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On spreading cg-sequences in Banach spaces
by
VASSILIKI FARMAKI (Athens)

Abstract. We introduce and study the spreading-(s) and the spreading-(u) property
of a Banach space and their relations. A space has the spreading-(s) property if every
normalized weakly null sequence has a subsequence with & spreading model equivalent to
the usual basis of cp; while it has the spreading-(w) property if every weak Cauchy and
non-weakly convergent sequence has a convex block subsequence with a spreading mode!
equivalent to the summing basis of ¢g. The main results proved are the following:

(a) A Banach space X has the spreading-(s) property if and only if for every subspace
Y of X and for every pair of sequences (zn) in ¥ and (x},) in ¥™*, with (xn) weakly
null in ¥ and (zy,) uniformly weakly null in ¥* (in the sense of Mercourakis), we have
#p(%n) — O (i.e. X has a hereditary weak Dunford-Pettis property).

(b} A Banach space X has the spreading-(u) property if and only if By (X) € B, 74(X)
in the sense of the classification of Baire-1 elements of X** according to Haydon—Cdell-
Rosenthal.

(c) The spreading-(s) property implies the spreading-(w) property.

Result (¢), proved via infinite combinations, connects an internal condition on a Banach
space with an external one.

0. Introduction. The notion of spreading model, introduced by Brunel
and Sucheston in [B-S], proved fruitful in the study of Banach spaces as well
as in the study of Baire-1 functions ([R1}, (H-O-R], [F3] and others).

In this paper we introduce and study the spreading-cy properties of a
Banach space, as they relate to the universal occurrence of sequences with
spreading models equivalent to the usual or the summing basis of cg.

In the first section we introduce the spreading-(s) property of a Banach
gpace as follows: every normalized and weakly null sequence of the space has
a subsequence with a spreading model equivalent to the usual basis of ¢y, and
we give equivalents and consequences of this property. An example of a space
with the spreading-(s) property is the dual of Tsirelson’s space (Example 1.9
below). The spreading-(s) property is the spread-theoretic analog of the
stronger property (s), introduced earlier by Cembranos and Elton in [C]
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and [E], where they proved that property (s) is equivalent to the hereditary
Dunford-Pettis property (i.e. for every pair of weakly null sequences (z,)
in a Banach space X and (z}) in X™* we have 2, (z,) — 0). According
to our result (Theorem 1.15 below), if we replace the weak convergence of
(23) by the uniformly weak convergence (introduced earlier by Mercourakis
in {M], where it is related to the Cesaro summability) we obtain an analogous
equivalence for the spreading-(s) property.

On the other hand we introduce the spreading-(u) property by the con-
dition that every weak Cauchy and non-weakly convergent sequence in
a Banach space has a convex block subsequence with a spreading model
equivalent to the summing basis of cg. The predual of the space called the
“Jamesification” of Tsirelson’s space is a non-trivial example of a space
with this property (Example 2.8 below). The spreading-(u) property is the
spread-theoretic analog of the stronger property (u}, introduced earlier by
Pelczyiiski in [P].

In the second part of this paper we obtain several characterizations of
the spreading-(u) property. One of them states that B;(X) C B, /a(X)
(Theorem 2.6 below) (i.e., the Baire-1 elements of the double dual space,
considered as functions on the unit ball of the dual space with the
w*-topology, are uniform limits of sequences of differences of bounded semi-
continuous functions, uniformly bounded in the D-norm), thus relating the
spreading-(u) property to the class B, /4(K) for a compact space K in-
troduced by Haydon-Odell-Rosenthal in [H-O-R] and studied in [F1],
(F3], [R3].

Finally, we prove that the spreading-(s) property implies the spread-
ing-(u) property (Theorem 2.10 below). So by looking at the weakly null
sequences of a Banach space we obtain information on the Baire-1 elements
of the second dual space.

1. The spreading-(s) property. We start with some definitions and
remarks concerning spreading models.

DEFINITION 1.1. A basic sequence (y,) in a Banach gpace Y is said to
be spreading if it is 1-equivalent to all of its subsequences.

A basic sequence (z,,) in a Banach space X has a spreading sequence
(n) as a spreading model if for every £ € N and ¢ > 0 there exists my € N
such that if mgy < n; <... < np €N then

k k
(1— 5)“ Zﬂiyi < H Z 0iTn,;
fm] gm=1

for all scalars a4, .. .y Qg

<1+ E)H i;az‘%
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Every seminormalized basic sequence in a Banach space has a subse-
quence with a spreading model. For information on spreading models consult
[B-5], [B-L], [G].

The Schreier family F is the family

Fr={(ny,....np) k<ny <., < ng e N1
The following proposition connects the concept of spreading model with
Schreier’s family.

