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Nonclassical interpolation in spaces of smooth functions

by

V LAD IM I R I. O VCH I NN I KOV (Voronezh)

Abstract. We prove that the fractional BMO space on a one-dimensional manifold
is an interpolation space between C and C1. We also prove that BMO1 is an interpo-
lation space between C and C2. The proof is based on some nonclassical interpolation
constructions. The results obtained cannot be transferred to spaces of functions defined
on manifolds of higher dimension. The interpolation description of fractional BMO spaces
is used at the end of the paper for the proof of the boundedness of commutators of the
Hilbert transform.

The aim of this paper is to prove the interpolation property of the frac-
tional BMO space between C and C1, which was announced in [7]. It is
well known that these fractional BMO spaces, being particular examples of
Lizorkin–Triebel spaces, cannot be reduced even to the generalized Besov
spaces. So we enlarge the family of interpolation spaces between C and C1.

The same can be applied to the pair C and C2 and we conclude that
BMO1 is an interpolation space between C and C2. So we find a natural
substitute for the space C1, which itself turns out not to be an interpolation
space between C and C2 (see [4]).

The dimension of the manifolds where our functions are defined is im-
portant. It turns out that the fractional BMO spaces on a 2-dimensional
manifold are not interpolation spaces between the corresponding spaces of
smooth functions generated by the L∞-metric.

The work consists of six sections. In the first section we describe the
spaces whose interpolation properties are discussed in the sequel. In Sec-
tion 2 we introduce the Hilbert interpolation functor. This interpolation
construction is used in Section 3 in the proof of interpolation of the frac-
tional BMO space between the spaces of bounded and Lipschitz functions. In
Section 4 we consider other nonclassical interpolation constructions, which
yield the same interpolation spaces. These results allow us to prove in Sec-
tion 5 that the fractional BMO space is an interpolation space between the
spaces of continuous and continuously differentiable functions. Finally, in
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Section 6 we consider one application of the functorial description of frac-
tional BMO spaces to commutators of the Hilbert transform.

1. Spaces of smooth functions. Let M be a one-dimensional Rie-
mannian manifold with boundary, i.e. M is either an interval, a semi-axis,
the real axis, or a circle.

As usual we write L∞(M) for the space of all bounded measurable func-
tions on M with the standard norm

‖f‖L∞(M) = ess sup
t∈M

|f(t)|.

If k is a natural number, let Lk
∞(M) denote the space of functions whose

generalized derivatives of order k belong to L∞(M). Denoting by D the
operator of differentiation, we see that f ∈ Lk

∞(M) if Dkf ∈ L∞(M), and
we introduce a norm on Lk

∞(M) by

‖f‖Lk
∞

(M) =
k−1∑

n=0

|f (n)(t0)| + ‖Dkf‖L∞(M)

where t0 ∈ M .

The space Lk
∞(M) coincides with the space of functions such that Dk−1f

is a Lipschitz function, i.e.

sup
s,t

|Dk−1f(t) − Dk−1f(s)|

|t − s|
< ∞.

Obviously, for an interval or a circle this space consists of bounded func-
tions, so Lk

∞(M) coincides with the Sobolev space constructed with respect
to the uniform metric. In the case of a noncompact manifold the space
Lk
∞(M) contains unbounded functions, and L∞(M)∩Lk

∞(M) = W k
∞(M) is

not closed in Lk
∞(M).

If we use the standard duality defined by the integral

〈f, g〉 =
\

M

f(t)g(t) dt,

we see that L∞(M) = L1(M)∗. Furthermore, Ciesielski and Figiel (see [3])

showed that Lk
∞(M) = (W̊−k

1 (M))∗, where W̊−k
1 (M) is the closure of the set

of smooth functions on M which vanish in a neighborhood of the boundary
and infinity, with respect to the norm

‖g‖ = sup
f

\
M

f(t)g(t) dt,

where the supremum is taken over all f ∈ Lk
∞(M) and ‖f‖Lk

∞
(M) ≤ 1 .

Hence {L∞(M), Lk
∞(M)} is dual to the pair {L1(M), W̊−k

1 (M)}.
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Recall that the space BMO(R) consists of locally integrable functions f
on R such that

sup
Q

1

|Q|

\
Q

|f(t) − fQ| dt < ∞ where fQ =
1

|Q|

\
Q

f(t) dt,

and Q runs over all finite intervals in R.
Let bmo(R) denote the nonhomogeneous BMO space (see [14]), which

consists of functions such that

sup
Q

1

|Q|

\
Q

|f(t) − fQ| dt < ∞ and sup
|Q|≥1

1

|Q|

\
Q

|f(t)| dt < ∞.

Denote by bmoα(R) the space of Bessel potentials of order α generated
by functions from bmo(R). That is, if we put, for α ∈ R,

Jαf = F−1((1 + |ξ|2)−α/2f̂(ξ))

where f̂ is the Fourier transform and F−1 is the inverse Fourier transform,
then bmoα(R) coincides with the image Jα(bmo).

