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Banach spaces in which all multilinear forms
are weakly sequentially continuous

by

JESUS M.F. CASTILLO (Badajoz), RICARDO GARCIA (Badajoz)
and RAQUEL GONZALO (Madrid)

Abstract. We solve several problems in the theory of polynomials in Banach spaces.
{i) There exist Banach spaces without the Dunford—Pettis property and without upper p-
estimates in which all multilinear forms are weakly gequentially continuous: some Lorentz
sequence spaces, their natural preduals and, most notably, the dual of Schreier’s space.
(ii) There exist Banach spaces X without the Dunford-Pettis property such that all mul-
tilinear forms on X and X™ are weakly sequentially continuous; this gives an answer
to & question of Dimant and Zalduendo [20]. (iii) The sum of two polynomialty null se-
quences need not be polynomially mull; this answers a question of Bistrdm, Jaramille and
Lindstrém. [8] and alse of Gonzdlez and Gutiérrez [23]. (iv), (v) The absolutely convex
closed luill of a pu-compact set need not be pw-compact; the projective tensor product of
two polynormially null sequences need not be a polynomially null sequence. This answers
two questions of Gonzédlez and Gutiérrez [23]. (vi) There exists a Banach space without
property (P); this answers a question of Aron, Choi and Llavena [5].

1. The setting and the problem. A homogeneous continuous polyno-
mial on a Banach space X is a mapping P of the form P(z) = A(z,..., )
where 4 : X x ... x X — R is a multilinear continuous map on X. In
contrast to the linear setting, continuous polynomials are not usually con-
tinuous with respect to the weak topology. Perhaps the simplest example is
the map || - |* on £ which is not weakly sequentially continuous since the
canonical basis is weakly null. It is an interesting open problem to charac-
terize those spaces where all continuous polynomials are weakly sequentially
continuous. OFf course, if all multilinear forms on a Banach space are weakly
sequentially continuous then all polynomials are weakly sequentially contin-
uous. We shall therefore stndy the weak sequential continuity of multilinear
forms.
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The basic examples of spaces where all multilinear forms are weakly
sequentially continuous are:

(i) Spaces with the Dunford-Pettis property; this was proved by
Ryan [36].

(ii) Tsirelson’s original space 7. This was proved by Alencar et al. {1].
Also, it is a consequence of two facts: that the space T* admits, for all p < oo,
upper p-estimates (see [1] and also [16]) and the argument {see below) in [22,
26, 27] that a space has all its polynomials weakly sequentially continuous
if it has no lower g-estimates, for ¢ > 1.

Both Ryan’s proof and the role of upper and lower estimates in poly-
nomial matters are by now rather well understood. Nevertheless, they have
remained unrelated so far. An explicit question in this direction, to the
best of our knowledge due to M. Gonzdlez, is: what do the spaces with
the Dunford-Pettis property and the spaces with upper estimates have in
common?

Let us recall some basic facts abont upper and lower estimates. Let p > 1;
the number p* is defined by p 4+ p* = pp*. A sequence {z,}, in a Banach
space X is said to be weakly p-summable (resp. weakly p-convergent o z) if
for each z* € X*, {2*(zn)}n € 4, (resp. {z*(zn — 2)}n € 4); equivalently,
for some constant C' > 0 and every finite set ay,...,a, €R, n € N,

n n N 1/p"
H E a;x i < C( E \a¢|3’ ) .
i=1 i=]

For this reason one also says that {z,}, has an upper p*-estimate. Weakly
l-summable sequences are those admitting upper oc-estimates. A space is
said to have the Wp-property ({17]) if bounded sequences admit weakly p-
convergent subsequences. Spaces with property W, are obviously reflexive.
A space X is said to have the weak-Wy-property (following [17]), or the Sps-
property (following [31]) if weakly null sequences admit weakly p-summable
subsequences. In this case we say that the space admits upper p*-estimates.

Analogously, let ¢ > 1; a sequence {z,}, in a Banach space X is said
to admit a lower g-estimate if for some constant C > 0 and every finjte set
a1, an ER, neEN,

ll ;am > O(g fa,,"q)l/q

The space X is said to have the Ty-property (following [27]) if every
normalized weakly null sequence has a subsequence with a lower g-estimate.
We shall simply say that X admits lower g-estimates. _

A space is said to have the Cp-property [11] if weakly p-summable se-
quences are norm convergent, or equivalently, if every operator £, — X
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is compact. It is not hard to see that if X has property W, then X* has
property Cq for all ¢ < p* (see [11]).

We denote by £(VX) (resp. £o(VX)) the space of continnous N-linear
(resp. N-linear syrametric) forms on X. We denote by P(X) (resp. PVX)}
the space of all polynomials (resp, N-homogenous polynomials) on X. Recall
that there is an identification between the spaces P(VX) and Li(VX) given
by the polarization formula (see e.g. [34] for details). The intersection of
those clagses with that of weakly bequentially continuous functions will be
denoted with the subscript wsc, as in Pyee(NX), Lyse(VX), ete.

Concerning operators, L(E, F) denotes the space of operators between
E and F, while W(E, F) and K(F, F) are the spaces of weakly compact and
compact operators. Following [11], we denote by Coo(E, F) the space of all
completely continucus operators from E into F.

A sequence {#,}n in a Banach space X is said to be polynomially null
(for short, P-null) if Yimp—ee P(2,) = 0 for every P € P(X). The sequence
is called Py-null if Hm, o P(z,) = 0 for every P € P(VX).

Gonzalo and Jaramillo ([26, 27]; see also [22, 39]) proved that a basis
is Pr-null if it does not admit subsequences with lower N-estimates. This
immediately gives the next result, already proved in [3, 27, 35]:

ProraosirioN 1.1. If X admits, for oll p < oo, upper p-estimaies then
all polynomials on X are weakly sequentially continuous.

Moreover, one has

ProrosiTion 1.2. Let {u;}; and {v;}; be equivalent basic sequences in
¢ Banach space X . Then {u;}; is P-null with respect to polynomials defined
on [u;] if and only if {vi}: is P-null with respect to polynomials defined
on [v].

Tt is time to introduce the classes we are going to study throughout the
paper.

