬁ\/§m1/p_1/2.

Since Ay A, = idgy and A,(f) = F,, we observe that for fixed u, by
Lemma 1.3,

p) /g

py LD
) < cpy/p/nmtP,

vgr (AL)

L= vn{id) = vn(Au)oa (4] n

F.) € Cotn(Ay) vr(Fy, QS,).

By Hélder’s inequality this implies
n= (]Enl/S)S < CO(IE(\/E%(AU)V'J’(A;)Vr(Fua QS@:))I/S)B
< colf{vrun{Ay))Evg (A%)Evr(F,, QS,)
< deder /B rm P2 VR gl 4 B v (F,, QS,)
= dcie/pmMPTY N/ (Jamt T 4 R)EvT(F,, QS,).
This proves the assertion. For /7 = m/?, we deduce
n@/A A e=1/p) o plla=1/p < 8cdei/gp Evr(Fy, QS,).
For p = o0, we use the standard optimization procedure. In fact, let
2 < r < o0 to be determined later. Using [MP], we have
U (Ag 1 85— 07 S up(Ay £ — EMYup (id 1 47 — 47)
< eon™ Y un(Ay 2 82— ).
With this additional factor, we obtain
. 1/r
\_/ﬁn“\{w%}—:lu—wﬁmw < 4(:361\/F(%) / Evr(F°, QSg).
Here F2° is considered as a subspace of £, Choosing r == 2 + log{m/n}
vields the assertion. m

REMARK 1.8. This estimate is essentially sharp in many cases. In fact,
we have the obvious upper estimate

» - P
vi(F? Q8,) £ G%;iqd(F ,G).
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Here F?, F? indicates that F' is considered as a subspace of £}, £7, respec-

tively. Since the inclusion £7" C &t isa contraction, we clearly have

f d(F?,G) < |lid: FP — F||.
GCL,
In particular, for n > gm?/?, we get

ml/a-1/p

CO\/ﬁ

Hence the estimate is sharp up to the factor /p and the norm of the identity
map id : £} — £7 is nearly attained on a random n-dimensional stibspace of
£7. In measure terminology, we see that V (p, g, 5, 5) is attained for discrete
measures ¢ = v on R* where the points are random projections A%(e;),
i=1,...,n¥? and the weights are all equal.

In the case n < cgm?'9, the estimate for p = co is sharp. In fact according
to Proposition 1.7 a random n-dimensional subspace Fo° 7 satishies

1 7
i/ n . Fe0 S < FOO-:E'
eV 1+ In(m/n) ~ %) !
o m ——
< d(F*,€3) < co 1 +In{m/n)

For a proof of the last inequality we refer to the recent paper of Guédon [Guel.

< Bvr(F?,Q5,) < Efid : FP — FU < m/s4/7,

Now, we give the proof of Theorem 0.1.
PROPOSITION 1.9. Let 1 < p,¢ < oo and n € N, Then

nliz—1/p ifl1<g<2<p< oo,
sup W(F1 Sq) ™epq n(q/2)(1/q-1/;a) 'l'f 2 S q —<— P <,
FClp, dim F=n 1 else

where cpg only depends on p, q.

Proof. Since for 1 < ¢ < 2 subspaces of L, have uniformly bounded vol-
wme ratio (with respect to £g, see [PSc]), for any finite-dimensional Banach
space F we have

VI'(F, SQ‘) < VI(F7£2) < e vr(F‘i St]):

for some absolute constant ¢g. Thus, we can assume 2 < ¢ < oc. As recalled
earlier the subspaces of L, also have bounded volume ratio with respect to
ellipsoids for 1 € p € 2. Hence for all F C Ly,

1 < vr(F, Sq) < vr(F, £2) < co.

Thus, we can also assume 2 < p < cc. The case ¢ = 2 is well known. In
fact, by D. Lewis [L], vi(F,£3) < d(F,£5) < n*/?=1/? with equality up to a
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constant for F' = £3. If 2 < p < ¢ < o0, we deduce from inequality (1.3) and
Lemma 1.5 that for all v : L, — £y,

Vv {v) < vg (v).

Lemma 1.3 implies

sup vr(F, S,;) < cp/g.
FeL, ( q) 0va

In the case 2 < ¢ < p < oo, we deduce from Lemma 1.5 and (1.3) for all
v Ly — by,

.\/ﬁtl}n ('U) S nl/ZWQ/(zp)Vq, ('U).
By Lemmas 1.3 and 1.5, we deduce that

sup VI‘(F, Sq) < con(‘i’/z)(l/q_lfp)_
FCLy,dim F=n

The lower estimate is given by Proposition 1.7 by choosing m = n¥/2 if
n < ¢. Note that for n > g the choice m = (n/q)%/? even yields the slightly
better estimate

n@/DA/P=LD) < ¢ /5024 30) gup vr(F,S,). m
FCe,

We will use the following refinement of the classical distance estimates.

Lemma 1.10. Let 2 < g < co, and E C !:’Z.” an n-dimensional subspace.
Then

{1.11) max{l, %} < covr{E, £y).
For ¢ = oo,

D < Ow(E ¢

T Tnimyn) = (B &)

Moreover, for all 2 < g < oo,

nt/2=Ye < o /min (B, £).

Proof. Let u : £ - [ be a contraction such that w™" exists. Let
Li B s £ be the inclusion map and j : £5 — £33 the identity map. Then
by a well known application of Khinchin’s inequality :

Ou) < L) £ Grolu) = Gmg(§7 ) < Gl = gm'/a.
Hence, we deduce from (1.6) and (1.8) that

/g .
v (u) < dep(u) < 401@ < 4£m——.

v =
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w~ 1), this implies
. J/n
E.f)= inf wp{ut) > ———.
(B be) = L el ) 2 g i

The case g = oo is an immediate consequence of Gluskin's inequality (for
a short proof see [BaP]). Indeed, for any comtraction w : £§ — E and the
canonical embedding ¢: E ~ £, we have

Vv () = VR, (i) < coy/ 1+ In(m/n) |l
< cpy/1 +1n(m/n).