It is shown in [12] that f ∈ bmoα(R) for 0 < α < 1 if and only if
f ∈ bmo(R) and

(1) A1 = sup
Q

1

|Q|

\
Q

\
|s|≤|Q|

|f(t + s) − f(t)|2

|s|1+2α
ds dt < ∞,

and for 0 < α < 2 if and only if f ∈ bmo(R) and

(2) A2 = sup
Q

1

|Q|

\
Q

\
|s|≤|Q|

|f(t + 2s) − 2f(t + s) + f(t)|2

|s|1+2α
ds dt < ∞

where Q runs over all finite intervals in R.
As the conditions (1) and (2) have metric character, they can be formu-

lated on a Riemannian manifold M . This allows us to consider the space
bmoα(M) of functions f ∈ bmo(M) satisfying (1) or (2) on the correspond-
ing manifold, equipped with the norm

‖f‖bmoα(M) = ‖f‖bmo(M) + A1

for 0 < α < 1, or

‖f‖bmoα(M) = ‖f‖bmo(M) + A2

for 0 < α < 2.
It is well known (see [14]) that bmoα(R) ⊂ L∞(R) for α > 0. Thus, con-

ditions (1) or (2) plus boundedness mean that the corresponding functions
belong to bmoα(R). A similar statement is true for bmoα(M). Note also
that bmokθ(M) turns out to be an intermediate space between L∞(M) and
Lk
∞(M), and between L∞(M) and Lk

∞(M) ∩ L∞(M) if 0 < θ < 1, that is,

Lk
∞(M) ∩ L∞(M) ⊂ bmokθ(M) ⊂ L∞(M).
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2. The Hilbert functor. In the sequel we use standard notions and no-
tation from interpolation theory (see, for instance, [1]). So let X = {X0,X1}
denote any Banach pair.

Let H = {H0,H1} be any pair of Hilbert spaces. We denote by Hθ

an intermediate space of this pair constructed by the Calderón complex
method of interpolation, that is, Hθ = [H0,H1]θ. It is known that the space
Hθ turns out to be a Hilbert space, and the family Hθ, where 0 ≤ θ ≤ 1, is
a unique scale of Hilbert spaces connecting H0 and H1. The same scale can
also be obtained by the Lions–Peetre construction, i.e. Hθ = (H0,H1)θ,2

with equivalent norms.

Definition. By the upper Hilbert interpolation functor we mean the
maximal extension of the functor Hθ = Fθ(H0,H1) from the category of
all Hilbert pairs to the category of all Banach pairs. We denote it by
〈X0,X1〉

θ,2.
In other words, x belongs to 〈X0,X1〉

θ,2 if x ∈ X0 + X1 and

sup
T

‖Tx‖Hθ
< ∞

where the supremum is taken over all linear operators mapping X into any
Hilbert pair H and ‖T‖Xi→Hi

≤ 1 (i = 0, 1).

The maximality and the equalities Hθ = [H0,H1]
θ = (H0,H1)θ,2 im-

ply at once the imbeddings of (X0,X1)θ,2 and [X0,X1]
θ into 〈X0,X1〉

θ,2.
The upper Hilbert functor yields a power transformation of weights for one-
dimensional pairs. This means that the characteristic function of this func-
tor is equal to s1−θtθ. Hence 〈X0,X1〉

θ,2 ⊂ (X0,X1)θ,∞. It is easy to see
that no imbedding mentioned above can be improved on the category of all
Banach pairs.

The description of the spaces 〈X0,X1〉
θ,2 by means of all pairs of Hilbert

spaces may happen to be inconvenient. Obviously, the following reductions
to finite-dimensional weight pairs are possible.

Denote by lN2 (2−nθ) where 0 ≤ θ ≤ 1 and N ∈ N the space of sequences
{ξn}

N
n=−N with the norm

( N∑

n=−N

(|ξn|2
−θn)2

)1/2

.

Proposition 1. The space 〈X0,X1〉
θ,2 consists of those x ∈ X0 + X1

for which

sup ‖U(x)‖lN
2

(2−nθ) < ∞

where the supremum is taken over all N ∈ N and linear operators U : X →
{lN2 , lN2 (2−n)} such that ‖U‖Xi→lN

2
(2−ni) ≤ 1 for i = 0, 1.
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Proposition 2. Assume that a pair {X0,X1} is dual , i.e. Xi = Y ∗
i

(i = 0, 1) where {Y0, Y1} is a regular Banach pair. Then x ∈ 〈X0,X1〉
θ,2 if

sup
N,fn

N∑

n=−N

(2−nθ|fn(x)|)2 < ∞

where fn ∈ Y0 ∩ Y1 is such that

sup
‖z‖Xi

≤1

N∑

n=−N

(2−ni|fn(z)|)2 ≤ 1

for i = 0, 1.

In other words, it is possible to take the supremum in Proposition 1 over
dual operators only.