PROPOSITION 1.2 ([F1]). Let (z,,) be a seminormalized basic sequence in
a Banach space X, (yn) a spreading model of (z,), and (en) an arbitrary
basic sequence. The following are equivalent:

(1) (yn) is equivalent to (ey,).
{ii} There ezists a subsequence (z!)) of (zn) and 0 < D < C such that

k k k
DHZ&W;G@ < HZ(L‘E;,L‘, < C”Zaiei’
g i=1 =1

for all (ny,...,ng) € F1 and scalars ay, . . ., .

For normalized weakly null sequences with a spreading model equivalent
to the usual basis of cq we will need more detailed information provided by
the following:

LEMMA 1.3. Let (xn) be a normalized weakly null sequence in a Banach
space X. The following are equivalent:

(1) There exists C > 0 such that

k
3o
i=1

for all (nq,...,ng) € Fy and scalars aq,. .., ag.
(ii) sup{zf=1 |2*(2n,)| 2 (n1,... ,nx) € F1} < 00 for every z* € X ™.
(iif) There ezists A > 0 such that

k
e
i=1

for all (nq,...,ny) € Fy and ¢1,...,6x € {—1,1}.
(iv) There exists B > 0 such that

k
(LS
i=1

< C sup |a]
1<i<k

<A

<B

forall (na,...,n,) € Fr.
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Proof. Obviously (i)=(iv).

(iv)=>(iil). Let (n1,...,nx) € F1 and &1,...,6x € {—1,1}; set I; =
li:1<i<k =1}l ={i:1<i<k, g = —1} and note that
{ni:ieh}and {n;:i€ L} are in Fy. Thus

k
LN
i=1 i€l i€l
(iii)=-(ii). Let z* € X* and (n1,-..,nk} € Fy; then

k k k k
o la @nl= s (on) =7 (3 siam) ¥l - || 3 e
i=1 i=1 i=1

i=1

<2B.

< Allz™,

where g; € {—1,1} and |z*(zn,)| = si2*(zn,).
(ii)=>(i). This is a consequence of Baire’s category theorem. Indeed, for
every n € N set

Zn = {3:* eX™: sup{zk:fm*(mm)f i (nyy.. ., nE) € fl} < n},
i=1

and notice that X* = |J_ Z, and that Z, € X* are norm closed for all
n € N. Hence there exists C' = ng € N such that z* € Z,,, for every z* ¢ X*
with ||lz*|} < 1. Now, let (n1,...,nx) € F1 and a1,...,a5 € R; then there
exists £* € X with ||z*|| < 1 such that

k |
15 ] =),
=1

i=1

It follows that

[ k
” Zaimm | = lZaiﬂs*(mm)
i=1 d=sl

The proof is complete.

k
< a;] - 2™ (zn,)| € C sup |ayl.
_gl | 2™ ()] 1gz‘§kl i

PROPOSITION 1.4. A normalized weakly null sequence in o Banach space
X has a subsequence with a spreading model equivalent to the usual basis of
co if and only if it has a subsequence which satisfies one of the equivalent
conditions (i) to (iv) of Lemma 1.3.

Proof. Let (z,) be a normalized weakly null sequence in X and (z,) a
subsquence of (z,) satisfying one of the conditions (i) to (iv) of Lemma 1.3.
The sequence (zn) has a basic subsequence (z/,) with a spreading model
(yn) ([B-P], [B-8]). If a sequence satisfies one of the conditions (i) to (iv) of
Lemma 1.3 then so does each of its subsequences. Hence (x,) satisfies (i)
of Lemma 1.3 and according to Proposition 1.2 it has a spreading model

equivalent to the usual basis of cg.
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On the other hand, if a normalized weakly null sequence (2zn) has a
subsequence (z,) with a spreading model equivalent to the usual basis of

¢y then (z) bas a subsequence satisfying (i) of Lemma 1.3 according to
Proposition 1.2.

DEFINITION 1.5. A wealdy null sequence {x,) in a Banach X is called
a null-coefficient sequence iff whenever a sequence () of scalars satisfies

k
sup { “ Z Qn; Ty,
i=1

l:(nl,...,nk)e}"l}<oo

then &, — 0.
For a normalized weakly null sequence the following dichotomy obtains:

PROPOSITION 1.6. Let (1n) be a normalized weakly null sequence in a
Banach space X. Then either

(1) (zn) has a subseguence with a spreading model equivalent to the usual
basis of ¢g, or

(ii) every subsequence of (zy,) is null-coefficient.

Proof. Suppose there exists a subsequence (y,) of (z,), (an) € €5 and
' > 0 such that

k
o
i=1

We can find an ¢ > 0 and a subsequence (e, ) of {a,) such that a,,, > ¢
for every m € N (replacing, if necessary, a, by —a,).