DEFINITION. We will say that a Banach space X is a P-space (resp. an
M-space) it all polynomials on X (resp. all multilinear forms) are weakly
sequentially continuous, The space X is a Py-space (resp. an M y-space) if
all N-homogeneous polynomials on X (resp. all N-linear forms) are weakly
sequentially continuous. The natural identification yields that polynomials
are weakly sequentially continuous if and only if symmetric multilinear forms
are.

In [29] several classes of reflexive spaces are shown not to be P-spaces.
The reader is warned to distrust that the behavior of sequences with respect
to polynomials is more or less the same as for functionals: it is not. As a
striking example, two equivalent sequences need not be P-null at the same
time: if 7' i {3 — C(K) is an into isometry, then the sequences {Ten, O)}n
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and {(0,e,)}r in C(K) x £5 are equivalens, but the former is P-null while
the latter is not.

Let us explicitly state the main problems we have considered and the
results obtained:

Q.1. What do spaces with upper estimates and spaces with the Dunford—
Pettis property have in common?

This will be studied in Section 2. We present a seemingly new approach
to study weak sequential continuity of multilinear forms by factorization of
some classes {not ideals!) of operators. This exhibits a general framework
in which spaces with the Dunford-Pettis property and Tsireison’s space are
nothing but extremal cases. Moreover, we describe a basic strategy (modelled
upon results of Jiménez and Payd [30]) to prove that a space is an M-
space (but not to prove that a particular polynomial is weakly sequentially
continuous!).

Q.2. Do there erist other “types” of spaces where all polynomials are
weekly sequentially continuous?

The answer is affirmative. A first example can be obtained by retouch-
ing the main construction in [30]. It is the standard predual of a suitable
Lorentz sequence space. The presentation of this example is postponed un-
til Section 5. We first present a more natural example selected from the
basic catalogue of “pathological” Banach spaces: the dual of the Schreier
space. Although it has the weak Banach-Saks property [24], it can hardly
claim to admit upper p-estimates. Moreover, it was proved in [14] that the
Schreier space fails the Dunford-Pettis property. This example is discussed
in Sections 3 and 6.

And, nonetheless, answers to Q.2 admit gradations, and so they are
considered in Sections 4 and 5. Observe that one is trying to do two things
at the same time: make N-linear forms weakly sequentially continuous and
avoid upper p-estimates. The “property” of not having upper p-estimates
can be understood either in a strict sense or one can try to obtain a total
negation: there is not a single normalized sequence in the space admitting an
upper p-estimate. In Section 4 we considér the total negation for p =2 =N,
and in Section 5 we consider multilinear forms without limitation.

The examination of the standard examples shows that when it is the
Dunford-Pettis property that is responsible for being a P-space then it
appears simultaneously in X and X* (because, as we observe in passing,
there is essentially one known example of Banach space with the Dunford-
Pettis property whose dual does not have the Dunford—Pettis property: the
space (Do, £3)e,, see [37]). The situation changes when the reason behind
being a P-space is the upper p-estimates: the existence of one single sequence
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with an upper estimate in a space X, whenever X* does nct contain /y,
produces a non-weakly sequentially continuous polynomial on X~. Indeed,
if there is a normalized sequence with an upper p-estimate then there is a
non-compact operator T : £, -+ X; then the transpose operator IT™ : X* -
£y takes a weak Cauchy sequence into the usual basis of £,- and now the
conclusion follows by [29].

We shall also study duals of P-gpaces, answering the following question:

Q.3. Apart from the Dunford-Pettis case, can both X and X* be P-spaces
simultancously?

This question was asked by Dimant and Zalduendo [20] for the partic-
ular case of reflexive spaces {with the approximation property}, where it is
equivalent to asking whether P(VX) and P(¥X*) can be, simultaneously
and for all N, reflexive. Another open question formulated in [8] and [23] is:

Q.4. Is the sum (resp. temsor product) of two polynomially null sequences
also polynomially null (resp. weakly null) ¥

The first question is relevant to determining the structure of the space
of P-null sequences in a Banach space. When X is a P-space or a A-space
(a space where P-null sequences are norm null, see [9]) then the auswer is
affirmative. In [8] the authors show that the answer to Q.4 is also positive
for spaces with a certain polynomial Dunford-Pettis property. Neverthe-
less, the general answer to the two questions is negative (see Theorerq 5.5).
While studying polynomial properties of Banach spaces Aron, Choi and
Llavona (see 5], and also [28]) introduced property (P) as follows: for any
two bounded sequences {un}n and {Un}n, if limy oo (P{tn) — P(vﬂp) =0
for every polynomial P, then limy, o0 P(ttn — vn) = 0 for all polynomials P.
They pose the following question:

Q.5. Does there exist o space which fails property (P)#

In Section 5 we present the first example of a Banach space failing prop-
erty (P).

2. When are all multilinear forms weakly sequentially contin-
wous? We begin with bilinear forms and then proceed inductively. Let B :
X %X — K be a bilinear form on X. It induces a linear operator b : X — X
given by b(z)(y) = B(z,y); in turn, b induces—coordinatewise—an operator

Bl (X) — o (X7)

where ¢ (X) denotes the space of all weakly null sequences in X. It _is well
known that ¢ (X) coincides with the space of all weak*-to-weak continuous
operators from X* into co while cf (X*) = W(X, ¢). Thus, one has the
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diagram

| G—
X /
X*

that explains the action of the correspondence b: it sends a weakly null
sequence of L (in X)) into the weakly null sequence of Lo b (in X*).

THEOREM 2.1. Let X be a Banach space. The following are equivalent:

() £(2X) = Lo (2X).

(i) Bvery operator T : X — ey that foctorizes through X* in the form
T = Lob, where L is weak*-to-weak coniinuous, is completely continuous.

Proof. Assume that all bilinear mappings on X are weakly sequentially
continuous and consider a linear operator X -~ ¢g that can be factorized
through X* as in the last diagram, where L is weak*-to-weak continuous. If
L is represented by the weakly null sequence {l,.,}» in X and z € X then

Lob(z) = {(bz,1n) }n.

