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The Conley index in Hilbert spaces and its applications
by

K. GEBA, M. IZYDOREK and A. PRUSZKO (Sopot)

Abstract. We present a generalization of the classical Conley index defined for flows
on locally compact spaces to flows on an infinite-dimensional real Hilbert space H gener-
ated by vector fields of the form f : H — H, f(z) = Lz + K(z), where L : H — H is
a bounded linear operator satisfying some technical assumptions and K is a completely
continuous perturbation. Simple examples are presented to show how this new invari-
ant can be applied in searching critical points of strongly indefinite functionals having
asymptotically linear gradient.

1. Introduction. The purpose of this paper is to present a new general-
ization of the classical Conley index theory. The standard reference for that
theory, developed by Charles Conley in the 70’s, is his monograph Isolated
Invariant Sets and the Morse Index [5]. Referring for all technical details to
[5] and the recent paper of Mischaikow [12], we recall that in Conley index
theory, with any compact isolated invariant set S of a flow p: RX Z — Z on
a locally compact metric space Z one can associate an index h(5), which is
the homotopy type of a compact pointed space. Instead of isolated invariant
sets one can equivalently consider (compact) isolating neighbourhoods for
flows as pointed out by Mischaikow [12]. Since our construction of Conley
index is analogous to the construction of the Leray—Schauder degree it seems
more convenient to work with isolating neighbourhoods than directly with
isolated invariant sets.

The aim of this paper is to extend the ideas of Conley to the case where
Z is replaced by an infinite-dimensional Hilbert space. To be more precise,
we assumme that we are given an infinite-dimensional real Hilbert space H
together with a bounded linear operator L : H — H such that H and L
satisfy conditions (H.1), (H.2) and (H.3) below. We will be concerned with
local flows on H generated by L£S-vector fields, i.e. maps f : H — H which
can be written in the form f(x) = Lz + K(z), where K : H — H is a suffi-
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ciently smooth, completely continuous mapping. This kind of flows appear,
for instance, when one applies variational methods to prove the existence
or multiplicity results for periodic solutions of some types of Hamiltonian
systems (see [1], [6], [17], [3] and the references given there), second order
ODE'’s (see [2], [11] and the references given there) as well as of some elliptic
and hyperbolic problems (see {1], [4], {13], [14], [18]). Our index inherits all
hasic properties of the classical one, in particalar, it remains invariant under
“amall” perturbations.

As a starting point we take a well known fact—the similarities shared
by degree theory and the Conley index. Our construction generalizes the
classical Conley index in precisely the same way as the Leray -Schauder
degree generalizes the topological (Brouwer) degree.

Actually, writing this article we were motivated by A. Szulkin’s papers
[17] and [18] in which many different index theories of Morse type with
applications to strongly indefinite functionals have been described. A fun-
damental paper concerning that subject is H. Amann and E. Zehnder [1].
Morse theory in Hilbert spaces is thoroughly discussed in [3] and [11]. Oune
should also mention K. Rybakowski’s book [15] in which a version of the
Conley index for flows in non-locally compact spaces is defined. Applications
to nonlinear elliptic and parabolic equations are also presented. However,
it seems that Rybakowski’s index cannot be applied to strongly indefinite
functionals.

The paper is organized as follows. In Section 2 we present basic defini-
tions and facts needed to develop our theory. The crucial result is Proposi-
tion 2.3 which says that if 7 is an £S-flow on H then any bounded isolated
invariant set S for 7 is compact. Section 3 is devoted to the notion of spec-
trum well known to algebraic topologists. Spectra are discussed in detail by
G. W. Whitehead [20]. However, the purpose of using spectra in our paper
is completely different. Consequently, the main definitions are modified in
order to make them applicable to our considerations. In Section 4 the con-
struction of the index is presented together with its basic properties: “non-
triviality” (Proposition 4.4) and “continuation” (Proposition 4.53). Finally,
in Section 5 we give a few examples to show how our theory can be ap-
plied in searching critical points of strongly indefinite functionals which are
asymptotically quadratic. We point out that our examples are not covered
by the theorems we have found in the literature for that kind of problems.