Finally, we consider one more restriction on the set of operators which
are used in the construction of the Hilbert functor.

Proposition 3. If a pair {X0,X1} is dual , i.e. Xi = Y ∗
i (i = 0, 1) where

{Y0, Y1} is a regular Banach pair , and K ⊂ X0 ∩X1 is a finite-dimensional

subspace, then x ∈ 〈X0,X1〉
θ,2 if

sup
N,fn

N∑

n=−N

(2−nθ|fn(x)|)2 < ∞,

where fn ∈ Y0 ∩ Y1, fn(K) = 0, and

sup
‖z‖Xi

≤1

N∑

n=−N

(2−ni|fn(z)|)2 ≤ 1

for i = 0, 1.

3. Interpolation theorem. We now apply the upper Hilbert interpo-
lation functor to interpolation of fractional bmo spaces.

Theorem 1. For any one-dimensional Riemannian manifold M and any

0 < θ < 1, k = 1, 2 we have

〈L∞(M), Lk
∞(M)〉θ,2 ∩ L∞(M) = bmokθ(M).

P r o o f. We give the proof only for the case k = 1; the case k = 2 is left
to the reader. Let Q be any interval in M . Let us introduce a Hilbert pair
{H0,H1}, corresponding to Q, where H0 = L2(Q)/R is the quotient space
with respect to the subspace of constants, and the norm in H0 is generated
by the integral

(3)

(
1

|Q|

\
Q

|x(t)|2 dt

)1/2

.
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The space H1 is W 1
2 (Q)/R with the norm generated by the integral

(4)

(
1

|Q|

\
Q

|x′(t)|2 dt

)1/2

.

It is obvious that the pair {L∞(M), L1
∞(M)} is mapped into {H0,H1}.

If we write x̃ for the element of a quotient space corresponding to x, then

‖x̃‖H0
≤ ‖x‖L2(Q) ≤ ‖x‖L∞(M),

‖x̃‖H1
≤ sup

t
|x′(t)| ≤ ‖x‖L1

∞
(M).

Hence, by definition of the Hilbert functor,

sup
Q

‖x̃‖(H0,H1)θ,2
≤ c‖x‖〈L∞(M),Lk

∞
(M)〉θ,2 .

For a unit interval Q, the norm in the space (H0,H1)θ,2 can be expressed
in terms of differences, i.e.

(5) ‖x̃‖2
(H0,H1)θ,2

≍
\
Q

\
Q

|x(t) − x(s)|2

|t − s|1+2θ
ds dt.

In view of the homogeneity of the expressions (3)–(5) with respect to
dilation we find that for any interval Q,

‖x̃‖2
(H0,H1)θ,2

≍
1

|Q|

\
Q

\
Q

|x(t) − x(s)|2

|t − s|1+2θ
ds dt,

where the constants of equivalence are independent of the intervals Q. Thus,

sup
Q

1

|Q|

\
Q

\
Q

|x(t) − x(s)|2

|t − s|1+2θ
ds dt ≤ c‖x‖2

〈L∞(M),Lk
∞

(M)〉θ,2 .

Hence, by (1),

〈L∞(M), L1
∞(M)〉θ,2 ∩ L∞(M) ⊂ bmoθ(M)

for 0 < θ < 1. Similarly using (2) we find

〈L∞(M), L2
∞(M)〉θ,2 ∩ L∞(M) ⊂ bmo2θ(M).

It remains to prove the converse imbedding

bmokθ(M) ⊂ 〈L∞(M), Lk
∞(M)〉θ,2.

Again we consider only the case k = 1, and we show that if

sup
Q

1

|Q|

\
Q

\
Q

|x(t) − x(s)|2

|t − s|1+2θ
ds dt < ∞

and x ∈ L∞(M), then

sup
T

‖T (x)‖Hθ
< ∞
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where the supremum is taken over all bounded linear operators

T : {L∞(M), L1
∞(M)} → {H0,H1}

with unit norms. In view of Proposition 3 we can consider only operators
which are dual and equal to zero at constants. Let T be such an operator.

Dual bounded operators mapping L∞(M) into a Hilbert space have
a remarkable factorization property (see, for example, [9]): for any T :
L∞(M) → H0 there exists g0 ∈ L1(M) such that

‖Tx‖2
H0

≤
\

M

|x(t)|2g0(t) dt,

where ‖g0‖L1(M) ≤ c‖T‖L∞(M)→H0
(c is a universal constant). Obviously,

a similar statement is also true for operators mapping from L1
∞(M) into a

Hilbert space. For any dual bounded linear operator T : L1
∞(M) → H1 with

Ker T ⊃ Ker D there exists g1 ∈ L1(M) such that

‖Tx‖2
H1

≤
\

M

|Dx(t)|2g1(t) dt,

where ‖g1‖L1(M) ≤ c‖T‖L1
∞

(M)→H1
.

If we put g = max{|g0|, |g1|}, then

‖Tx‖H0
≤ c0‖x‖L2(g) and ‖Tx‖H1

≤ c1‖Dx‖L2(g).