For the last estimate, we deduce from ma(id : £ — £5') < +/m and
Meyer-Pajor’s inequality v, (id : £5* — £7') < con/47? (see [MP}]) that for
every n-dimensional subspace E C /7",

1= wa(id) < v ({id : £5" — &) | 5 )vn ((id : £ — £3°)|5)
(id)

Since for an isomorphism, we have 1 = v (14}vn

< Conl/q—l/Z (E ¢ )Wz

< conlfq"l/zw/m/nvr(E, L) m
It is also well known that the inequality (1.11) is sharp.

LEMMA 1.11. There exist &8 > 0 and C > 0 such that for 2 < p < oo and
Spm#P < n < (gpe‘?”)m there exists an n-dimensgional subspace B C £
such thal

‘\/_

T

d(E, £5) < O\/”mlfp

Form < §pm?/P and m > P, there exists an n-dimensional subspace of £y
which is 2-isomorphic to £5.

Proof. In fact the last assertion is well known for m large enough (see for
example [FLM)]). We want to estimate the size of such m. Using the nowadays
standard technique from [GOZ2], it suffices to choose § appropriately after
proving

M
B( Y la) " > c/pas
i=1

for M > [e?]. Indeed, we have

E(% \gi|p) v =& sup

i=1 i=1,...,[e

" \gil = c1y/Infer] = 018—2\/@-([6”].)1/3”.

For an arbitrary M > [e”], we choose » € N such that re? < M < (r +1)eP.
Then Minkowski’s inequality implies
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M 1/p LS Gl p/oy1/p
E(glgﬁ') EE(Z{ZL%'IP} )
i= J=1 i=1
r [e”]
D (Zl {IE( Zl |gz,j|p)1/p}p)1/p
i= -

2 roene 2 B ()P 2 e MY,

Define M(p) == ¢*™ and for M > M(p) consider a subspace F C EM of
dimension N = 5pM>3/? such that d(F,£)) < 2. Note that M > N mehes
the additional condition M*~2/? > §p, Then E = £, (F) is a subspace of £2!
which satisfies

d(B, Y < ot/ e,
For given n £ m, we choose M € N such that

M1-2/p < m (M +1)' 2/70
pé 2n pd

Let ! € N be such that {M <m < (I+ 1)M. Then

7 o= 18pM2P > M f—n"? > 7.

Any n-dimensional subspace G of F = £L(F) satisfies d(G, £3) < 211/2-/7,
On the other hand, we easily get % < 4n. Therefore
5Tp M
Vi L VIRMY S ey YOy .
/pmt/P S 2P MY T 05 N5}
This method breaks down if m/(2n) < M(p)'~=2/7/(ps), which yields
&p )
D —m > -
" Shp " 2P

The other possibility when this method cannot be applied is M > m, which
implies 20 < pdm*?. w

e P,

The lemnma yields the following local information.
Proprosirion 112, Let L < n < 46pe™Pm and 2 < p < ¢ < co. Then
there exists an n-dimensional subspace B C {30 such that

L/v 4 q < 1/p~l/q
G\/"ml/ff min{/pm'/?, vn} < infve(FY, E) < inf d(F9, E) < Cm
where the infimum is taken over all n-dimensional subspaces F? in £ and
C' is an absolute constant.

Proof. According to Lemma 1.11 let £ C Z;* be the n-dimensional space
with minimal distance to the Hilbert space. Clearly, for any n-dimensional
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subspace F4, by Lemmas 1.10 and 1.11 we get

VA < Cvr(FY, £) < Cve(F?, B)vi(E, £2)
Jam
< Cvr(F9, E)d(E, {3) < C* max {1, W} ve(F?, B).
This yields the assertion.
REMARK 1.13. For given n € N, the interesting value is m = nP/? o
m = (n/p)P/?, where we get

nl/2—p/240) <

pL/2-p/20) < v/ jof d(E,F) resp. d(E, F).
cip

p!’/ 2q) I"Cf’”
Moreover, according to [BLM] for any n-dimensional subspace & C Ly, there
is a 2-isomorphic copy in £, M(n) = ¢;nP/(1 4 Inn}®. Hence

Flél;f#l d(E, F) < M(n)t/?-1/4.

By Proposition 1.12 for m = M(n) this yields
nt/2-p/(20)
Clpy/( lnn)3fq =

In the sequel, we will consider quotient spaces of £,. We start with the
canonical example.

ExaMpLE 1.14. Let 2 < g € p € oco. Then
—1 . ) n 1/g=1/p
V2] (meynt/e /pgjgélgqu(ﬁg,X)SVI(EP,EZ;)Sn/q /,

Proof. According to [GJ, Proposition 3.3(ii}},
Vnua(v) < inf vr(ﬂg,X}W (v)

sup inf d{E,F) < {e,ln n)3 /P a1 /2Pl (30),

EcL, Foeftm

for all v: £3 — £§. Since the identity map obviously satisfies 1 1(w) < n,
the absertlon follows by standard estimates of the unit balls: vol (B3] nylin >
2n~ 1P and /n vol( BR)}Y/™ < v/2we. The upper estimate is obvious. w

Now, we determine V(p,q, @, @).