Thus, a weakly null sequence {z;}; in X is transformed into the weakly
null sequence {{{bz;,ln}}n}; in co. Observe that if {{(bz;, n}}n}; were not
norm null in ¢o, then for some £ > 0 there would exist subsequences {7(k)}x
and {n(k)}r such that

limsup |{be5x), Iniy )] 2 &,

contrary to the weak sequential continuity of the bilinear form B(z,y) =
{bz, ).

For the converse, note first that since operators are always weakly (se-
quentially} continuous, in order to obtain the weak sequential continuity of
bilinear forms it is enough to study the behavior of weakly null sequences. So,
let B: X x X - KK be a bilinear mapping and let {(2,yn)}n be a weakly
null sequence. Consider the [actorization through the map L : X* — ¢
given by L(z) = {{z,Z,)}». The conclusion is obvious. =

That bilinear forms are weakly sequentially continuous in spaces with
the Dunford-Pettis property is now clear. The condition imposed on the
second term of the factorization, to be weak*-to-weak continuous, already
implies that the operator has to be weakly compact. Since the Dunford-
Pettis property of X means that W(X, ¢g) C Coo(X, &), condition (ii) is
satisfied.

When X has all properties W, then £(X,X*) € Coo(X, X*) or, equiv-
alently, £(X,X*) = K(X,X*). This equivalence also holds when X bas
all properties 5, and does not contain £;: indeed, in that case X* has all
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properties Ty ([27]) and then every operator X — X* is compact. The
particular case of the original Tsirelson space T could also be deduced
from Straeuli {38], who proved that all Banach-Saks operators F — T, for
any Banach space F, are compact; since T has the Banach-Saks property,
LT, T) = K(T*,T).

The above results can be generalized to the multilinear case. An N-linear
form A: XV — K induces a linear map A : X — £({¥~1X) by the formula

‘Z(a") = A("Es EEREN )
Now, a weakly null sequence {(z1(n),...,zy—1(n))}n in X! induces
a linear map & from the space Lyge(™Y "1X) of weakly sequentially continuous
(N — 1)-lincar forms on X into ¢y by the formula §(T)(n) = {T(z1(n),...
vy BN-1{1))}n. One has the diagram

ﬁwsc(N—l-X)

Then one has:

TuroREM 2.2. Let X be a Banach space and let N > 2 be an integer.
Assume that L{V 7 X) = Lyse(N 1 X). Then the following are equivalent:

(1) LOVX) = LV X).

(il) Bvery operator T : X — co that factorizes through the space L(V X))
in the form T = L ob, where L is weak*®-to-weak continuous, is completely
continuous.

Let us remark that the weak* topology we consider on £(VX) is as the
dual space of the N-fold tensor product X ®, ... ®y X. The proof goes as
in Theorem 2.1.

This is enough to provide another proof for Ryan’s result [36]:

COROLLARY 2.3 (Ryan’s result), Buvery multilinear form on o Banach
space with the Dunford-Pettis property is weakly sequentially continuous.

Spaces having all Sp-properties and not containing £ are also covered
by this result since all operators X — L(N~1X) are compact. This is a
consequence of the fact that the space £(¥~*X) bas all C;-properties (all
operators £, — L£(¥~1X) are compact for all ¢ > 1; [2], see also {11]).

REMARK. While the Dunford-Pettis property means that all operators
X* — ¢y converge uniformly on weakly null sequences, having weakly se-
quentially continuous N-linear forms just means that operators X* — ¢
have to converge uniformly only over those weakly null sequences that
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are images of weakly null sequences of XV~1 under (N — 1)-linear forms
X¥-1 - X*. InSection 5 we shall show examples of spaces where ¢ (X*) is
not covered by the images of weakly null sequences of X N1 ynder N-linear
maps. :

An analogous characterization for polynomials can also be obtained. It
is enough to recall the identification of polynomials with symmetric linear
forms, Moreover, P(VX) is also a dual space (dual of the symmetrized pro-
jective tensor product). One only has to adapt the proof and determine
when an operator “corresponds” to a polynomial. This can be done through
the following definition.

DEFINITION. An operator T : X — L£,{VX) is said to be symmetric if
for every permutation ¢ of {1,..., N} and every set z1, ..., 2y of elements
of X one has

T(ml, e ,.’EN) = T(.’.’cg(l), - ,:BU(N)).
It is now completely straightforward that Theorems 2.1 and 2.2 admit
the following variation characterizing P-spaces.
THEOREM 2.1.8. Let X be a Banach space. The following are equivalent:

(1) Lo{B) C Lose(2X).

(i) Every operator T : X — e thot factorizes through X* in the form
T = Lob, where L is wesk*to-weak continuous and b is symmetric, is
completely continuous.

THEOREM 2.2.5. Let X be a Banach space and let N be an integer N > 2.
Assume that Lo(N7IX) = Loy (N71X). Then the following are equivalent:

(i) Lo(VX) C Ly (VX).

(ii) Bvery operator T : X — ¢ that factorizes through the space L(V X))
in the form T = Lob, where L is weak*-to-weak continuous and b is sym-
metric, is completely continuous.

Nevertheless, the problem that seems to be behind a unification of The-
orems 2.1 and 2.2 with 2.1.5 and 2.2.5 is:

ProBrem 1. Do P-spaces and M-spaces coineide?

‘We now pass to describe our strategy to find new examples of M-spaces.
Following 2.1 and 2.2, our basic strategy to obtain M-spaces will be:

1) to proceed by induction;

2) instead of imposing conditions on all weakly null sequences of the

space, we shall allow a controlled number of “types” of weakly null sequences
in such a way that each type can be governed in some way.

Let us give a definition that will simplify several statements.
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DEFINITION. A sequence {#,}, in a Banach space X is said to be multi-
linearly null (for short, M-null) if for all multilinear mappings 4 : XV - K

and all choices of N subsequences 5, : N — N, i = 1,...,N,

nh—rngo A(mjl(ﬂ)’ R mJ'N(“)) =0

The subsequences j; have been included in the definition to ease the ap-
plication of the basic strategy (see the proof of Thm. 2.5); also, to be sure
that a space in which every weakly null sequence is M-null is an M-space.
The simplest example of an Ad-null basic sequence is provided by a P-null
basic sequence dominated by its subsequences (for instance, although not
only, symmeiric or subsymmetric basic sequences). If a basic sequence is not
M-null then for some subsequences {j; () }ns- .., {in(n)}n, the sequence
(&5 (mys+ - > Ty (n)) b admits a lower estimate ([25], Lemma 1.1). The con-
verse is true for multilinear forms on the product of the closed spans of the
subsequence.