2. Isolating neighbourhoods. Throughout this section we assume that
H = (H,{-,-)) is a real Hilbert space and I, : H — H is a linear bounded
operator with spectrum (L} such that:

(H1) H = @;2, Hy with all subspaces H} being mutually orthogonal
and of finite dimension; .
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(H.2) L(Hy) C Ho, Hp is the invariant subspace of L corresponding to
the part oo (L) :=iRBNeo (L) of the spectrum lying on the imaginary
axis and L(H}) = Hy for all k > 0;
(H.3) og(L) is isolated in (L), i.e. ao(L) N cl(o(L) \ 00(L)) = 0.
Throughout the section A denotes a compact metric space.
Recall that a continuos map n: D(n) — H is a local flow on H if

(F.1)  D{#) is an open subset of R x H such that {0} x H C D(n);
(F.2) for every z € H there exist a(z),w(z) € R U {—co,c0} such that
(efz), wlz)) = {t € R: (¢, z) € D(m};
(F.8)  n{t,n(s,z)) =n(t+s,x) foral z € H and t,5 € (a(m),w(m)‘) such
that t + s € (a(z),w(z)).
A local flow n is a flow on H if D(n) =R x H.
If n is a local low on H and X C H then

Inv(X) = Inv(X,7) = {o € X :n{t,z) € X for all ¢ € (a(2),w(x))}
is the mazimol n-invariant subset of X,

We say that a continuous map 7 : D(n) — H is a family of local flows
on H indexed by A if D(n) is an open subset of R x H x A and 1, (where
nalt, ) = n{t, z,A)) is a local flow for every A € A. D) =RxHxA
then we say that 7 is a family of flows on H indexed by A

If n is a family of local flows indexed by A on X C H then we let

Inv{X,n) == {(z,)) € X x A1 2 € Inv(X,m)}.

We say that F: H x A — H (resp. F:Rx H x A — H) is a completely
continuous map if F is continuous and for any bounded subset A C H (resp.,
A ¢ R x H) the closure of F(A x 4) is a compact subset of H.

DEFINITION 2.1. We say that a flow n: R x H — H is an LS-flow if
nit,z) = etz -+ U(t, z)
where U : R x H — H is completely continuous.
DEFINTTION 2.2. Let A be a compact metric space. We say that a family
of flows n: R x H x A — H is a family of LS-flows if
n(t,z,\) = etlr + Ut 2, A)
where U : R x H x A — H is completely continuous.

PROPOSITION 2.3. Let A be a compact metric space and letn:Rx Hx
A -+ H be o family of LS-flows. If X C H is closed and bounded then
S 1= Tnv(X x A,n) is o compact subset of X X A.

Proof. Let H_ (resp. Hy) denote the inva.riant-subspace of L corre-
sponding to the eigenvalues with negative (resp. positive) real part. Clearly,
H splits into the direct sum H_. @ Hoe Hy.
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Let P_ (resp. Ps, P.) denote the orthogonal projection of H onto H._
(resp. Hy, H,.). Since o (L) is isolated in ¢{L}, it follows that for every ¢ > 0
there is Ty € (0, 00) such that

(2.1) lle*Fz|l = ol|z|
(2.2) ez = oflz|

It follows from the definition of S that it is a closed subset of H x A.
Suppose that S is not compact.

Let 5p = {#z € X : (z,A) € S for some A € A}. Obviously, Sy C
cl(P_(80)) % l(Pa(So)) % cl(P+(Sp)). The set cl(Py(Sp)) is compact as it is
a closed and bounded subset of a finite-dimensional vector space. Therefore
cl(P_{Sp)) and cl(P,(Sp)) cannot be compact simultaneously. With no loss
of generality we may assume that P (Sy) is not relatively compact. As H.,.
is a complete metric space, there is € > 0 such that Py (Sp) does not admit a
finite £-net. Hence, one can choose a sequence (zz) C Py.(So) (xr = Py (y);
{¥k; \e) € 5) such that ||z; — z;|| > € whenever i # j. Choose s € R such
that X C B(0,s) and T € R so large that the inequality (2.1) is satisfied
for ¢ = 3s/e whenever ¢ > T". Set u := e Ly, and vy 1= U (T, yx, M), Then

Ty, M) = €Tl + U (T, gk, Ae) = up + vy € X C B(0, 5).

forall t > Th, x € H,.,
forallt < -1, z € H_.

Thus
35 < [lus — ull < flug + il + lus ~ vl + [y + vy]] < 28+ [Jvg — vy
so that
lvi —vsll > s  whenever i # 4.

Since v, € U({T} x 8) and U({T} x §) is relatively compact we have a
contradiction. w

DEFINITION 2.4, We say that f : H — H is an £S-vector field if there

exists a completely continuous and locally Lipschitz continuous map K :
H — H such that

Flz) = Lz + K(z)

DEFINITION 2.5. We say that f : H x A — H is a family of £L8-vector
fields if there exists a completely continuous and locally Lipschits continuous
map K : H x A H such that

f(z, ) =Le+ K(z,2) forall (z,A) e H x A

If f: H — H is an LS-vector field and = € H then it is well known (see
e.g. [7]) that there exists the maximal ¢ -curve

(a(z),w(z)) >t nit,z) c H

forallx & H.
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satisfying
dn

E:fon’ 7(0,z) = =.