ProprosiTioN 1.15. Let 1 < p< oo and 1 < ¢ < oo. Then there exists o
constant cpg such that for alln € N,
sup vr(F, £g)
F quotient of £p, dim Fz==n
nHAmHPif 1< gq<2<p< oo,
"epq nl/q~l/p if 2< q<p <o,
1 F2<p<g<oworl<p<2
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Proof. For 1 < p < 2 quotient spaces of £, have uniformly bounded
volume ratio (with respect to £§) because F* has type 2 (see [PSc]), hence
for all 1 < g < o0,

1< vi(F by) < vr(F 63) < coa/7
In particular, for 1 < ¢ <2 < p a standard distance estimate [L] implies
sup{vr(F, £y) | F' quotient of £,} ~, sup{vr(F, £s) | F quotient of £,}
< sup{d(F, £3) | F quotient of £,}
<2,
The lower estimate is obtained for F' = £7 (see Example 1.14).
For the following, we consider the case 2 < p,g. Let I’ be a quotient

space of £, with quotient map ¢g : £, — F. For an operator v : ' — £, we
deduce from Lemuma 1.2 that

vol{vgr (Be, )\ ™
(112) \/.ﬁ'vn(w) = \/H(W— § ﬂ'pr('Uq_F‘) S ’JTpt (?))
Let p < ¢. Then the inequality mpy (v) < 7y (v) implies, by [GJ, Theorem
3.7(ii)],
Vl‘(F, *ﬂq) S

re/2 sup Vnua(v) £ sup  vnua(v)

mar(v)Sl T (0} <1
< Wmef2ve(F, b)) = \/we/2.

In the case 2 < g < p, we recall the following inequality from [CAR,
Lernma, 1]:

mp () < (e (1)) 2/ g ().

Using a well known distance estimate for quotients of £, (see e.g. [PS¢]) and
the estimate for the l-summing norm [GO1], we obtain

wopr (i) < AP, ) (idgg) < m/2Y2 /2032 < 2nt
Combining these two estimates yields
My (0) < o/1/2n Y P (v).
In view of (1.12) and [GJ, Theorem 3.7(ii)], we obtain

Vr(Fby) < \7el3 sup Vava(v) < BmvEnt/amie,
Ty (v)<1

The lower estimate is an immediate consequence of Example 1.14. m

The next lemma was observed in [GJ, Remark 3.11.1] but it also follows
from Lemma 1.3:
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LEMMA 1.16. Let 1 < g < oo and @ be an n-dimensional quotient space

of Ly. Then
vr(Q, Sq) < coy/max(q,q).

COROLLARY 1.17. Let 1 < p < co and 1 £ ¢ < oo, Then there exists o
constant cpy such that for alln € N,
sup vr(F, Sq)
F guotient of £, dim F=n
pt/=te 4f 1< g <2< p<oo,
o 4 RHITHP if 2<g<p Lo,
1 if 2<p<g<ooor l<p<2

Proof. As already observed in the introduction, if 1 £ ¢ £ 2 then L,
has cotype 2 and therefore for any Banach space F,

vr(F, 8,) < vr(F,£) < cove(F,{y) < cod(F, £3).

We also recall that for 1 < p < 2 quotient spaces F of £, have bounded
volume ratio, since £, is of type 2, hence

1< vr{F,4) < co\/1_97.

For 2 < p < oo, the standard distance estimate d(F,£}) < nl/#-4r
yields the upper estimate. The lower estimate is obtained for F' = £} (see
Example 1.14). Now, let 2 < ¢ < co. The lower estimate is obtained for F' =
£y using Example 1.14. The upper estimate follows from Proposition 1.15
and Lemma 1.16 upon using

vr(F,Sq) < sup

¢ n-dimensional quotient of £

vr(@, Sg) vi(F, £y) < cyvr(F,l,).

We finish the investigation of V(p, ¢, -, ) by proving the following propo-
sition.

PropPOSITION 1.18. Let L < p < oo and 1 < g < co. Then there ewists o
constant ¢y such that for alln € N,

1 if 1<p<?
sup{ve(F, £y) | F CLp} ~e,, {711/2——1/1:: z{c 1 <i:; < 0231 2< p < oo,

Proof Let F be an n-dimensional subspace of Ly,. Then
VI(F, boo) < vI{F, Ly} < vr(F, L) < d(F, {3).

Since for 1 < p < 2 the spaces L, have cotype 2, the volume ratio is
bounded. This yields the upper estimate for 1 < p < 2. The upper estimate
for 2 < p < oo follows from the standard distance estimate [L]. The lower
estimate will be proved in the next section (see Corollary 2.15). n
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To end this section, we apply the results from Bourgain, Lindenstrauss

and Milman {BLM] to estimate the volume ratio of quotients of L, with
respect to £7.

PROPOSITION 1.19. Let 1 < p < oo and /p + 1/9 = 1. Every n-
dimensional quotient space I of L, satisfies
. ", - 3/ 1 2f 2 < » < oo,
VI(F) fp) < G([))(l y lnn') {nl/z-—l/p' Z_f 1< p <2,

where c(p) only depends on p.

Proof, Cousidering the dual space F* C Ly, we can apply the results
of [BLM] for € = 1. Hence, we can assume that F is a quotient of £, where

m < e(p) {np/?(l +lnn) i 1<p<2,
= n(l+Inn)d if 2 < p < oo.