The following properties will be useful in the sequel:

DEFINITION. Let A be a class of sequences i a Banach sequence space X.
Let j : X — £ be an operator. We say that X has the (00) a-property with
respect to j if bounded sequences {z,},, in X such that lirn,,_ ., liznlles =0
admit subsequences in A.

We shall consider spaces X with basis, so that the operator j will be
assumed to be that assigning to each z its coefficients with respect to the
basis. Thus, possibly it would have been safer to define a basis having the
(00) a-property; but observe that not all the bases of a space X must have
property (oc)4 simultaneously.

Two specially interesting cases appear when A is chosen to be either the
class of sequences equivalent to the canonical basis of co {which we call the
{oc)o-property) or the class of sequences equivalent to the canonical basis
of &1 (for short, the {0o)y-property). For instance, the canonical basis of a
Lorentz sequence space d(w; 1) has the (oo);-property ([4]; also [33], 4.a.3)
while the associated functionals span a predual that we denote by d.(w)
in which the basis has the (co)s-property (see [10]). The canonical basis of
Schreier’s space has property (co)p (see e.g. [7]) while that of its dual has
the (co0)1-property.

In [30], Jiménez and Pay4 proved that all N-linear maps on the predual
d«{w) of a certain Lorentz sequence space are weakly sequentially continu-
ous. Let us make a cloge inspection of their proof:

Let B be a bilinear mapping that is not weakly sequentially continuous;
then there are weakly null sequences {2y }n, and {yn } such that B(z,, Yn) =
1 for all . There is no loss of generality in assuming that both {z,}, and
{yn}r are normalized blocks of the basis {e,}y. Since B : X -+ X* is
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continuous, {z:}n = {B(zn,)}n is & weakly null sequence in X*. Two
cases may occur:

(i) If liminfp, oo |2} |0 = O, then a subsequence of {z},}» is equivalent
to the basis of #;, which is impossible.

(ii) If 2% |loo = € > O for some & and all n, then B(zn,ej()) 2 ¢ for
s01e €j(n)-

Repeating this procedure with the first coordinate one obtains integer
sequences {i{n)}, and {j(n)}, satisfying Bei(n), &jin)) = € for all n.

Let Ay 1 X — [ein)] and Az : X — {ej(ny] be isomorphisms whose
existence is guaranteed by the symmetry of the basis. The new bilinear
form

Clz,y) = B(A1z, Asy)

satisfies Cfep, e,) > ¢ for all n; thus, the basis is not P-null. So, a formal
statement of the argument of Jiménez and Pay is:

THEOREM 2.4. Let X be a Banach space with o symmelric shrinking
P-null basis. If X* has the (c0)y1-property then X is an M-space.

Observe that in the proof of the above result the shrinking character of
the basis was not used: it just ensures that the (co)i-property has a meaning
in X*. Moreover, the only role of the condition “X* has the (co);-property”
is to control those sequences in X* having || - |e-norm tending to 0. This
suggests that we consider the following class of sequences:

According to [21] a subset A C X* is called an (L)-set if for any weakly
null sequence {z,}, in X we have

lim sup [{zp,2")| =0.
n—00 m*EA

We say that a bounded sequence {f»}. in a dual space X* is an (L)-

sequence if the set {f, : n € N} is an (L)-set. One has

THEOREM 2.5. Let X be a Banach space with an M-null basis. If X*
has the (oa)r -property, then X is an M-space.

Proof. We proceed inductively. ¥or bilinear forms the result is obvious.
Assume now that £{(¥"2X) = Ly (M 71X). Let A be an N-linear form on
X. In order to prove that A is weakly sequentially continuous it is enough to
prove that A is weakly sequentially continuous at zero. Assume that there
is a normalized weakly null sequence {(u},...,u )}, in XV such that

Alu; ul)>1

R

for all n. Consider u}, = A(ul,,. ..,u,(zN—l),-) € X*. Then {u}}, is a semi-

normalized wealkly null sequence in X* and two cases can occur:
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First case: liminf,, oo [[uf ||l = 0. In this case {u’}, admits an (L)-
subsequence which satisfies limy,—, o u}, (un) = 0, contrary to hypothesis.

Second case: ||uf|lco = € for some & > 0 and all n. In this case, there is
an integer sequence {jn(n)}, such that for all n,

Alug, -ty () 2 €
We now consider the sequence {A(uy,,...,u) ~2,-, &y () }n in X* and
proceed in the same way. Thus, in N steps we obtain N subsequences
{4i{n}}n for i = 1,..., N such that
lirfggffl(ejl(n), - EjN(n)) > 0,

which contradicts the basis being M-null. u

The following proposition provides natural examples of spaces with the
(o0) p-property.

PROPOSITION 2.6. Let X be a Banach space having a shrinking basis
with the (cc)o-property. Then X** has the (o) -property.

Proof. Let {&n}n be a bounded sequence in X** with limy,_.o0 [|Zn]|eo =
0 and let {fn}n be a weakly null sequence in X*.

In X*, decompose fn = gn + hyn where g, is finitely supported and
limy—co |Pn|| = 0. Let 2 = Uyp + v, where the support of u, coincides with
that of gn. Of course, limp_ o hn{zn) = 0. Now, since {tn}n is a weakly
null sequence in X with lim;, o0 ||tn]|eoc = 0 the (oo)g-property of the basis
yields limp_y o gn(un) = 0, and thus lim, o fu{us) = 0 and the proof is
complete. m

Using the same argument as in the proof of Thecrem 2.4 one obtains

TueoreM 2.7. Let X be o Banach space with shrinking busis and the
(o0)g-property. If X* haos an M-null basis, then X* is an M-space.