Let L̃2(g) denote the quotient space L2(g)/R where R is the subspace
of constant functions. If W 1

2 (g) denotes the space of functions x such that

Dx ∈ L2(g), let W̃ 1
2 (g) denote the quotient space W 1

2 (g)/R, equipped with
the norm ‖x̃‖

W̃ 1
2
(g)

= ‖Dx‖L2(g). (Here again x̃ denotes the element of the

quotient space corresponding to x.) Thus,

‖Tx‖H0
= ‖T x̃‖H0

≤ c0‖x̃‖L̃2(g)
, ‖Tx‖H1

= ‖T x̃‖H1
≤ c1‖x̃‖W̃ 1

2
(g)

.

Interpolating by the Lions–Peetre method, we see that

‖Tx‖(H0,H1)θ,2
≤ c1−θ

0 cθ
1‖x̃‖(L̃2(g),W̃ 1

2
(g))θ,2

.

Thus

sup
‖T‖≤1

‖Tx‖(H0,H1)θ,2
≤ c sup

‖g‖L1
≤1

‖x̃‖
(L̃2(g),W̃ 1

2
(g))θ,2

.

It is well known that any integrable nonnegative function may be ma-
jorized by a function of class C+, i.e. by a function which is the limit of
an increasing sequence of simple functions. Each function from C+ in turn
can be majorized by a function which is the limit of an increasing strictly
positive sequence of quasi-simple functions of the form

h(t) =

∞∑

m=1

cmχQm
(t)



210 V. I. Ovchinnikov

where Qm are disjoint intervals and the length of any Qm except a finite
number is 1. Denote by C++ this new class of functions.

Thus we see that

(6) sup
‖T‖≤1

‖Tx‖(H0,H1)θ,2
≤ c sup

h∈C++

‖h‖L1
≤1

‖x̃‖
(L̃2(h),W̃ 1

2
(h))θ,2

.

We claim that

sup
‖T‖≤1

‖Tx‖(H0,H1)θ,2
≤ c sup

‖h‖L1
≤1

‖x̃‖
(L̃2(h),W̃ 1

2
(h))θ,2

,

where h are quasi-simple functions. Indeed, let hn denote a sequence of
quasi-simple functions which monotonically converges to h ∈ C++ and
‖h‖L1

≤ 1. It is obvious that ‖x‖L2(hn) → ‖x‖L2(h), and consequently
‖x̃‖

L̃2(hn)
→ ‖x̃‖

L̃2(h)
, as well as ‖x′‖L2(hn) → ‖x′‖L2(h). We now show the

equality

‖x̃‖
(L̃2(h),W̃ 1

2
(h))

θ,2

= lim
n→∞

‖x̃‖
(L̃2(hn),W̃ 1

2
(hn))

θ,2

.

All the spaces in this formula are continuously imbedded into L̃2(h1) +

W̃ 1
2 (h1). Denote by S0 the unit ball in L̃2(h), and by S0

n the unit ball in

L̃2(hn). Correspondingly, let S1 denote the unit ball in W̃ 1
2 (h), and S1

n the

unit ball in W̃ 1
2 (hn). All these unit balls are weakly closed in the unit ball

of L̃2(h1) + W̃ 1
2 (h1), therefore all of them are metric compacta.

By assumption,

∞⋂

n=1

S0
n = S0 and

∞⋂

n=1

1

t
S1

n =
1

t
S1

for all t > 0. Therefore

(7) co

(
S0 ∪

1

t
S1

)
=

∞⋂

n=1

co

(
S0

n ∪
1

t
S1

n

)

where co(A) is the convex hull of A.

Since co(S0
n ∪ t−1S1

n) and co(S0 ∪ t−1S1) are the unit balls of the K-
functionals

K(t, x̃; {L̃2(hn), W̃ 1
2 (hn)}) and K(t, x̃; {L̃2(h), W̃ 1

2 (h)}),

(7) implies

K(t, x̃; {L̃2(hn), W̃ 1
2 (hn)}) → K(t, x̃, {L̃2(h), W̃ 1

2 (h)})

for x̃ ∈ L̃2(h) + W̃ 1
2 (h), and the convergence is monotone. Therefore
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∞\
0

(
K(t, x̃; {L̃2(hn), W̃ 1

2 (hn)})

tθ

)2
dt

t

→

∞\
0

(
K(t, x̃, {L̃2(h), W̃ 1

2 (h)})

tθ

)2
dt

t
.

Thus

‖x̃‖
(L̃2(hn),W̃ 1

2
(hn))θ,2

→ ‖x̃‖
(L̃2(h),W̃ 1

2
(h))θ,2

.