Let V' : £5' — R™ be the corresponding quotient map and z; = V(e;) the
image of the ith unit vector. Using the volume formula for quotient spaces
of £, [GJ, Theorem 0.1], we get

2 0 NS
e e e 1/n 1/ N,
ned min(p’, n) vol(Bp) /" < vol(By) n( % det(z;)ierl? )

car ="

BRNEVCES

< vol(BS)”“(n) supidet(ccé)iegll/”
I

< (em/n)M* vol{ B2)YM™ sup [det(zs )icr | ™
r

But for the subset I = {41,...,%,} where the supremum is attained, the
corresponding inclusion map ¢; Hy — E;,", ej — &, i a contraction, hence
VAVI(B;) C Bp and

vol(Ver(Bp)) = |det(s; Jier| vol(By).
The estimates for s imply the assertion. w
Rivarg 1.20. In the case p == oo, this result was pointed out to the

second antthor by K. Ball, It is an open problem whether the logarithmic
factor can be removed.

2. Uniform estimates for volume ratios. In this part, we are in-
terested in volume estimates for the finite-dimensional slices of an operator
T: X ~ Y between arbitrary Banach spaces. For this, let us introduce the
following volume ratio niumber with respect to a fixed Banach space Z:

vol(T(Bg)) ) 1/n

vry (1, Z) = sup inf (vol(u(Bz))
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where the supremum ranges over all n-dimensional subspaces B C X, F C Y
such that T(E) C F and the infimum ranges over all contractions % : Z — F.
By convention, we set v, (T, 2) =0 if no such spaces E and I! exist.

REMARK 2.1. If X is n-dimensional, T’ : X — Y is of rank n and T(X)
=Y then

(2.1) VI‘,-,,(T, Z}y = VI‘(Y, Z)'UTL(T)'
In the case Z = £p, 1 < p < o0, we deduce from [GJ, Theorem 3.7(ii)] that

/2 g (vT)
Sy (T8) € sup ———7x— S
(22) e (T.4) o;eu:yriwg e (V)

The next lemma shows that the sequence (vrn (T, £p))nen has reasonable
monotonicity properties.

min(p’, n)' Vi {1, &)

LEMMA 2.2. Let1<p<oo,l<k<nandT: X — Y a linear operator.
Then

(2.3) V(T £) < Con/P' {n/ k)2 vrp (T, £p).-
In particular,

;::L/z:;’/z < (Hvr:, (T, £p) )

3(n—k)/(2n) K Lk
<o () (TTves(r))
J

|

Proof Let 1 <k < n. Without loss of generality we assume dim X =
dimY == rank T = n. Let w : £f — X be a Pisier map (PS¢, Corollary 7.15]
satisfying

sup k max(v (), v (u™)) £ Cin.
k
According to Remark 2.1 there is an operator v : ¥ - £ such that (w) =
\/n and
vin (T, 4p) < covn(vT).

If {a;{vTu)} denote the approximation numbers of vT'u, we recall from (1.2)
that

k(0Tu)* H aj(vTu).

In particular, the monotonicity of the singular numbers implies vy, (V') <

vg(vTw). Therefore, from (2.2) we cbtain
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v (T, 4p) < cm;n(vTuu"l) < coChrun(vTw) < cpCrug (vTu)

< CUC'l sup v (0T g,)

P ERCX, dim B, =k

< G2 v (T, 6,) Y _ ez s (P 3/2
= G 'L]i) kid; Cp \/E = ol /P -k— vrk(T,fp).

So, we proved the first inequality with Cp = cqC2.

To prove the second chain of inequalities, it is sufficient to observe that
(2.3) implies that for all 1 < & < 4,

3/2
viy (T, )" < (C H( ) vy (T, £p)

o3 2 kJ
< {Cav/p' ¥ kS.’c/Q HVI}, T.4,)

It is standard to derive from this the formula for the products. =
The next elementary lemrma is crucial for the following.

Lemma 2.8 Let 1 < k< n, T:43 — £ and F C £ with dm E = k.
Then

Ua{T) € ve(T| &) Mvp_p(T)mR)/m

Proof. As usual, we denote by a;(T) the singular numbers of T, and
set 7 = (ay(T))}=,. Since T acts on £}, there are unitaries u, o such that
T = uD;o, with D, the corresponding diagonal operator. Hence, we get

=™
Jj=1

Using the orthogonal projection Pg on B, it is easy to derive
ﬂ‘?‘.|.nmk (T) S (J:J’( 0 )

Indeed, for R : K — £ of vank < § the rank of TPg. + RPg is less than
n—k+ 4. Hence

)< mf |~ TPpe — RPg| = irﬁf ITPp — RPg|l < a;(T|g).

U (TY" = |det(T

oot (1)
Now, let H = o~ '(span{ey, ..., en-p}) C €. Then a;(T) = a;(T|g) for all
i=1,...,n— k. Therefore, we obtain

n

n n—k
(L~ H CJ._:;(T) = H CI;(T‘H) H
FEY) J=1

n—k k
(@) < [] o5 (@)e) [] 2(T15)
jen— kel j=1 i=1

= Ve k(T )P0k (T} 8)% < Vnei (T Pk (T| )" m
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LeMMA 2.4, Let 1 < k <n e N, X and Y be n-dimensional Banach
spaces and T : X — Y be a linear operator. For every k-dimensionol sub-
space B C X,

on(T) < Cyvp (T ) Mon i (1),
Here C4 denotes an absolute constant.

Proof. Let uy : £f — X and uy : £§ — Y be the Pisier maps {PSc]
such that for w € {ux,uyx', vy, up'}

sup kvg(w) € Cyn.
k
Define H = u}l (E). We apply Lerama 2.3 to the operator u;}lTu x to obtain

U (T) = vy (uyu;lTuxu_}l) e un(uy)'vn(ug}lTux)Un(u;ci)

< O (uy Tux |7 ) on—x (up Tux ) 8™

< CHup(ugh)or (T 2 () ™ (Unm i (05 Yo s (T o () ) PR/

2k/n 2(n—k)/n
< C’f(%) ve(T|2)*/" (n f k) v (TP

< Oil4vk(T|E)k/nUn_k(T)(n_k)/n_ .