3. Polynomials on the dual of Schreier’s space. A finite subset A4
of N will be called admissible if it is either empty or has card{A4) < min(A).
The Schreier space S is obtained as the completion of the space of finite
sequences with respect to the norm

||} = :sup{ Z || A a.dmissible}.
ngA
The Schreier space and the notion of admissible set have been the cor-
nerstones on which most modern counterexamples in Banach space theory
involving sequences have been based. It was the first example of a Banach
space lacking the weak Banach-Saks property (i.e., weakly null sequences
admit subsequences having norm convergent arithmetfic means). Basic in-
formation about 9 can be found in [7, 15]. For our purposes it is enough to
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know that the standard unit vectors form a shrinking basis for § with the
(c0)o-property (see [7]). Therefore, as a corollary of Proposition 2.6 one has

COROLLARY 3.1. The space S** has the (oa)-property.

The space S* lacks the Dunford-Pettis property since 5 does (see [13]).
It does not have upper p-estimates, since otherwise S would have lower
g-estimates, which is impossible since, as a subspace of C(w®), it is ¢g-
saturated (or else: property (00)p implies cg-saturation, see {32]).

THEOREM 3.2. The space S* is an M-space.

Proof. That the unconditional basis {e,}, of S* is M-null follows from
the estimate

N
e-iH < 2logN
H; g

which prevents {e, }, from having lower g-estimates, and the fact that the
basis is dominates its subsequences (in S the basis is dominated by its sub-
sequences). Since 9 has the {oo)g-property, S** has the (oc)r-property by
Corollary 3.1. The agsertion now follows from Theorem 2.7. =

REMARK. Although the space S* has all multilinear forms weakly se-
quentially continuous, the space S does not. This is due to the estimate in
the above proof, which implies (see e.g. [17]) that there is a subsequence
of the bagis of S* with an upper estimate, and by duality a subsequence of
the basis of § has a lower estimate. Now, since the basis in S dominates its

subsequences, the basis has itself a lower estimate. It cannot therefore be
M-null.

4. Bilinear forms on Lorentz sequence spaces. We remind the
reader that we would like to do two things at the same time: make all poly-
nomials weakly sequentially continuous and avold upper estimates. Having
proved that they can be done simultaneously, as the case of the dual of
the Schreier space shows, we are going to try to do them in a space and
its dual at the same time. In this section, we focus on polynomials having
degree 2 and bilinear forms, achieving almost optimal results (as will be
seen later). Having the basic strategy in mind, and since a better quality of
a basis increases the quality of its blocks and thus the difficulty of finding
bad behaved blocks, we shall consider spaces with symmetric basis.

Let us recall the definition of the Lorentz sequence spaces. Given a se-
quence w of weights (that is, a decreasing sequence of positive numbers such
that limp, e wy = 0 and 3w, = o0), the Lorentz sequence space d(w;p)
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is the completion of the space of finite sequences with respect to the norm

2| —bup{(z"wa(n)mn‘ ) g

where o runs through all permutations of N. Basic properties of Lorentz
sequence spaces can be found in [4] and [33].

THEOREM 4.1. There exists o Loreniz sequence space d(w;1) such that
(i} All bilinear forms on d{w;1) and on its predual d,(w) are weekly

sequentielly continuous.

(ii) No normalized weakly null sequence ezists in d(w;1) admitiing an
upper or lower 2-estimate,

(ii1) The predual d.(w) admits no upper 2-estimates.

(iv) The spaces d.(w) and d(w;1) fail the Dunford-Pettis property.

Proof. Recall that in [4] it is proved that a Lorentz sequence space

d(w; p) in which the partial sums of w (denoted by s, = 2?21 w;) form a
submultiplicative sequence, i.e.

5
sup nk

< 00,
nk SnSk

admits exactly two non-equivalent symmetric basic sequences [4, Thm. 6];
namely, the unit vector basis of £, and the usual basis {e,}, of the space.
Moreover, they proved [4, Cor. 4] that every bounded block basic sequence
of the basis has a symmetric subsequence. In the particular case of d(w;1)
that means that every weakly null normalized sequence has a subsequence
equivalent to the basis {e,}, in d{w;1). Consequently, whenever the above
submultiplicative condition is satisfied, in order to have all bilinear forms on
d(w; 1) weakly sequentially continuous it is enough to ensure that the basis
is My-null. By the symmetry of the basis it is enough that it is Py-null,
for which we only need to prove that it admits no lower 2-estimates ([26]).
Thus, recalling that |} 37, e;|{ = 51" w; we require the condition

) et S

To make all bilinear forms on its predual d,{w) weakly sequentially con-
tinuous (which, in turn, implies that the basis has no lower 2-estimates) we
rely on the symmetry of the basis and on one of the main results of [30],
which asserts that it is both necessary and sufficient that w satisfies the con-
dition w ¢ 4. Holder's inequality 30 ; w; < ($i; w?) 2 |wy|n?/? yields
that the condition

Z?:l Wi —

(#%) lim sup sty e

00
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is clearly sufficient to imply w ¢ £o. From (ii), part (iil) follows by duality.
Part (iv) follows since the canonical bases of both the space and its dual
are weakly null (otherwise, a space with a symmetric non-weakly null basis
is El) .

What remains is to exhibit an example of a suitable sequence w with
subrnultiplicative partial sums and satisfying the two restrictions imposed:

0 = liminf 22i=1% i _

< lim su
s /2 p

O

We sketch the construction of w, omitting the full details of this tricky
exercise, If we set s, = f(n)n'/?, the function f has to be submultiplicative
and satisfy

0= ILmiolgff(n) < limsup f(n) = oco.

TL— O

Moreover, f has to fulfill the condition
flotl) [ m
f(n) n+1

in order to make (s,) increasing. We now describe the construction of an f
satisfying :

o : fn)
0= Im&}ff(n) < h&solcl)p logn < oo

We set
Fl+n) = 1+...+%
until f(my) > §logm;. Then we set
my
my--n

until f(mq + 1) < 1. The process starts again its way up. The only point
to be careful about is to make sure that the sequence w is decreasing. Since
the last value of w obtained has been Wy, , if 17 is the smallest integer
such that 1/u; < Wm,+., then we continue the series setting

1
py+n

Flmy +n) = log(my +n)

1
f(m1+1/1+n—|—1)mf(m1-|—V1)+H+...—|—

In this form, for large my one has f(ms) > %log Me; find now vy so that
f(ma +vs) < 1/2 and continue. At the points my the value of f is propor-
tional to log while at the points my + vy it tends to 0. =

One might guess tha.t. it should not be difficult to reproduce the preced-
ing arguments for N-linear forms. Nevertheless, observe that condition ()
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becomes
D iy W
lim inf &=L 70 =
n—oe nl/N 0,
while (%) becomes
n
lim sup &=L "
oo TL/N®

It can be proved that an increasing submultiplicative sequence cannot os-
cillate between two different powers. Worse yet, the tantalizing possibility of
extending the construction and making it valid for all N simultanecusly can-
not be realized: a decreasing sequence with submultiplicative partial sums
necessarily belongs to some £, which yields the existence of some non-weakly
sequentially continuous polynomial on 4, (w).