We will prove that the subsequence (yn,.) = (2m) of (z,,) satisfies con-
dition (if) of Lemma 1.3 and thus, according to Proposition 1.4, (2,,) has
a subsequence with a spreading model equivalent to the usual basis of cq.
Indeed, let z* € X* and (my,...,mp) € F1; then

<C forevery (ny,...,ng) € Fy.

i k i
Z 2" (2m,)| < Zﬂnmi(l/a)!m*(zm.-)l = {1/} Zanmisim*(Zmi)
q==] i=1 j==l
k k
= (1/&‘):::*( Z anmizmi) + (1/5):0*( Z anmizmi)
=) =

< (2/8)0 |-

Above we have set |£* (2, )| = £:2*(2m, ), where g; € {—1,1}fori=1,...,k,
and we have used the obvious fact that Be F; if BC A and A € Fy.
The proof of the proposition is complete.
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REMARK. It is easy to verify that the two alternatives of Proposition 1.6
are mutually exclusive.

We now wish to introduce and study (Definition 1.7 below) a class of Ba~
nach spaces which is characterized by a universal occurrence of weakly null
sequences with spreading models equivalent to the ¢g-basis. This is anal-
ogous to the universal occurrence of sequences equivalent to the c¢g-basis
in the class of Banach spaces with property (s) introduced by Cembra-
nos [C] and Elton [E]. Specifically, a Banach space X has property (s) if
every normalized weakly null sequence has a subsequence equivalent to the
usual basis of cg. However, property (s) is very strong and relates only to
spaces that are close to cp. We propose to study a more general property,
where co-embeddings are replaced by spreading models of ¢y according to
the following:

DeriniTION 1.7. A Banach space X has the spreading-(s) property if
every normalized weakly null sequence in X admits a subsequence with a
spreading model equivalent to the usual basis of cg.

REMARKS 1.8. (a) If a Banach space X has property (s) then X has the
spreading-(s) property; e.g. the space ¢o(I') or any space with the Schur
property.

{b) The spreading-(s) property is hereditary: every closed subspace has
the spreading-(s) property if the space does.

(c) The spaces £, 1 < p < 00, and P, 2 < p < 00, do not have the
spreading-(s) property since every normalized weakly null sequence in £
contains a subsequence equivalent to the Z,-basis, and every subspace of L?
contains a smaller subspace isomorphic to 4, or £ ([K-P)).

ExAMPLE 1.9 (The Tsirelson space S). We consider S as the dual space
of the space 7", as described by Figiel and Johnson [F-J].

Let ¢op be the linear space of all finitely supported real-valued functions
on N and (e,) the unit vector basis of egp. For every z == (An) € cgo and
m=0,1,2,... set

Iello = maxc|.,

Pit1l

el = mas (e, Smac { 3] 35 rven]

i=l  n=p;+l

kSp1<...<pk+1€N})‘

Then |\z|| = By ||]|m is a norm for cgg.
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The space T' is the completion of cgp with respect to the norm || ||, and
it is easy to see that
Pit1
“"’BH = max (Hm”007251~lp{2“ Z Anen k<p1 <o < Prg EN})

i=1 n=p;+1

The usual basis (e,) is an unconditional basis of T and T is reflexive.
Let (e;,) be the sequence of biorthogonal functionals of (e,,) and let § = T*
= [(e},)]. Hence S is also a reflexive space with an unconditional basis.

Of course, since § is reflexive, it does not have property (s). However,
we can prove the following:

CLAIM. S has the spreading-(s} property.

Proof. Let (u;)iew be a bounded block sequence of (e}) (that is, u; =
1 An€r, With p; < pig for every i € N) with [u;]] < M for every
i € N. Then for every ¢ = >~ janen €T, k< ny < ... < ny € N and

g1 = Nk + 1, we have

Prgti k Png+1
Zlum w)l-Zum( 3w Sl D anea|
gl n=pn;+1 d==] n=pp,;+1
Png+1
<MZI| 3" anen|| < 2M 2|
N=Ps ; +1

since K <y < Pr, < ... < Pny, < Pyt

Hence, according to Proposition 1.4, every seminormalized bounded
block subsequence of (e;) has a subsequence with a spreading model equiv-
alent to the usual basis of ¢j.

Finally, S has the spreading-(s) property since every normalized weakly
null sequence in 5 admits a subsequence equivalent to a block subsequence
of (e}).

A weaker property than property (s) is the weak Benach—Saks property
(or Banach-Saks—-Rosenthal property) defined by the condition that every
weakly null sequence contains a Cesdro summable subsequence (the sequence
of arithmetic means converges in norm). We now prove that this property
is in fact weaker than the spreading-(s) property. :

ProrogiTion 1.10. If a Banach space X has the spreadmg (s) property
then i has the weak Banach—Saks property.

Proof. Let (z,) be a normalized weakly null sequence in X. According
to Proposition 1.4 it has a subsequence (y,) satisfying, for some B > 0,
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k
(P
i=1
Then ||(1/k) S5, || < B/k for every (n1,...,ni) € F1 and obviously
1k
A Zym :[ = 0.