REMARK 2.5. Using Santald’s inequality and its inverse together with
Fact 1.1, we obtain for every k-dimensional quetient space F of ¥ with
quotient map gg: Y — 5,

vin (T) < Cavry(gel)*/ ™ v i (T) 47",

COROLLARY 2.6. Let 1 <k <nand T: X — Y be a linear aperator.
Then

VIp (T, Ep) < 05\/157“"11—&(11, gp)(n-—k)/n

X sup inf
BCX,dim E=n BCE, dim y=k

vip{T k/m

Ek b1 ‘l?p)

Here C5 > 0 15 an obsolute constant.

Proof. We can assume dim X = dimY = n and T is of rank n. Ac-
cording to Remark 2.1 (see (2.2)) there exigts an operator v: Y — £} with
mpt (V) € 4/n such that

vin (T, 4p) < covn (vT).

Let E,, C F be an m-dimensional subspace. Then (2.2) implies

?‘}m(UTLEm) S \/Evrm (TLEm ! Ep) W%) S \/17 \j % Vrm'(Tl'Em L EP) '
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In particudar,

U (0T) < \/}7 %vrm(T, £p).

Now, let By C E be an arbitrary subspace of dimension k. Then from
Lemma 2.4 we deduce that

vin (1, 4p) € covn (vT') < 0(36'4'(Jk(’UT.-,Ek)"“/”Un_k(UT)(n~k)/n

_/p\ Rf(2m) (n—k}/{2n)
. . T
S "Uc’fi\/f—”('];) Vrk(TLEk,fp)k/"c n )

n—k
X VI (T, ) (nR)/7
S C(;Gfg \/I;; 2 VI (TLE,c )k/” vrn_k(T, fp)(n_k)/n. ]
REMARK 2.7. If we replace the p’-summing norm by the p'-nuclear norm,
we obtain
vin (T, Sp)

< CVp Vi (T, 5,) (PR m sup inf

k
" Vrk(T‘Ek:Sp) /n?
BECX,dim E=n B,CE,dim Ey=k

where C' is an absolute constant and vr, (T, S,) = inf v, (T, Z), with the
infimm taken over all n-dimensional subspaces Z of Ly.

We will frequently use the following consequence of the estimates for
Gelfand nwnbers.

Lemma 2.8, Let 1 < j < L. Then there exists a (j — 1)-codimensionel
subspace G C £5 such that

1+ In(L/5)

mi(id| g G — £5) < CsL —

Here Cy s an absolute constant,

Proof. According to the estimates for the Gelfand numbers of the iden-
tity map fig ¢ 40 - £f (see [SC]), there exists a (j — 1)-codimensional
subspace Gy ¢ 64 such that

L+In(L/5)

Hi(:]. |(,'1 : Gl b ff{ ]

<0

Let G be the same space congidered as a subspace of £, Then

mid|g: G — ) S m(id: &5 - &) lid e, : G1 — &
< G E.;'“_h;_(ﬂﬂ_) .
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The following lemma is a refinement of a correspondiug result of Figiel
and Johnson [FJ].

LemMMA 2.9. Tet 1 <m < n end Y be an n-dimensional Banach space.
Then there is a subspace Fn, C YV of dimension m and o controction u
5 — B, such that

n \*? J o
-1 T .
m ™) < 07("{:, - m) L+1n n - m\/”’

where Cr > 0 45 an absolule constant.

Proof. Let my = [(n—m)/2]. According to [ST], there exists a subspace
F C Y with dim F' = n — m, and operators @ : £57™ — F and b : F —
£ guch that ||aj] € 1 and

2 2
b () sso(75)
ma n —1m

and ba = id : £ - 2™ Define L =n—mg < noand §~1 =
(n—m)—mq = (n—m)/2. According to Lemma 2.8, there exists a subspace
G C £27™ of codimension 7 — 1 with the corresponding estimate for the 1-
surmming norm. Let G be the same space considered as a subspace of £,
Then By, = b5 (@) is of dimension m and the inverse of a : Gy — By, is
the restriction by : By, — G of b, We set u = alg, and observe u™" = by.
This map satisfies

. 2
mmﬂSmmmmemws%nl+wM”w(TL)
g n—m

5/2 -
) 141n .
n—mm

< 24060\/7_1(

n~—m

As an immediate consequence, we see that Bourgain’s estimate on £°
copies in large subspaces of £ canuot essentially be improved. Bourgain
iBo] proved that for each T > 0, every n-dimensional subspace E of LY,
with n = N, contains a k-dimensional subspace F, (1 + 7)-isomorphic to

% ) 5_ 8¢
Eoo for k& 2 cr m‘j‘\/’ﬁ
COROLLARY 2.10. For every 0 < & < 1 and n-dimensional Banach

space X, there exists a [dn]-dimensional subspace E such that for every
k-dimensional subspace F ¢ E,

k < O(8)/nd(F,e8).
Here

C(8) € Cr(1 ~8)~5/2/1 —In(1 — ).

icm
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Proof. Indeed, let m = [én], E = By, and FC E. T : 65 — Fisan
isomorphism, we get
k<o (ides ) = [T - |17 fea(id) < T - 1772 ren ()

, 5/2 -
,’F"lj(—————wn ) 14 In —" N/

<7
n—m n—m

Taking the infimum over all isomorphisms, we deduce the assertion together
with the required estimate of C(§). =

COROLLARY 2.11. Let ¥ be an n-dimensional Bonach space. For 1 <
m < n there exists an me-dimensional subspace B, of Y such that for all
k-dimensional subspaces 1 C By with 1 <k < m,

B/2
(R < O n n n
vi{F fy) < 07(??’_?”) \/k (1-§-lnn_m) VI(F, L)

Here C7 > 0 4s the constent of Lemma 2.9.