5. Multilinear forms on Lorentz sequence spaces. Preduals of
Lorentz sequence spaces can be managed through Theorem 2.4. The Lorentz
spaces d(w;1) themselves can be treated in that way upon realizing that
the predual space has property (co)o and then appealing to Theorem 2.7.
However, in this section we try something different: to prove that a space
is an M-space assuming no knowledge about the dual; i.e., involving only
properties of the space. The cost of this process is that the symmetry of the
basis cannot be relaxed. We have:

THEOREM 5.1. Let X be a Banach space with a symmetric boundedly
complete basis which is polynomially null (equivalently, Menull). If X has
the (co);-property, then X is an M-space.

We will need several lemmas. Recall that if 0 £ ¢ =350 oe; € X and
{Pn} is an increasing sequence of integers then the sequence

Pn+l

(o} =~ X .
" T i~ pp B

impy+1

is called a block basis generated by the vector a.. We first show the following
lemma on decomposition of block bases that may be of independent interest:

LEMMA 5.2. Let X be a Banach space with a symmetric boundedly com-
plete basis. Let uy, = Zf;;;; +1@i¢; be a block basis of {en}n and assume that
|pat1l 2 ... 2 |ap,,|. Then there is a subsequence {un, }x of {un}n Such

that {un, }r and {y,(f) + 2kt are equivalent, where:

(i) {y,(f‘)}n is a block basis generated by o vector 221 oe; € X,
(ii) limp_ 00 ”zk‘“OO = 0.
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Moreover,

1

o0
Z ”“ﬂk -
k=1

where C is the unconditional constant of the block basis {tn }n.

Proof. Of course, if liminfy oo ||tnlloc = 0 then the result is obvious
by passing to a subsequence. Assume then that [junlle =€ > 0 for all n.

Let gn = Pnt1 — Pn- If SUP, gn < 00, then by passing to a subsequence
we may assume that ¢, = r for all n. In particular,

»
U, = § :O’Pn-i-'iepn-l-i'
=1

Then, since each {ap, +i}n, fori =1,...,r, is a bounded sequence, there is an
infinite set of integers H such that limpen, noco Gp,+i = & fori=1,...,1
We now construct an increasing sequence {ny }; of integers such that

T 1
Dy, e = il € 5

i=1
fori =1,...,k, where C is the unconditional basis constant of {en }. Then,
ifa= E _, i we consider the sequence {y; (@, defined by

o) _ Z QiCp, +i-

=1
Since

- (o)) < 1
X

Z len, — o |l < bYek
Fo=1
it follows (see e.g. [33]) that {un, }r and {y,(f)}k are equivalent as required.

Assume now, by passing to a subsequence if necessary, that {gn}n is an
increasing sequence. Then we choose an infinite set Hy C N such that there
is oy with imnep, newoo Gp,+1 = @ and for n € Hy,

1
‘apn‘*‘l Odll < 230

Now, consider the sequence {ap,+2}nem, . Again, we may choose ap and an
infinite set Hy C H; of integers such that lim,zm,, n—oo Gp,+2 == 2 and for
i=1,2andn € Hs,
R
By repeating this procedure, we construct a sequence {Hp}x of sets of
integers where Hy.1 C Hy and a sequence o = (o, &, ...) where |ai| =
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lag| = ... such that for i = 1,...,k and n € Hy,
1

’a:ﬂn-i-'i h ai| < WG—

Consider now the diagonal set H = {ny}; and define

Iny,

y”‘ Za”e?’%'“ and 2, = Z Opp, +i€pa, +i
i=1 i=k41

Then {tx, }r and {ﬂg,g‘”)

Z Huﬂk - ('y
k=1

(see e.g. [33]).
It is clear that

+ 2} are equivalent, which follows from

2 € 35 (3 gt — ) < o

k=1 di=1

< 00,

n
sup H Z ;65
=l
and using the fact that the basis is boundedly complete we deduce that
o= o, ae; € X and {y,(\,'a)} is a block basis generated by the vector o.

In particular, limg—oo ot = 0. Then ||zk]lo0 = lap,, +h41] € |ap,, +x| and
since Hrmp. o0 \%nh—kk — oy} = 0 it follows that limy_ce |25/ = 0. =

LEMMA 5.3. Let X be a Banoch space with symmetric basis {en}n and
let {y }n be o block basis genemted by a vector a € X, If {en}n is P-null
{equivalently, M-null), then {yn }n is also M-null.

P41

Proof. Let a = 3°°° | ane, € X be such that yi*) = it ) Qip, €
where {p,, }» iy an Increasing sequence of integers. Without loss of generality
we may assume that ||| = 1. Note that it is enough to find a subsequence
of {y&}n which is P-null.

If sup,, (Pn41 — Pn) < oo then by [4] there is a subsequence equivalent
to the basiy. The result now follows from the fact that if a sequence {y,}n
is equivalent to the basis and {e,}n is P-null then so is {yn}n. Indeed, if
{¥n}n were not P-null then it would have a lower estimate. Then also {e,}n
would have one, which is impossible.