Hence in view of (6),

sup
‖T‖≤1

‖Tx‖(H0,H1)θ,2
≤ c sup

‖h‖L1
≤1

‖x̃‖
(L̃2(h),W̃ 1

2
(h))

θ,2

where h are quasi-simple functions.
Since

h(t) =

∞∑

m=1

cmχQm
(t) =

∞∑

m=1

cm|Qm|
χQm

(t)

|Qm|

where Qm are disjoint intervals and
∑∞

m=1 cm|Qm| ≤ 1, we find

‖x‖2
L2(h) =

\
M

|x(t)|2h(t) dt =
∞∑

m=1

cm|Qm|
1

|Qm|

\
Qm

|x(t)|2 dt(8)

≤ sup
Qq

1

q

\
Qq

|x(t)|2 dt

where the supremum is taken over all intervals Qq of a fixed length q ≤
minm |Qm|.

Similarly,

(9) ‖x′‖2
L2(h) ≤ sup

Qq

1

q
‖x′‖2

L2(Qq)

where the supremum is taken over the same intervals.
Denote by |||x|||W α

2
(Q) a norm on the Sobolev space W α

2 (Q) which is
homogeneous with respect to dilation. For instance,

|||x|||2W α
2

(Q) = |Q|2α−1
\
Q

|x(t)|2 dt +
1

|Q|

\
Q

\
Q

|x(t) − x(s)|2

|t − s|1+2α
dt ds

for 0 < α < 1, and similarly for other α 6∈ N; and

|||x|||2W α
2

(Q) = |Q|2α−1
\
Q

|x(t)|2 dt +
1

|Q|

\
Q

|x(α)(t)|2 dt

for α ∈ N.
Let SW α

2 (M, q) denote the space of functions for which the norm

‖x‖SW α
2

(M,q) = sup
Qq

|||x|||W α
2

(Qq)
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is finite. So (8) implies

‖x̃‖
L̃2(h)

≤ ‖x‖SW 0
2
(M,q),

and (9) implies

‖x̃‖2

W̃ 1
2
(h)

= ‖x′‖2
L2(h) ≤ c sup

Qq

1

q
(q2‖x‖2

L2(Qq) + ‖x′‖2
L2(Qq))

= c‖x‖2
SW 1

2
(M,q).

Interpolating these estimates, we conclude that

(10) ‖x̃‖
F(L̃2(h),W̃ 1

2
(h))

≤ c‖x‖F(SW 0
2
(M,q),SW 1

2
(M,q))

for any exact interpolation functor F .

We shall use the interpolation relations between spaces SW α
2 (M, q),

which can be described with the help of the second complex interpolation
method of Calderón. Namely, we have

Lemma 1. For any 0 < θ < 1,

[SW 0
2 (M, q), SW k

2 (M, q)]θ = SW θk
2 (M, q),

where the equivalence of the corresponding norms is uniform with respect to

q and M .

The proof is rather standard, so we omit it. However it is worth pointing
out that homogeneity of the norms considered is essential.

Thus for F(X0,X1) = [X0,X1]
θ in (10) we have

‖x̃‖
[L̃2(h),W̃ 1

2
(h)]θ

≤ c‖x‖SW θ
2
(M,q).

Since for any Hilbert pair, the spaces (H0,H1)θ,2 and [H0,H1]
θ coincide,

and the constants of equivalence of norms depend only on θ, we see that

sup
h

‖x̃‖2

(L̃2(hn),W̃ 1
2
(hn))θ,2

≤ c sup
|Q|≤1

|Q|2θ−1
\
Q

|x(t)|2 dt +
1

|Q|

\
Q

\
Q

|x(t) − x(s)|2

|t − s|1+2θ
ds dt

≤ c sup
Q

1

|Q|

\
Q

|x(t)|2 dt + sup
Q

1

|Q|

\
Q

\
Q

|x(t) − x(s)|2

|t − s|1+2θ
ds dt.

If x ∈ bmoθ(M), then both terms on the right hand side are obviously finite.
Hence

bmoθ(M) ⊂ 〈L∞(M), L1
∞(M)〉θ,2,

and

〈L∞(M), L1
∞(M)〉θ,2 ∩ L∞(M) = bmoθ(M).
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Similarly

〈L∞(M), L2
∞(M)〉θ,2 ∩ L∞(M) = bmo2θ(M).

The theorem is proved.

4. Other interpolation constructions. The upper Hilbert interpo-
lation functor was used in the proof of the interpolation property of the
fractional BMO space because it looks natural in the given situation. How-
ever, this functor is not well studied, so it would be natural to consider
alternative functors which yield the same interpolation spaces.

The Lions–Peetre construction, applied to the pair {L∞(M), Lk
∞(M)},

yields the Besov spaces. The fractional BMO spaces are not among them.
The structure of the complex method spaces [L∞(M), Lk

∞(M)]θ remains an
open problem. So we analyze the interpolation functors connected with the
method of orbits.

We consider the interpolation constructions ϕm(X0,X1), ϕu(X0,X1),
and Gϕ

5 (X0,X1), corresponding to function parameters ϕ (see, for example,
[5] or [6]).