Proof Let E, C ¥ be an m-dimensional space obtained from Lem-
ma 2.9, Let F < By, be of dimension. & and H = w”(F). Since u(By) C
Bp, we obtain from [Ba, GJ, Theorem 3.7(ii)], i.e. (2.2) for p = oo, and
Lemma 2.9,

0=
VI‘CF, [}2) < 'Uk(?.l,"l) < vr(F} Eoo)ir_l_(_u'__l

vk
) 5/2 n 11
< 6'7( ) 4/1+1n \/;VI‘(F,I‘:’DO). "
- m n—my k

In the case of £,-spaces, 2 < p < oo, this technique implies the following
strengthening of Theorem 0.4.

PROPOSITION 2.12. There exists an absolute constant Cg > 0 such thot
Jor all 2 < p < oo
(a) Let 1 & k < m < n <L and B be an n-dimensional subspace of

fif,‘. There omists o subspace By, © I of dimension m such that for every
k-dimensgtonol subspace B C By,

T.AX { ’]_1 kl - ]./;;L | /25 “:;\"[L }

N/
< O/ 2 7 i+ In ve(F, £ ).
=k \n—-m n— rhee

For p = oo,

RN T 2 N o
AN —- 141 vi{F, {).
\/1+111(L/k) <G k(n~m) T T ( )
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(b) There exists a (j — 1)-codimensional subspace Gy C 8 such that for
every k-dimensional subspace F' C Gy,

vk L ——
1-1/pr—-1/2 Tl L/ vr(F
max{l,k L ,——————\/ﬁle} < 8\/__\/5.\/1 FIn(L/5) ve(F, o)
For p = oo,
£ /T (L/7) vr(F, Ley).
1+ 1n( L/k \/_\/

ReEMARK 2.13. Observe that for any k-dimensional subspace ' C {’;;,
VI(F, o) < 7p(idp) < Ap(F) < min{/pd(F, £5), k1> /7).

Here v,(idg) is the p-factorable norm of idy, and A\ (F) = inf{| P[]}, with
the infimum taken over all projections of £ onto F, is the relative projection
constant of F'. Indeed, the first estimate follows from vr(£,, £x) < 1. Clearly,
the yy-norm can be estimated by the relative projection constant. Using
Maurey’s factorization theorem [Mau] together with the fact that the type
2 constant of £, is less than ,/p, we see that the relative projection constant
can be estimated by the distance to the Hilbert space of F. The estimate of
the other term in the minimum was proved by D. Lewis [L].

Proof (of Proposition 2.12). (a) Indeed, let B, C B be the space ob-
tained in Lemma 2.9. Then according to Lernma 1.10 for all F ¢ B, of
dimension %,

ax {1 kl—l/prle \/E
H b3 .\/Z—)L]'/p

} < covi(F\£a)

5/2
< ol ( i ) \/E (1 +1n -————?—E-w>
L) k 7 =

X VI{F) £og ),

where the last inequality is obtained in Corollary 2.11. For the case p =
oo, we use the corresponding lower bound for the classical volume from
Lemma 1.10.

In the proof of (b) we apply Lemma 2.8 directly. There exists a (f — 1)-
codimensional subspace G C £% such that

md|e: ¢ — ) < C’GLMmj(_—Ii/L).

For any k-dimensional subspace F C G, we deduce from Lemma 1.10 as in
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the proof of Corollary 2.11 that

max < 1 lcl""lh'L“‘l/r’ vk
! \/"Ll/p

} Co VI‘(F Ez) < CQ’Uk(ldF F— EL)
m{idp : F — £E)
vk
L
< Vr(ﬂfoo)“\/':?v 1+ In(L/3}.

The proof in the case p = oo is again the same using the appropriate lower
bound from Lemina 1.10 for the classical volume ratio. w

< cg vi(F foo)

RemaRK 2.14. To illustrate this proposition, we consider the case p = co
and j = L~ L/ln L, m = L/In L. Then there exists an m-dimensional sub-
space B C £% (and in fact a subspace chosen at random has this property)
such that for all k-dimengsional subspaces F C E,

k< eov/L(1 4 InL)vi(F, £,).

Hence a k-dimnensional subspace F C E can be 2-complemented in 2L or
2-isomorphic to the Hilbert space only for & < 4/L(1 + In L). This should be
compared with Bourgain’s [Bo| result on the e uclstence of 2-1somorph1c copies
of £ in large subspaces of £, mentioned before the proof of Corollary 2.10.

Proof of Theorern 0.4. Let 1 < k < m < L. If m < L/2 we consider
an n = 2m-dimensional subspace in which we find according to Propo-
sition 2.12(a) an m-dimensional subspace such that for all k-dimensional
subspaces F,

ma.x{l,k‘"‘lpr“l/z \/_‘ﬁ/ }<805\/ m/kve(F, £y).

Using k = (k= 1/pL-Y2)(L2RMY) < 8Cgvr(F, £oo )/ LMP (LK) 271/P,
we deduce the assertion. For m > 2n, we choose a § = n — m-codimensional
subspace according to (D) and deduce the agsertion. The proof for p = oo is
similar. w

Cononrary 2.15. For 2 < p < oo and 0 < § < 1 there exists o constant
C(6) such that for all I € N there exists a k = [0 L]-dimensional subspace E
of & such that

BYAHD < CB)vi(E, Los) < C(ERMPHP,

Sers)

Here

Q8) < Cy (5"1/9 /173

and Cy > 0 is an absolute constant.
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Proof. The upper estimate is clear, since by D. Lewis [l any k-dimen-
sional subspace E C L, satisfies
V(B Loo) < vi(B, &) < (B, 43) < kAL,
Let k=m = [6L]. If§ < 1/2, we set n = 2m and apply Proposition 2.12(a)
to an arbitrary 2m-dimensional subspace E'. Then we get a k-dimensional
subspace E C E’ such that
}2=10e < JTTE Ca2P Vil B, Loo) = 8Cs6™ /2 v(F) bc).