Otherwise, if sup,, (pr+1 — Pn) = 00, by taking a subsequence we may
assume that litg..oo(Pny1 — Pn) = 0. Let P be a polynomial; since P
is uniformly continnous on bounded sets, for ¢' > 0 (the unconditional
constant) and & > 0 there is § > 0 such that

|P(a+ 1) — P(z)] < e
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whenever ||z < C and ||h|| < §. Now, we may choose an integer N such
that || Y50 yyq @i€ill £ 6. Then priy — pa > N for n large enough and

Prdz
P(yﬁf‘))\S‘P( Z ozi_pnei)— ( Z o pn&)
i=pp+1 =D
prt+N
Hr(3 e
i=pp+1
PN

<5+1P( > - pneﬁ)

i=pp+1

The conclusion follows since the sequence { _p Ai, 1 Qip,. Ci}n is formed by
blocks of bounded length with respect to the basis {ex}, and consequently
is M-null. =

We can now prove Theorem 5.1:

Proof of Theorem 5.1. It is enough to prove that any block basis {uw e
is a P-null sequence. Indeed, if {v,}, is a weakly null normalized sequence
in X then by a perturbation argument passing to a subsequence there is a

blocl basis {un }n such that limy oo |jUn, — ui| = 0. Since P is uniformly
continuous on bounded sets, we have
lim |P(ug) — P )| =0
k—oco
Let {pn}n be an increasing sequence and let un, = f;;;; L1046 bea

block basis.

In order to prove that {u,}n, is P-null we may assume without loss of
generality that |ap, 11| > ... > |ap, +1\ (note that there is an isomorphism
X — X which takes u, to Zf_'_‘;‘;l 41 07 where (a}) is the non-decreasing
rearrangement of ([ai|}ima’ 1)

By using Lemima 5.2 we may extract a subsequence {un, }x of {tin}n
such that

lm ||un, — (y,(f) + 2,)| = 0,

k00

where {y;(f")};G is a block sequence generated by a vector o in X and the
sequence {2k} satisfies Hmg— oo || 2&] 0o = 0.

Since X has the (oc)i-property and {zj} is weakly null it follows that
limp e ||2k]] = 0. So, it is possible to extract again a subsequence of
{tn, bi, Still denoted by {un, }x, which satisfies limg o0 ||tn, — yk || = 0.
By Lemma 5.3 we conclude that {u,, }x is M-null. w
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We can now present a nice example:

THEOREM 5.4. There is a Lorentz sequence space d{w;1) such that:

(1) All multilinear forms on d.(w) aend d(w;1) are weakly sequentially
continuous.
(ii) No normalized weakly null sequence exists in d(w; 1) having an upper
p-estimate for p > 1.
(ii) The predual d.(w) admits no upper p-estimates for any p > 1.
(iv) The spaces d,(w) and d{w; 1) fail the Dunford-Pettis property.

Proof. It is enough to choose a sequence w of weights such that for all
p>1,

ZN Y iy Wi
—_ < i==1 Yt
0= l}\rrn inf ir lim sup ==5— T =

Note that the condition means that for all p > 1,
| 2 =z & &
0= 1}\1{120%1" -~—~J~V‘T/,1—-J < hmm.flzﬁll;p—” 0Q,

where {e,, }y, is the usual basis in d(w;1). This means that such a basis does
not have lower or upper estimates (nor subsequences with lower or upper
estimates, by symmetry). By duality, the same holds for the basis of d.(w).
In particular both bases are polynomially null. It is also clear that there is
no difficulty in choosing a sequence of weights satisfying that condition.

The space d{w; 1) is an M-space by Theorem 5.1. All multilinear forms
on d,(w) are weakly sequentially continuous by Theorem 2.4 since the basis
is M-null. Another way to see it is using [30] since w & £, for all p < oo
(this holds since w is decreasing).

To prove (ii), let {un}, be a weakly null sequence of normalized blocks
of {en}n. If ||ttn]lee = € for some £ > 0, then some coefficient A; in u; is

greater than or equal to £. Thus,

N ) N N
T R PR L PO
je= 1. i1 i=1

Hence, if {u;}; has an upper p-estimate then so does {e;};, which is impos-
sible.

Otherwise, liMp—yo0 ||4n]/ee = 0, and some subsequence is equivalent to
the canonical basis of £, and thus it cannot be weakly null and normalized
simultanecusly.

Finally, the predual space d,(w) does not admit upper p-estimates, for
p > 1, since obviously the basis does not admit any upper estimate. m -

N—oo
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Other solved problems and further open problems. The above cxample
provides a solution to Question 4 in the introduction (see [8] and [23], Prob-
lem 4.8{2)).

THEOREM 5.5. The sum of twe P-null sequences need not be P-null.

Proof. Consider the sequences {(e};,0}}, and {(0,e,)}, in d.(w) x
d(w; 1) where {e}}, and {en}, are the canonical bases in d, (w) and d(w;1)
respectively. Their sum {(ey, en)}, is not P-null; indeed, the 2-homogeneous
polynomial P : d,{w) x d(w; 1) — K given by P(z,y) = (z,y) is not wealkly
sequentially continuous since Plek,e,) =1foralln e N. =»

Minor modifications provide negative answers to Problems 4.8(1) and
(3) of [23].

Problem 4.8(3) is: If A is a pw-compact set, is the absolutely convesx
closed convex hull of A pw-compact? Recall that a net in a Banach space is
said to be pw-convergent to = if, for every continuous polynomial, the images
of the elements of the net converge to the image of z. The pw-topology is
the topology that corresponds to the puw-convergence.

Although {(ey;, 0)}, U{(0, en)},U{(0,0)} is & pu-compact set in d,, () x
d{w; 1), its convex hull is not since the sequence {5(e%, e:)}r admits no
pu-convergent subsequences.

Analogously, Problem 4.8(1) asking if the projective tensor product of
P-null sequences must be at least weakly null has a negative answer. It is
clear that a space X fails the Dunford-Pettis property if and only if there
exist weakly null sequences in X and X* whose tensor product is not wealdy
null in X @, X* (see [19] for further information). Our example provides a
space X = d,(w) in which there exist P-null sequences in X and X* whose
tensor product is not even weakly null.

Property (P) was introduced by Aron, Choi and Llavona in [5] as fol-
lows: for any two bounded sequences {u,}, and {v,}, if limy— o0 { P (tn ) —
P(vn)) = 0 for every polynomial P, then lim, e Plug — wy) = 0 for all
polynomials P. Spaces with the Dunford-Pettis property have property (P}
([3]), and more generally P-spaces. Choi and Kim [18] have shown that
spaces with non-trivial type have property {P); in particular, superreflex-

ive spaces. The existence of a space without property (P) has been so far
unknown.