Recall the definition of the spaces ϕu(X0,X1) in the case of ϕ(s, t) =
s1−θtθ where 0 < θ < 1.

It is well known that l1(w
1−θ
0 wθ

1) is an interpolation space between l1(w0)
and l1(w1), and {l1(w0), l1(w1)} 7→ l1(w

1−θ
0 wθ

1) is an interpolation functor on
the category of all pairs of the form {l1(w0), l1(w1)} with arbitrary weights.
The maximal extension of this functor to the category of all Banach pairs
is denoted by ϕu(X0,X1). Recall that x ∈ ϕu(X0,X1) if

sup
w0,w1,T

‖Tx‖l1(w1−θ
0

wθ
1
) < ∞

where the supremum is taken over all weights w0, w1 and all operators T :
{X0,X1} → {l1(w0), l1(w1)} such that ‖T‖Xi→l1(wi) ≤ 1 for i = 0, 1.

For any Hilbert pair {H0,H1} we have ϕu(H0,H1) = Hθ (see [6]), there-
fore

ϕu(X0,X1) ⊂ 〈X0,X1〉
θ,2

where ϕ(s, t) = s1−θtθ.

Proposition 4. For any 0 < θ < 1 we have

ϕu(L∞(M), Lk
∞(M)) = 〈L∞(M), Lk

∞(M)〉θ,2

where ϕ(s, t) = s1−θtθ.

P r o o f. Let T : {L∞(M), Lk
∞(M)} → {l1(w0), l1(w1)} with unit norm.

By Grothendieck’s theorem the operators T : L∞(M) → l1(w0) and T :
Lk
∞(M) → l1(w1) can be factorized through Hilbert spaces. This implies

(see [6]) that T can be factorized through a Hilbert pair {H0,H1}, that is,
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T = S2S1 where S1 : {L∞(M), Lk
∞(M)} → {H0,H1} and S2 : {H0,H1} →

{l1(w0), l1(w1)}.
If now x ∈ 〈L∞(M), Lk

∞(M)〉θ,2, then S1(x) ∈ Hθ. Hence T (x) =
S2(S1(x)) ∈ l1(w

1−θ
0 wθ

1), and

‖T (x)‖l1(w1−θ

0
wθ

1
) ≤ C‖x‖〈L∞(M),Lk

∞
(M)〉θ,2 .

Thus x ∈ ϕu(L∞(M), Lk
∞(M)). Therefore

〈L∞(M), Lk
∞(M)〉θ,2 ⊂ ϕu(L∞(M), Lk

∞(M)).

The proposition is proved.

Now we turn to the functor Gϕ
5 (X0,X1) (see [6]) where ϕ(s, t) = s1−θtθ.

The space Gϕ
5 (X0,X1) can be described, for example, in terms of orbits

as follows: x ∈ Gϕ
5 (X0,X1) if x = T (aθ) where aθ = {2nθ}∞n=−∞ and T :

{l1, l1(2
−n)} → {X0,X1} is such that T ∗ : X∗

0 → l∞ and T ∗ : X∗
1 → l∞(2n)

are absolutely summing operators.
It is shown in [8] that for any Banach pair {X0,X1} which is dual to a

pair with the approximation property, the space Gϕ
5 (X0,X1) coincides with

ϕu(X0,X1). The pair {L∞(M), Lk
∞(M)} satisfies the conditions above. In-

deed, we have already seen that {L∞(M), Lk
∞(M)} is dual to the regular

pair {L1(M), W̊−k
1 (M)}. In [3] it was also shown that there exists a com-

mon basis in L1(M) and W̊−k
1 (M), which guarantees that this pair has the

approximation property.
Therefore we see that

Gϕ
5 (L∞(M), Lk

∞(M)) = ϕu(L∞(M), Lk
∞(M)) = 〈L∞(M), Lk

∞(M)〉θ,2

for ϕ(s, t) = s1−θtθ.

Proposition 5. If ϕ(s, t) = s1−θtθ, then the space ϕu(L∞(M), Lk
∞(M))

coincides with the orbit of aθ = {2nθ}∞n=−∞ with respect to the bounded

linear operators mapping {l2, l2(2
−n)} into {L∞(M), Lk

∞(M)}, that is, with

the space

Orb(aθ, L({l2, l2(2
−n)} → {L∞(M), Lk

∞(M)})).

P r o o f. If x ∈ ϕu(L∞(M), Lk
∞(M)) = Gϕ

5 (L∞(M), Lk
∞(M)), then x =

T (aθ) where T : {l1, l1(2
−n)} → {L∞(M), Lk

∞(M)} is such that T ∗ is abso-
lutely summing from (L∞(M))∗ into l∞ and from (Lk

∞(M))∗ into l∞(2n).
These operators T ∗ can be factorized through Hilbert spaces and conse-
quently, as already mentioned, the operator T can be factorized through a
Hilbert pair {H0,H1}, i.e. T = S2S1 where S1 : {l1, l1(2

−n)} → {H0,H1}
and S2 : {H0,H1} → {L∞(M), Lk

∞(M)}.
Thus x = S2(S1(aθ)) where S1(aθ) ∈ (H0,H1)θ,∞. By K-monotonici-

ty of Hilbert pairs (see, for example, [10]) we have S1(aθ) = U(aθ) where
U : {l2, l2(2

−n)} → {H0,H1}.
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Hence x = S2U(aθ) where S2U : {l2, l2(2
−n)} → {L∞(M), Lk

∞(M)}.