For § > 1/2, weset j— 1= L—m=L—[dL]. Then the space B = Gy from
Proposition 2.12(b) has dimension k = [§L] = L/2 and satisfios

Ki2-ie < /LK 08.\/_;.’-*\/.,_71/1 +In(L/f) v (B, feo)
AV

< 2Cs/(1 = 8)~1(1 = In(1 = 8)) vr (&, Lo ). m
REMARK 2.16. The corollary yields a generalization of Sobezyk’s estimate
of the relative projection constant for subspaces of ET‘}. In fact Sobezyk [So)
proved that the eigenspace E; C !&ff of the normalized Walsh 2 x 2b-matrix
satisfies Ap(B;) > ¢(2')/27/?. This shows that D. Lewis’ upper estimate
Ap(F) < kY2-3/7 for arbitrary k-dimensional subspaces I C £, cannot be
improved. Using

_C';':(l'g')‘k1/2"*1/p S Vr(Fg Eo&:}) S VI‘(_F‘J EP) S )\p(F) S kl/z"'lf}’l

our argument yields in addition examples of maximal relative projection
inside ££ of dimension & = [§L] for any 0 <4 < 1.

Now, we are able to prove the main formula in this section

PROPOSITION 2.17. Let 1 <k <n and T : X — Y be a linear operator.
Themn

i)

3k/n
I ) VI (T, ‘em)k/’"’ Vrnmk(T, ﬂz)(ﬂw”k)/frt'

n—m

vin (T, 42) £ 010(

Here Cp > 0 denotes an absoluie constand.

Proof There is no loss of generality to assume dim X == dimY = u
and T of rank n. Let m = k and F' = E, C ¥ be a k-dimensional space
satisfying the assertion of Corollary 2.11. Furthermore lot B == T F) and
Ter : E — F the astriction of T. Then we get

Vrk(TIE s fz) = VI’(F, £2)v;¢,(TEF)

5/2
n mn n
=C n
7(n—k) \/k(Hh‘nmk

) Ve o) (T p)

icm
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3
n n
< -
< 07(71 — k) \/;vrk(T,L’w).

Now apply Corollary 2.6 for » = 2 together with the estimate (n/R)km™ < 1.5
to get -

Vr’rL(Ta P'Z) é Oﬁ\/‘zvr’rnwk(T; 'EZ)(n_k}/k sup inf Vrk(T‘Ek,ﬁg)k/n
E B.,CE

< U3 vrg (T, £) 0k gy ( n

3k/n
k) V2vrR(T, £ ). m
RuMARK 2.18. For many Banach spaces (see below), we have good con-
trol of the least constant ¢f, §) satisfying
VI|(1-6)n (idg, &) < e(E,8§) vr(E).
In this case, we get

ve(E) < o(B, 5 sup
FCE, dim F=[6n]

Indeed, a g‘oc.l)fl control for ¢(E,§) is available for £ = £7. Moreover, if we
assume that Johw's [T map w : € — E satisfies
V[(1w 6] (w=t) < (B, 8)v, (u™t) = (B, §) vr(E),
then for all [(1 - §)n]-dimensional subspaces F' C E, we have
vi{ F) < vjgegyn) (v < (B, 8) vi(E).

Estimates for ¢(F,d) arc known in the following cases:

vi(F, L)

1. If F has enough symmetries, then the ellipsoid of maximal volume is
a multiple of the f-cllipsoid (see [PSc|) and therefore
Vi) < () < KB ™) = K(E)-E-(“—)
U
< K (B (u™).
Heve £(u)? == || 327 giule)|? for independent normalized gaussian vari-
ables is the well known f-norm. Hence o2, 8) < K(E)(1 - §)~4/2.
2. A similar arguinent applies for spaces with [-symmetric basis ey, ...

cony . Then
1
*
E &;
LI

Sinco this space has enough symmetries, the John map is a multiple of the
identity, The volume estimate of the f-norm is replaced by a corresponding
one for the Rademacher average [CP] {see (1.6)). This yields the estimate
e(B,8) < ¢o(1— 8)~1/2(L = log(1 — 6))*

Theorem 0.2 will be deduced from the following

== 1.
bl




icm

178 Y. Gordon and M. Junge

COROLLARY 2.10. Let o € R. Then there exists a constant C(a) such
that for alln € N and linear operators T : X — Y,

n®ven (T, 3) < Cla) sup k% vig(T, Loo).
k<n/2

Proof. Using Lemma 2.2 (see (2.3)), we get

S = sap k% vr (T, £a) < o sup max((25)%, (2k + 1)*) vegy (T, £2)
k<n <n/2

< epey sup max((2k)%, (2k + 1)%) vrp (T, &) Y2y, I‘,ﬁm)'/"‘
k<n/2

o v [+
<ecpgcy  sup ma,x((2k) 7(2k+1) )31/2

/ ko (Sup fe VI'A;(T, _em))l/g‘
1<k<n 2

k<n/2
If >0, we can put C{a) =c2e?9®. For <0, we can choose C{a)=cici. u
The cagse T =idg and = 0 imaplies Theorer 0.2:

THEOREM 2.20. There ewists an absolute constant C > 0 such that for
all n-dimensional Banach spaces E,

vi(E, ) < C sup
FPCE,dim Fgn/2

Ve F, o).