=1
According to a result of Mercourakis [M] {Theorem 1.12 below) this gives
that every subsequence of (y,) is Cesaro summable to zero.

< B for every (n1,...,M7) € F1.

lim [ sup
k=00 | png<..cny

REMARK. The spreading-(s) property is not equivalent to the weak
Banach-Saks property since the spaces L?([0,1]), 2 < p < oo, all have
the weak Banach-Saks property, but not the spreading-(s) property.

In the following we will prove a characterization of the spreading-(s)
property via a property weaker than the Dunford-Pettis property (intro-
duced in Definition 1.14 below). We recall that a Banach space X has the
Dunford-Pettis property if for every pair of weakly null sequences (z,) C X
and (z},) € X* we have z,(z,) — 0. According to results independently
proved by Cebrancs [C] and Elton [E], property (s} is equivalent to the
hereditary Dunford-Pettis property. It is interesting that a modification
of the Dunford-Pettis property relating to the convergence of {z}) vields
an equivalence, analogous to Cembranos—Elton’s, for the new spreading-(s)
property.

The right type of convergence turns out to be the uniformly weak conver-
gence, introduced earlier in another context, related to Cesdro summability,
by Mercourakis [M].

DermrTION 1.11 ([M]). A sequence (z,) converges uniformly weakly to
z in a Banach space X if for every £ > 0 there is a natural number N(g)
such that

Hn e N:|z*(z, ~ )| > e} < N(e)
for every o* € X* with ||z*|| < L.
If © = 0, we sometimes say that (z,) is uniformly weakly null.

It is clear that z, — @ uniformly weakly implies x,, — z weakly.

We will need the following description of uniformly weak convergence via
the Schreier family (and also via Cesdro summability), due to Mercourakis
[M] (Theorem 1.12), and also the following dichotomy (Theorem. 1.13), which
exists for weakly null sequences, between the existence of a uniformly weakly
convergent subsequence and the existence of a subsequence with spreading
model equivalent to the £;-basis, due to Rosenthal [R1] (cf. also [M)]), and
ultimately based on the Erd6s-Magidor summability dichotony [E-M].
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THEOREM 1.12 ([M]). Let (,) be a bounded sequence in a Banach space
X and = € X. The following are equivalent:
(ii) lim [ su L im ] 0
~ . —z|| =0.
n—roo ngklg.p.gkn n i
(iii) Bvery subsequence of (z,) is Cesdro summable in X fo x.
TueoreM 1.13 {[R1], [E-M]). Let (z,) be a weakly null sequence in a

Banach space X. Then there exists o subsequence (zn,) of (zn) such that
either

(1) zn — x uniformly weakly in X.

(1) (@n,) ts uniformly weakly null, or
(i) (xn,) has o spreading model equivalent to the usual basis of #1.

DEFINITION 1.14. A Banach space Y has the weak Dunford-Pettis prop-
erty if for every pair of sequences (z,,) in ¥ and (z}) in ¥*, with (z,,) weakly
null and (z}) uniformly weakly null, we have =7 (z,) — 0.

A Banach space X has the hereditary weak Dunford-Pettis property if

every subspace of X has the same property.

We are now in a position to state and prove the main result of this
section.

THEOREM 1.16. A Banach space X has the spreading-(s) property if and
only if it has the hereditary weak Dunford-Peitis property.

Proof. (=) Let X have the spreading-(s) property, ¥ a closed subspace
of X, (z,) a weakly null sequence in ¥ and (z) a uniformly weakly null
sequence in ¥Y*. If either (z,,) or (2}) is norm convergent to zero, then clearly
a2k (2n) — 0. If this is not the case, suppose towards a confradiction that
(@} (zy,)) does not converge to zero. Then there exist a subsequence (2, )
of (¢) and € > 0 such that z}, (z,) > ¢ (veplace &, by —z, if necessary).

By hypothesis we can assume that {z,,) has a spreading model equiv-
alent to the usual basis of ¢o. Let zx =y, and z; =, for every k € N.
According to Proposition 1.4, we can assume that there exists B > 0 such

that
n
| >
=l

Since (z}) converges uniformly weakly to zero the same is true for (25;)
and according to Theorem 1.12 there exists g € N such that

T
£
H Z Zhq
=l

where § = /(4 B8).

< B for every (ki,...,kn) € Fi.