Conversely, if x = W (aθ) where W : {l2, l2(2
−n)} → {L∞(M), Lk

∞(M)},

then x = W̃ (aθ) where

W̃ : {l1, l1(2
−n)} ⊂ {l2, l2(2

−n)} → {L∞(M), Lk
∞(M)}.

By Grothendieck’s theorem, W ∗ is absolutely summing as it maps the
dual to an L∞-space into a Hilbert space. Hence, W̃ ∗ is also absolutely
summing.

Thus x ∈ Gϕ
5 (L∞(M), Lk

∞(M)). The proposition is proved.

Recall that the definition of ϕm(X0,X1) for ϕ(s, t) = s1−θtθ is similar
to the definition of Gϕ

5 (X0,X1) where the pair {l1, l1(2
−n)} has to be re-

placed by {l2, l2(2
−n)}. Namely x ∈ ϕm(X0,X1) if x = T (aθ) where aθ =

{2nθ}∞n=−∞ and T : {l2, l2(2
−n)} → {X0,X1} is such that T ∗ : X∗

0 → l2 and
T ∗ : X∗

1 → l2(2
n) are absolutely summing.

Since the dual operator to any linear bounded operator, mapping a
Hilbert space into an L∞-space, is absolutely summing, we conclude that

Orb(aθ, L({l2, l2(2
−n)} → {L∞(M), Lk

∞(M)})) = ϕm(L∞(M), Lk
∞(M)).

Thus

〈L∞(M), Lk
∞(M)〉θ,2 = ϕu(L∞(M), Lk

∞(M))

= Gϕ
5 (L∞(M), Lk

∞(M))

= ϕm(L∞(M), Lk
∞(M))

= Orb(aθ, L({l2, l2(2
−n)} → {L∞(M), Lk

∞(M)}))

for ϕ(s, t) = s1−θtθ.

5. Interpolation theorems for spaces of continuous functions.

As usual let C(M) denote the space of all uniformly continuous bounded
functions on M . Correspondingly let Ck(M) denote the space of all func-
tions whose k derivatives belong to C(M).

The spaces C(M) and Ck(M) are L∞-spaces, therefore again by the
Grothendieck theorem we see that an analogue of Proposition 4 is valid, i.e.

ϕu(C(M), Ck(M)) = 〈C(M), Ck(M)〉θ,2

as well as

Orb(aθ, L({l2, l2(2
−n)} → {C(M), Lk

∞(M)})) = ϕm(C(M), Lk
∞(M)).

Theorem 2. For any k ∈ N and any one-dimensional manifold M ,

ϕu(C(M), Ck(M)) = 〈L∞(M), Lk
∞(M)〉θ,2

where ϕ(s, t) = s1−θtθ.
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P r o o f. Obviously, C(M) is equal to the closure of Lk
∞(M) ∩ L∞(M)

in L∞(M). Therefore any operator T : {l2, l2(2
−n)} → {L∞(M), Lk

∞(M)}
continuously maps l2 into C(M). Hence,

Orb(aθ, L({l2, l2(2
−n)} → {L∞(M), Lk

∞(M)}))

= Orb(aθ, L({l2, l2(2
−n)} → {C(M), Lk

∞(M)})).

Thus

ϕu(L∞(M), Lk
∞(M)) = ϕm(L∞(M), Lk

∞(M)) = ϕm(C(M), Lk
∞(M)).

By the general inclusion ϕm(X0,X1) ⊂ ϕu(X0,X1) (see [5]), we have

ϕm(C(M), Lk
∞(M)) ⊂ ϕu(C(M), Lk

∞(M)),

and consequently ϕu(L∞(M), Lk
∞(M)) ⊂ ϕu(C(M), Lk

∞(M)).

The space Lk
∞(M) is equal to the Gagliardo completion of Ck(M) rel-

ative to L∞(M) + Lk
∞(M). From the general property of stability of the

functor ϕu with respect to the Gagliardo completion (see [6]) we deduce
that

ϕu(C(M), Ck(M)) = ϕu(C(M), Lk
∞(M)).

Obviously, ϕu(C(M), Lk
∞(M)) ⊂ ϕu(L∞(M), Lk

∞(M)). Thus

ϕu(C(M), Ck(M)) = ϕu(C(M), Lk
∞(M)) = ϕu(L∞(M), Lk

∞(M)),

and in view of Proposition 4, ϕu(C(M), Ck(M)) = 〈L∞(M), Lk
∞(M)〉θ,2.