THEOREM 5.6. The space dy(w) x d{w; 1) fails property (P).

Proof. Indeed, since {(e},0)}n and {(0,e,)}, are P-null in d,(w) x
d(w; 1), we have limg_, o0 (P(ef, 0) — P(0, en)) = 0 for every polynomial P.
However, the difference sequence {(eZ, —e,)}, is not P-null, as we have
. already shown. m
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It has also been proved that the product of two spaces with property (P)
may fail property (P).

In [18], while trying to give a clue for the existence of a counterexample,
Choi and Kim give a sufficient condition for a space to fail property (P):
If X is a A-space and the space of n-homogeneous polynomials on X is
separable for all n, then X does not have property (P). Certainly, the space
d.(w) xd{w; 1) fails to be a A-space (recall that this means that polynomially
null sequences are norm null); moreover, since d(w;1) contains #; the dual
space is already non-separable. This shows that their conditions are far from
niecessary.

We now state some questions that might be interesting.

ProBLEM 1. Do P-spaces and AM-spaces coincide?

We have avoided to face that problem throughout the paper, although
it already appeared in Section 2. Another seemingly difficult question with
rather deep connections has already been asked in [20].

ProOBLEM 2. Does there exist a reflexive space X such that both X and
X* are M-spaces?

Maybe not too far, although not too close, is to ask:

PrROBLEM 3. Does there exist a reflexive M-space without upper esti-
mates?

Perhaps a cleaner statement would be:

ProereEm 4. Does there exist a superreflexive M-space?

6. Further examples. The purpose of this section is to obtain some
variations of the spaces presented. In the case of Lorentz spaces we replace
symmetric by subsymmetric bases; in the Schreier case we replace the family
of admissible sets by other suitable families.

Lorentz-like spaces. Recall that the definition of Lorentz sequence space
involves the group of all permutations of N, and this is the reason that
makes the basis symmetric. Replace the group of all permutations of N by
a subgroup G and add displacements to the right (i.e., increasing mappings
N — N). With G+ D one can construct Lorentz-like sequence spaces dg(u-); 1)
whose cancnical bagis is no longer symmetric: it only admits permutations
in G. The basis of dg(w; 1) is subsymmetric.

The proof that dg(w; 1) has property (co); and that its natural predual
has the (co)g-property can be done in a standard way. Thus, one has
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THEOREM 6.1. There exists a Lorentz-like space dg(w; 1) such that:

(i) Al multilinear forms and polynomials on dg(w;1) and its predual
dec(w) are weakly sequentially continuous.
(i) No normalized weokly null sequence in da(w;1) admits an upper
p-estimate.
(iil) The predual d.g(w) admits no upper p-estimate for any p > 1.

It is worth mentioning that the simplest example of such spaces, which
corresponds to the the choice G = {id} and D = {displacements}, can be
easily represented as an isometric (uncoraplemented) subspace of the space
of continuous functions on [0, I]. The uncomplementability is a consequence
of the failure of the Dunford-Pettis property.

Schreier-like spaces. There is a wide class of spaces, quite often used as
counterexamples. They have been called in {15] Schreier-like spaces. We give
a brief description.

In what follows Po(N) and P;(N) denote the sets of all infinite (resp.
finite) subsets of N. We consider the following construction: Let F be a
family of finite sets of N such that

(i)if G C F € F then G € F,
(if) {n} € F for all n € N,
(iii) for all Z € Po(N) there exists B C Z such that B ¢ F.

Then F is a countable compact metric space under the topology induced
by identifying 7 with {1p : F € F} equipped with the topology of pointwise
convergence. The sequence {x,}, defined by z,(F) = 1p(n) is pointwise
convergent to 0 in F, and each =, is continuous on F.

Given an adeguate family F of subsets of N, the Banach space Sx is

constructed as the completion of the space of finite sequences with respect
to the norm

|z = sup{ Z {n]: B € F},
neckl
for which the standard basis {en}n is a weakly null unconditional basis.

Some examples worth mentioning are: ¢g (taking as F the family of one-
point sets); the Schreier space, obtained by taking as 7 the family of admis-
sible sets; and the space of Schachermayer (see [17]), obtained by choosing
as F the family of totally admissible sets. See [14, 15] for further examples
of Schreier-like spaces.

In a Schreier-like space it is possible to translate {some) topological prop-
erties of the space into algebraic properties of the family F (see [15]). Two
useful functions will be needed. If B is a (maybe infinite) subset of N, then
|B| denotes the cardinality of B and we define P(B) = max{|ANB|: Ae F}.
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The function g, is defined by
gn{B1,-. -, Bn, B)=max{|ANB|: A€ F, ANB, £10, i=1,...,n}.

The family F is said to satisfy the n-condition if every sequence {B,} of
finite sets such that ¢(B,) — oo contains a subsequence such that for some
function A : Pr(N)® — N,

gn(Bi, Big1,. .., Bisy) < h{B;, Bj1, .. ., Bin_1).

For instance the family of admissible sets satisfies the 1-condition. The fam-
ily of lunatic sets [15] satisfies the 2-condition, but not the 1-condition.
The reason for introducing the n-condition is the following lemma:

LEMMA 6.2. If for some n the family F satisfies the n-condition, then
S has the (co)g-property.

Moreover, if there is a family {A,}, of disjoint sets satisfying the condi-
tion liminf, o ¢(An)/|An| > 0, then the canonical basis of SF admits no
upper estimates, hence {e}, }, admits no lower estimates and consequently is
P-null. Under these conditions, whenever 4 belongs to F then DA belongs
to 7 where D is a displacement to the right, then the basis is dominated by
its subsequences. Thus “P-null” implies “AM-null”. This yields:

PROPOSITION 6.3. Let F be an adeguate family satisfying the n-condition.
If {en}n is dominated by its subsequences then (Sr)* is an M-space.

Acknowledgements. Thanks are due to J. Gutiérrez who pointed out
that our example solved the problems posed in {23]. The authors thank J.
Jaramillo for his accustomed bountiful support.
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