< dn forevery (ky,.... kn) € F1 withng < n,
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It follows that for every (ki,...,kn) € F1 with ng < n we have

DIREOEN0 98N <zl

In order to arrive at a contradiction we define by recursion natural num-
bers k1 = ng, ka, .. ., kn, such that the element (ki,...,kn,) of 71 does not
satisfy (x). Set k1 = ng. Let 1 < A < k; and assume that %q,...,k» have
been defined. Since limp_,cc 25, (2x) = O and limgoo 25 (2k,) = 0 for every
i=1,..., A there exists kyyy € N with ka1 > ky such that

€

z;;\+1 (zki) < E?’L—QN

Of cowrse {ky,...,kr, ) € F1 and no = k1 but

1 ng o 1 mng
SOPENO N Em DIEACY
noi N i=1 Mol

E
< e
< Bé )

= .
z;;i(zml)<ﬁ, for every i=1,..., A

T

e
|2 (X )

=1
Feti
1 & 1 e _ €
- — rlze)| >e——=— nglng—1) —— > =
>em LD bkl > o= omlma =) 5> 5,
J#i

& contradiction, completing the proof of necessity.

(+=) In order to prove the sufficiency we assume that for every closed
subspace Y of X, every weakly null sequence (zy) in ¥ and uniformly weakly
null sequence (%) in ¥Y™* we have 2}(2,) — 0 and also that there exists a
normalized weakly null sequence (z,) in X having no subsequence with a
spreading model equivalent to the usual basis of co. We may assume that
(zn) is basic {cf. [B-P]).

Since (zn) has no subsequence equivalent to the usual basis of cg, it has
a subsequence yx = z,,, for k € N, such that

k
SUp H Z ailY;
k i=1

according to the dichotomy proved by Odell in [0-1] (a corollary to the
“nearly uncenditional theorem” of Elton [E]). Hence the sequence (yh) of
the biorthogonal functionals of (y,) is weakly null in Y*, where ¥ = [Cuw)]
is the closed subspace spanned by the sequence (yk)-

Furthermore, applying a result of Odell [0-2], we can assume by passing
to a subsequence that (y}) is M-Schreier unconditional for some M > 2,

that is,
n oo
| ew]| < 22 St
i=1 i=1

‘ =co for every (a;) ¢ cq,
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for every (k1,...,kn) € Fi and every finitely non-zero sequence (a;) of
scalars.

We now make use of Theorem 1.13 for the sequence (yx). There exists

a subsequence 2y = yp,, A € N, of (1) such that either (z}) is uniformly
weakly null in Y™, or there exists § > 0 such that

k k
(52 !Cl..,;l _<_ H Zaiz;i
f=1

i=1

for (A1,..., Ak) € Fy and scalars a4,..., a.

The first alternative does not occur for any subsequence (z}) of (y})
since 2} (2z)) = 1 for every A ¢ N.

The second alternative is also impossible, since it implies the existence
of a subsequence of (x.) with a spreading model equivalent to the usual
basis of cp. Indeed, if (2}) satisfies the second alternative then for every
(A, A) € Frand f =52 buay € [(23)] we have

k k &
DN GRS ICNES SN
=1 d==] i=]

1 k M Ak
3 DI - by
ws”% MM =G ;bz

where K is the basis constant of (2}).
So we have, for some B > 0,

< K| fll,

M
5

k
H ZzAi ” < B  forevery (A1,...,Ax) € Fy
i=1

(see e.g. Singer [S], p. 115).

According to Proposition 1.4, (z,) has a subsequence with a spreading
model equivalent to the usual basis of ¢y, a contradiction, completing the
proof of the theorem.

The method of proof of the above theorem provides us with the following
interesting dichotomy,

THEOREM 1.6. For a normalized weakly null sequence (z,,) in o Banach
gpace X, exactly one of the following allernatives holds: '

(i) Buery subsequence of (an,) has a subsequence with a spreading model
equivalent to the usual basis of op.

(ii) There exists o basic subsequence (yn) of {(zn») such that the sequence
{y) of its biorthogonal functionals is uniformly weakly null in Y = [(y.)],
and hence every subsequence of () is Cesdro summable. :
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Proof Arguments analogous to the proof of the sufficiency of Theo-
rem 1.15 show that for every normalized weakly null sequence (z,) which
does not have a subsequence with a spreading model equivalent to the usual
basis of ¢p there exists a basic subsequence (y,,) such that the sequence (y};)
of its biorthogonal functionals is uniformly weakly null in ¥ = [(yx)].

The two alternatives are exclusive; in fact, if the sequence (yy) of the
biorthogonal functionals of a normalized weakly null sequence (y,) is uni-
formly weakly null in ¥ = [(y,)], then no subsequence of (y,) has a spread-
ing model equivalent to the usual basis of ¢g. This can be shown by using
arguments analogous to those in the proof of the necessity of Theorem 1.15.

2. The spreading-(u) property. In this section we introduce and
study a property of Banach spaces analogous to (in fact weaker than) the
spreading-{s) property, relating to the weak Cauchy and non-weakly con-
vergent sequences. It turns out that this property provides information on
the Baire-1 elements of the second dual space.

Orginally, Pelezyhski in [P] defined property (u) of a Banach space X in
the following way: for each #** € X**\ X which is the w*-limit of a sequence
in X, there exists a sequence (z,) in X w*-converging to 2** and satisfying

=)
E |#* (Zn+1 — zp)] < oo forall z* € X™.
n=1

In the same paper he proved that every subspace of a Banach space with an
unconditional basis has property (u).