The theorem is proved.

Corollary. For k = 1, 2 and ϕ(s, t) = s1−θtθ,

ϕm(C(M), Lk
∞(M)) ∩ C(M) = ϕu(C(M), Ck(M)) ∩ C(M) = bmokθ(M).

Thus bmoθ(M) is an interpolation space between C1(M) and C(M) if
0 < θ < 1, and between C2(M) and C(M) if 0 < θ < 2. It looks very
plausible that equalities similar to the latter one and Theorem 1 are still
valid for other integers k. It is necessary to use a lifting and an analogue of
Wolff’s theorem for spaces ϕu(L∞(M), Lk

∞(M)) (see [8]).

The case of manifolds of higher dimensions. As noticed by Strichartz
[13], the trace of the space bmoθ(R2) on R coincides with the Hölder–
Zygmund space C̊θ(R) for θ > 0. Therefore the operator P : x(t, s) 7→
x(t, 0) maps boundedly C(R2) into C(R2) and Ck(R2) into Ck(R2), but
P : bmoθ(R2) 9 bmoθ(R2). Thus, bmoθ(R2) is not an interpolation space
between C(R2) and Ck(R2) for 0 < θ < k. Similarly it is possible to show
that bmoθ(R2) is not an interpolation space between L∞(M) and Lk

∞(M).

6. Boundedness of commutators. In this section we consider only
spaces of functions defined on the real axis, so we omit R in notation.
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Denote by Lα
∞, where 0 < α < 1, the space of Bessel potentials of order

α generated by bounded functions, namely Lα
∞ = Jα(L∞).

It was shown in [11] that the operator aH −Ha, where H is the Hilbert
transform, is bounded from Lp into W α

p if a ∈ Lα
∞. With the help of The-

orem 1 it is possible to get a straightforward proof of a somewhat stronger
statement.

Theorem 3. If a ∈ bmoα, then the operator aH − Ha maps boundedly

Lp into W α
p for any 1 < p < ∞.

P r o o f. Let f ∈ Lp, then aH(f) − H(af) ∈ Lp for any a ∈ L∞. Hence
each f ∈ Lp generates a linear operator from L∞ into Lp, and

‖aH(f) − H(af)‖Lp
≤ C‖f‖Lp

‖a‖L∞
.

If a ∈ L1
∞, that is, if we take a Lipschitz function a, then by the Calderón

theorem [2], aH(f) − H(af) ∈ Ẇ 1
p where Ẇ 1

p denotes the homogeneous
Sobolev space, and

‖aH(f) − H(af)‖Ẇ 1
p
≤ C‖f‖Lp

‖a′‖L∞
.

If we apply the functor ϕu with ϕ(s, t) = s1−αtα to the operator a 7→
aH(f) − H(af), then

‖aH(f) − H(af)‖ϕu(Lp,Ẇ 1
p) ≤ C‖f‖Lp

‖a‖ϕu(L∞,L1
∞

),

and

‖aH(f) − H(af)‖ϕu(Lp,Ẇ 1
p)∩Lp

≤ C‖f‖Lp
‖a‖ϕu(L∞,L1

∞
)∩L∞

.

In the case of 1 < p < ∞ the pair {Lp, Ẇ
1
p} is rather simple, since it is

a retract of a pair of reflexive lattices. Therefore ϕu(Lp, Ẇ
1
p) coincides with

the complex method space [Lp, Ẇ
1
p]α, that is, with Ẇα

p .

Thus in view of W α
p = Lp ∩ Ẇ α

p we conclude that

‖aH(f) − H(af)‖W α
p
≤ C‖f‖Lp

‖a‖bmoα

by Theorem 1 and Proposition 4. The theorem is proved.
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[2] A. P. Calder ón, Commutators, singular integrals on Lipschitz curves and applica-
tions, in: Proc. Internat. Congress Math. Helsinki, 1978, Vol. 1, 1980, 85–96.

[3] Z. Cies ie l sk i and T. Fig ie l, Spline bases in classical function spaces on compact
manifolds, Studia Math. 76 (1983), 1–58.



218 V. I. Ovchinnikov

[4] B. Mit iag in and E. M. Semenov, Absence of interpolation of linear operators
in spaces of smooth functions, Izv. Akad. Nauk SSSR 41 (1977), 1229–1266 (in
Russian); English transl. Math. USSR-Izv. 11 (1977), 1289–1328.

[5] V. I. Ovch inn ikov, Interpolation theorems, resulting from the Grothendieck in-
equality , Funktsional. Anal. i Prilozhen. 10 (1976), no. 4, 45–54 (in Russian); English
transl.: Functional Anal. Appl. 10 (1977), 287–294.

[6] —, The method of orbits in interpolation theory , Math. Reports 1 (1984), 349–516.
[7] —, Interpolation properties of fractional BMO space, in: All-Union School on the

Theory of Operators in Functional Spaces, Kŭıbyshev, 1988, 142 (in Russian).
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