CorOLLARY 2.21. Letn e N, m = [n/4] and T : X — ¥ be a lincor
operator. Then

Vn (T, 0a) < co(ﬁvrj (T, Em))l/
F=1

Proof. Let 2 < n < 28 Using Lemma 2.2, we can assume n = 2%,
Inductively, we obtain

Va (T, 2) £ Cvry (T 4a) 2 vry o (T, o) M2
< CCY 2 vry g (T, o) vep (T o) vr o (T o) VP 5

. k ‘
< o H VI, o (T’ fm)1/20 Vl‘l(T, 8@)1/?1"

i=l1
For j < k and n/2/t < 1 < n/2%, we deduce from Lerama 2.2 that
V128 (T £oo) < co v (T doo).
On the other hand, there are n/2T! such numbers I, hence
2.2 /n
V26 (T doo) < cp vy (T Eoo)) .
n /2041 CUgn 20
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Recollecting this, we obtain
, 2/n
vr, (T, 4y) < €7 cn( H v (T, doe )
1<i<n /2
Now, we give the proof of Theorem 0.3,

PROPOSITION 2.22. Let o € R and T : X — Y be a linear operator.
Then the following assertions are cquivalent,

(1) There erists o constont ¢y > 0 such that for all n € N,
v (T, £g) < cyn®.

> 0 such that for elln e N,

VI (T o) < con™

(iit} There ewists 0 < 6 < 1 and o constant cg such that for alln & N and
n-dimensional subspaccs B C X, there exists o subspace Es of dimension
k> dn with

(1) There cxists o constant cg

v (T gy, f2) < cgn®™.

(iv) There exists 0 < 6 < 1 and a constant cq such that for alln € N and
n-dimengional subspaces B < X, there exists o subspace Hs of dimension
k> &n with

g

Proof. The implications (1)=(il), (i)=-(iii), (ili)=
obvious.

Let us show (ili)=>(1). We can assume that T is of finite rank by consid-
ering all the restrictions to large finite-dimensional subspaces. Then

8 = sup k™% vig (T, £2)
k

Te oo) <c:4n

(iv) and (ii)=(iv) are

is a finite number and there exists n € N and an n-dimensional subspace
E ¢ X such that

f’J 2'” Vl‘n( iy 62)

ma~dlmvne.101ul subspace B C E such that

vee(Tp, fa) S can®.

By (iii) there exists a k =

Corollary 2.6 yields :
S < 2 v (T, £a) < Cn " vry i (T m, £2) " 0/" v (T g, €)%
< On‘_.,ﬂ,(n . ]ﬂ).'.x((rl;--k:)/n)S('nmk)/nn(xn/kcgfﬂr' .

Hence, we deduce from n/k < -1 that
n — k) a(n—hk)/k

g < 06"1(:2(
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In the case o > 0, we have

((n - k)/m)r=B/k < 1,

In the case o < 0, we deduce

s e 11

(’ﬂ- _ k)a(n-k)/k _ ( n )_-,“{‘—""Tc'" e C{"'("?."/I‘; - ‘”‘,__”f/(;;.
-——n Tk =

For (iv)=>(iii), assume E C X is of dimension n > 1 and T of rank n.
According to Corollary 2.11, there is a subspace Fy © T'(#) of dimension
> n/2 such that for all F C Fy of dimension &,

(2.4)

vi(F, £s) < cov/n/kve(F {o).

Let E; € T~Y(F) be a subspace of dimension k = dixn I > 6[n/2] » dn/4
such that

Vrk(Tlgzé s ﬂm) S C:j\n“.

Then we obtain from (2.4), for Fs = T'(Es) C Fi,
vir (T gy ba) = v (s, £2)ui(Tis ) < con/n/kvie (Fs, Loo ) va (T i)

= con/ Nk vig (T g, foo) < 28 Y em®. m

Condition (ii) will be used to construct examoples in the forthcoming
paper [GJ2].
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The Lévy continuity theorem
for nuclear groups

Ly
W. BANASZCZYK (Réds)

Abstract. Lot (¢ he an abelian topological group. The Lévy continuity theorem says
that if ¢ is an LCA group, then it has the following property (PL): a sequence of Radon
probability measures on & is weakly convergent to a Radon probability measure p if and
only if the corresponding sequence of Fourier transforms is pointwise convergent to the
Fourler transform of p. Boulicaut [Bo] proved that every nuclear locally convex space
G has the property (PL). In this paper we prove that the property (PL) is inherited by
nuclear groups, a variely of abelian topological groups containing LCA groups and nuclear
locally convex spaces, introduced in [B1].

1. Introduction. Let G be an LCA group and I the dual group. The
Bochner theorem may be formulated in the following way:

(@)  Buery continuous positive-definite function on G is the inverse Fourier
transform of a (unique) finite positive Radon measure on I'.

This theorem can be extended to inverse limits and countable direct Hm-
its of LCA groups. It was also extended to some other classes of abelian topo-
logical groups: nuclear locally convex spaces (the Minlos theorem), Hausdorff
quotient groups of such spaces (Yang [Y]), locally convex spaces over p-adic
fields (Mudrecki [M]). Trying to give a common generalization of the corre-
sponding results, the author introduced in [B1] the so-called nuclear groups,
a varicty of abelian topological groups containing LCA groups and nuclear
locally convex spaces (the definition and basic properties of nuclear groups
are given in Section b below), It was proved in [B1, (12,1)] that every nuclear
group (¢ satisfios an aualogue of (). _

The Lévy continuity theorem may be formulated in the following way:

T —————p
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