Later, in [H-O-R] and [R2] an equivalent formulation of property (u) was
given using the summing basis (s,,) of ¢p (ie. s, = €1 +. .. + ey, for every
n € N), Namely, it was proved that a Banach space X has property (u)
if and only if for every weak Cauchy and non-weakly comvergent sequence
(zn) in X there exists a convex block subsequence (yn) of (®,) which is
equivalent to the summing basis of ¢g.

By analogy we define the spreading-(u) property.

DEFINITION 2.1. A Banach space X has the spreading-(u) property
if every weak Cauchy and non-weakly convergent sequence in X admits a
convex block subsequence with a spreading model equivalent to the summing
basis of cp.

Since we will be dealing with weak Cauchy and non-weakly convergent
sequences having a spreading model equivalent to the summing basis (s,)
of cp, we now give some information about them.

REMARKS 2.2. (i) Every weak Cauchy and non-weakly convergent se-
quence (%) in a Banach space X has a subsequence (¥r) which is basic and
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dominates the summing basis (s,,) of ¢g, i.e. there exists D > 0 such that

& k
D“Z)\isi < ”Z)\-iyi
i=1 oo i—1

for all & € N and scalars A1,..., Ay (see [H-O-R] or [R2]).

(ii) According to remark (i) and Proposition 1.2, a weak Cauchy and non-
weakly convergent sequence (z,) in a Banach space X has a subsequence
(resp. a convex block subsequence) with a spreading model equivalent to the
summing basis of ¢g if and only if there exists a subsequence (resp. a convex
block subsequence) (z,) of (z,) and C > 0 such that

” i Mzn| < CH i Aisi
=] i==1

,ng) € Fy and scalars Ap, ..., Az,

for all (ng,...

LemMA 2.3. Let (z) be a sequence in o Banach space X. The Jollowing
are equivalent;

(i) There exists C' > 0 such that

& k
H Z )\«;zm S C“ Z )\isi
izl i=1

for all (n1,...,n) € Fy and scalars Ay,. .., Ag.
(1) sup {0, 2% (2n, = 2nps )| s T € X7, |l2*]| <1 and (na, ..., m) € F1)
< oo (where ng = 0= zp).

(iii) sup{ELl[:c*(zm — Zng.y)] (L, me) € F1} < oo for every
z* € X* (where ng =0 = zg).

(==}

Proof. (i)~ (i) was proved in [F3]. (ii)=>(iii) is obvious. (iii)=>(ii) is a
consequence of Baire’s category theorem (cf. proof of Lemma 1.3, (ii)=-(i)).

Using these remarks we now establish an equivalence.

PROPOSITION 2.4. A weak Cauchy and non-weakly convergent sequence
(®,) in a Banach space X has o subsequence (resp. a conwex block subse-
quence) with a spreading model equivalent to the summing basis of co if and
only of (i) has a subsequence (resp. a conves block subsequence) (z,) which
satisfies one of the conditions (i) fo (ili) of Lemma 2.3.

In Proposition 1.6 above we proved a dichotomy-type result for weakly
null sequences. An analogous dichotomy was proved in [F3] for weak Cauchy
and non-weakly convergent sequences. For completeness we state this result
below.
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ProOPOSITION 2.5 ([F3]). Let (xn) be a weak Cauchy and non-weakly
convergent sequence in a Banach space X. Then either

(i} {zn) has a subsequence (resp. a convex block subsequence} with o
spreading model equivalent to the summing basis of co, or

(ii) every subsequence (resp. every convex block subseguence) (2,) of (zn)
is null-coefficient (i.e., whenever a sequence (A,) of scalars satisfies

t(n1,.. . Nak) 6.7'"1} < 00

k
sup {” Z /\ﬂzi(yﬂ-zi - yﬂﬁiul)
1=1

then Ap — 0).

Of course the two alternatives are mutually exclusive.

The spreading-(u) property of a Banach space will be characterized in
terms of the Baire-1 elements of its dual space (Theorem 2.6).
We first deal with some preliminaries.

Let K be a compact space. We denote by C'(K) the class of continu-
ous real-valued functions on K and by B (K) the class of Baire-1 functions
of K (i.e. the pointwise limits of uniformly bounded sequences of contin-
uous functions). We denote by D(K) the class of differences of bounded
sernicontinuous functions on K. We have

D(K) ={f: K — R : there are bounded and lower

semicontinuous functions v, v > 0 with f =« —v}.

The class D(K) is a Banach space with respect to the D-norm defined
as follows:

|flp = inf{||u+ 9|/ : f =u—v, u,v> 0 are bounded and
lower semicontinuous}.

Of course || fllcc < |flp for all f € D(K); the two norms are not equivalent,
in general.

The class By /4(K), introduced in [H-O-R], is defined by
Byjy(K) = {f : K — R : there exists (F,) C D(X) such that
[[F — flloo— 0 and sup |F,|p < oo}
The space By4(K) is a Banach space with respect to the norm
[flija= inf{st;p [Enlp ¢ (Fa) € D(K) and [|Fy, — flleo — 0}

As proved in [H-O-R], [F1] and [F3] these classes bear the following
relations to the summing basis of cg:
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(i) D(K) 2 {f € B1(K): there exist (f,) C C(K) and C > 0 such that
fpn — f pointwise and || 357y Aifillee < €|l 57y Aisiljeo for all n € N and
scalars A1,. .., An}t.

(if) Bi/a(K) 2 {f € Bi(K) : there exist (f,) € C(K) and C > 0
such that f. — f pointwise and || Ele Aifnilloe < O ELI Ai5¢|loo for all
(na,...,mk) € Fy and scalars Ag,. .., Ak}

If K is a compact metric space then the inclusions in (i} and (ii) are both
equalities. For more information about these classes, see [H-O-R], [R2], [R3],
[F2], [F3].

For & Banach space X we define

Bi(X) = {z** € X** : there exists (z,) in X w"-converging to z™"},
31/4(X) = {-TJ** e X" :.'IC**|K [S B1/4(K)},
where K = (Bx~,w*) is the unit ball of X* endowed with the weak* topol-
ogy-

After these definitions and remarks we can state the following equiva-

lence.

THEOREM 2.6. Let X be a Banach space.

(i) X has the spreading-(u) property if and only if B1(X) C Bya(X).
(i) If X is separable, then X has the spreading-(u) property if and only
if B1(X) = Bypu(X).

Proof. (i) Let X have the spreading-(u) property. For every 4™ &
Bi(X) \ X, there exists a sequence (z,) in X w*-converging to z**, so
there exists a convex block subsequence (4, ) of (zn) With a spreading model
equivalent to the summing basis of ¢p. According to Remark 2.2(ii} there
exists a convex block subsequence (z,) of (z,) and C' > 0 such that

H i Aizn, || £ C'II i Ai8i
fe=1 d==

for all (1, ...,nk) € Fy and scalars Ay, ..., Ag. Since (2q) i8 w*-converging
to z** it follows that o™ € By j4(X) (cf [F1]). Of cowrse X C By/a(X).

Conversely, we assume that z** € By4(X) for every a™ € By (X) and
let () be a weals Cauchy and non-weakly convergent sequence in X Then
(z,,) w*-converges to an element ** € By (X)\ X. Hence **| K € By j4(K),
where K = (By+,w"). Let ¥ = [(x,)] be the closed linear subspace gener-
ated by (2,) and K the unit ball of Y* endowed with the weak” topology.
Then K is a compact metric space and we observe that y**|Ky € By 4(K1)
where y** is the w*-limit of (2,) in Y**. According to [F1], (z.) admits a
convex block subsequence with a spreading model equivalent to the summing
basis of ¢g. This completes the proof of (i).

o0
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(ii) Let X be a separable Banach space. According to [O-R] in this case
Bi(X) = {z" € X* : z**|K € By(K)}

where K = (Bx-,w*). Since K is a compact metric space we have B, ;,(K)
C By(K). Hence By 4(X) C B1{X). The rest of the proof is similar to the
general case in (i).

As a corollary, we have equivalent formulations of the spreading- () prop-
erty. One of them is analogous to the definition of property {u) given by
Pelezyhski in [P].

COROLLARY 2.7. A Banach space X has the spreading-(u) property if
and only if for every o™ € B (X)\ X there exists a sequence (2,) in X
w*-converging to =** and satisfying one of the conditions (i) to (iii) of
Lemma 2.3.

We exploit our Theorem 2.6 to obtain a non-trivial space having the
spreading-(u) property but not property (u).

ExAMPLE 2.8. Let X be the “Jamesification” of the Tsirelson space T
as described in [B-H-O], defined in the following way. For every finitely
supported function z : N — N define

k
Il = sup { | 38, = Spe) @ 1 <pr < < < s <)
i=]
where S, (z) = 3, #(i) for every n € N and Sp(z) = 0. The space X is
the completion of the linear space of all finitely supported functions with
this norm.

As shown in [B-H-O] the unit vectors e,, n € N, form a boundedly
complete normalized basis for X. Thus X = Y™ where ¥ = [(e},)] and e
are the biorthogonal functionals of (e,,).

As was proved in {H-O-R], Bi(Y) = B, /4(Y), hence according to Theo-
rem 2.6 the space Y has the spreading-(u) property. Also, ¥ does not have
property (u), since cg is not isomorphically embedded into Y.

We now prove that the spreading-(s) property implies the spreading-(w)
property; and hence looking (internally) at the weakly null sequences of a
Banach space one can obtain {external) information on the Baire-1 elements
of the second dual space.

In the proof we make use of infinitary Ramsey properties:

For an infinite subsequence M of N we denote by [M] the set of all
(infinite) subsequences of M. A subset A4 of [N] is called Ramsey if for all
M € [N] there exists L € [M] such that either [L] C A4 or L] G [N\ A

icm
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THEOREM 2.9 (Galvin-Prikry [G-P]). If A is a Borel subset of [N] en-
dowed with the potntwise topology (relative topology of 2V with the Cartesian
topology), then A is Ramsey.

THEOREM 2.10. If a Banach space has the spreading-(s) property, then
it has the spreading-(u) property.

Proof Let X be a Banach space with the spreading-(s) property, and let
(2,) be a weak Cauchy but non-weakly convergent sequence in X, According
to Remark 2.2(i), {#n) has a subsequence which is basic and dominates the
summing basis (s,,) of cg. Without loss of generality we may assume that
(zn) itself has these properties. So there exists D > 0 such that

k k
(+) D| i;/\is@-L < H;/\:ni

for all k € N and scalars Aq,..., Ag.

Proposition 2.5 implies that (z,) has a subsequence with a spreading
model equivalent to the summing basis if (z,) has a non-null-coefficient
subsequence. So it is enough to construct a subsequence (2,,) of (zy) such
that for some ¢ > 0,

k
e DEE Znais)|

Set y,, = Tp11 — Ty for some every n € N. According to (*), the sequence
(yn) is seminormalized, basic, and obviously weakly null. By our assumptiox.l,
(yn) has a subsequence (yy,) with a spreading model equivalent to the unit
basis of ¢y; equivalently, by Proposition 1.4,

< C for every (ny,...,nek) € Fi.

(%) H Z Un, || = H Zm“i“ —Tn, || < B
jer jeF
for some B > 0 and every F € F;. We may assume that n; + 1 < ;4 for
every § € N.
Set my = ng, ma =ng+1,. .., majm1 =1y, Mg =n;+1, ... From (x*x),

the subsequence (s, ) of (2,) has the property:

(****) H Z(mm“ - wmzjq)

jer
For every k € N, set

Ay = {M = (mn) € [N] : “ ZF(-"'"MM - mm25~1)’
je

< B for every F € Fi.

< k for every F' & Fl}.

The sets A, are pointwise closed subsets of [N], so A = Upe.; Ax is Borel.
Hence the sets Ay, k € N, and A are Ramsey (Theorem 2.9).
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Choose M € [N] such that either [M] C A or [M] C [N] \ A. Using
the same argument as above for the sequence (%i)ien in place of {zn), we
conclude that [M] C A.

Now, choose M; = (ml) € [M] such that either [M;] € Ay or [M;] C
N\ A;, and by induction choose M1 = (mEt?) € [Mj] such that either
[My 1) © Apta or [Mp4a] € [N\ Axg-

We claim that there exists k € N such that [M;] € Ai. Indeed, let
mg = mF for k € N and set L = (mg). Obviously L € [M] C A, so
there exists ko € N such that L € Apg, (which is possible since (Ag)ren is
increasing with %).

Set Ly = {mgii)ien for k € N. Then Ly € [My]. We now prove that
Loy € Askg, 50 that [Mzkﬂ} - AEkg- Indeed, for every F' = (jl, S ,j,g) e F
we have G = (ko + j1,--.,ko + Ji) € F1, hence

= ” Z(w‘mzj - wm:j-q)
Jjeqd

since L € Agp,. But then Lqy, € Agko and finally [MZko] C Aok, -
So we have constructed a subsequence (25} of (zn) (2, =2z 34, n € N)
with the property that every subsequence {w,) of (2,) satisfies "

|| E :(zmzko-pz;' - xmzko+zj—1)
JEF

‘S 2]‘707

H Z(ng — ng._l)“ < 2ky forevery F' € Fy.
JjeEF

We claim that (z,) satisfies (%+). Indeed, let (ny,...,nax) € Fi. We
define a subsequence (w,,) of {z,,) as follows:
fori=1,...,2k -2,
fori=1,...,2k,
for every i € N.

Wi = 25
Wgk—24i = 2ny
Wak—24i ™= Bngy+i
Then
ke

= Z(w2k—-2+2£ - w2}c+2i-3)”

f==]

|35t = )

=1

= Z(w2(k—1+z‘) = w2(k—-1+1‘)»—-1)”

ge==1

=1 D (wa; = wayr)

JeF

< 2k

where F = (k,...,2k—1) € Fy.

Hence (zn) is not null-coefficient and according to Proposition 2.5, ()

has a subsequence equivalent to t : T '
complete, q alen o the summing basis of cg. The proof ig now
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COROLLARY 2.11. If every normalized weakly null sequence in o Banach
space X has a subsequence with o spreading model equivalent to the usual
basis of co, then B1(X) € 31/4(){).
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