Moreover, if we set
D(n):={{t,z) eRx H:alz) <t<w(z)},

then D(n) ¢ R x H is open and 7 : D{n) 3 {t,z) — n(t,z) € H is a local
flow. In what follows we call 9 the local flow induced by f.

Let f(z) = Lz + K(z) be an LS-vector field. Then the local flow n
generated by f can be written in the form

n(t,z) = etla + U(t,z)

where U : D(n) — H is completely continuous (see [13]).

We say that f is subguadratic if there exist a,b > 0 such that
(2.3) |(K(z),z)| <alz|®+b VzeH.

The following result is a direct consequence of Theorem 2.1 of [19].

PROPOSITION 2.6. Let f(z) = Lz + K (x) denote an LS-vector field and
let np be the local flow generated by f. Then

(a) if x € H and (t,) is a sequence in (a(z),w(z)) convergent either to
a(z) or to w(z) then (n(tn,z)) is an unbounded sequence (in H);

(b) if f satisfies (2.3) then f generates an LS-flow. m

DEFINITION 2.7. Let i : D(n) — H be a local flow on H. We say that a
bounded and closed subset X < H is an isolating neighbourhood for n if

Inv(X) C Int(X).

THEOREM 2.8. Let A be a compact metric space and let n: R x H x A
— H be a family of LS-flows. Assume that X C H is an isolating neigh-
bourhood for a flow ny, for some Ao € A. Then there is an open neighbour-
hood V' C A of Ao such that X is an isolating neighbourhood for any flow

ny whenever A€V,

Proof. Proposition 2.3 implies that Inv(X x A,7n) is a compact subset
of X x A. Since Inv{X x A,n) N (X x {Ao}) € Int(X) there exists an open
neighbourhood V of Ag in A such that Inv(X x A)N(X x V) CIng(X) x V.
Therefore Inv(X,7) C Int(X) forall A€ V. =

Clearly the above theorem can be reformulated in the following way:
COROLLARY 2.9. For any closed and bounded set X C H the set
A(X) :={r g A: X is an isolating neighbourhood for 1 in H}

is open in A. m
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3. Spectra. Let Mg be the category of compact metrizable spaces with a
base point. If (X, zp) and (Y, yo) are objects in Mg then the set of morphisms
Mor{X,Y) consists of all continuous maps f : X — Y preserving the base
points. Let A be a closed subset of a compact metrizable space X. Then the
quotient space X/A is obtained from X by collapsing 4 to a point, the base
peint of X/4; X/A is an object of Mo. If X and Y are objects in Mg (with
base points zg and g resp.) then the cartesian product X x ¥ is also an
object in My (with base point (2o, yo)).

Denote by I the unit interval with base point {0}, by O = §° the
subspace {0,1} of I, and let .S = (81, 50) 1= I/OI. The suspension of a space
(X,z0) € My is defined as the quotient space (SX,#) = (§* x X)/(5! x
{zmo} U{so} x X). In fact, the suspension is a functor in Mg, which means
in particular that for any map f : (X,20) — (V,y0) the suspension map
Sf . (8X,*x} — (8Y,#y) is a morphism in that category. For any m € N
we define §™X = §(5™~1X).

Finally, recall that f € Mor(X,Y") is a homotopy equivalence if there is
g € Mor(Y, X) such that g o f is homotopic to idx and f o g is homotopic
to idy, both homotopies relative base points. If f : X — ¥ is a homotopy
equivalence then we say that the spaces X and Y are homotopy eguivalent
or have the same homotopy type. A standard reference for this section is
Whitehead [20].

We are now in a position to define a category of spectra. Let v : N — N,
N={0,1,2,...}, be a fixed map. We begin with the folowing

DEFINITION 3.1. A pair of sequences E = ((En)z":n(m, (E"l)gfmn(E)) will

be called a spectrum if the following conditions are satisfied:
(a) ¥n 2 n(E), E, € Mo;
(b) ¥n > n(E), e, € Mor(SYME, | Epi1);
(c) dn1 = n(E), ¥n = na, £, is a homotopy equivalence.

DEFINITION 3.2. A map of spectra f : E — E' is a sequence of maps

(Ffr)otng) fo € Mor(By, EL), no > max{n(B),n(E")}, such that the dia-
grams

Sy(n)EanV(n}E:m

- F

By I, B,

are homotopy commutative for all n > ng.
We define the category of v-spectra £{v) as follows: the class of ob jects

O&(v) of £(v) consists of the spectra defined as above, and for each E, E' ¢
O&(v), ME(v)(E, E') is the set of all maps of spectra from F into JI'.
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DEeFINITION 3.3. Two maps of spectra f, f' : E — E' are homotopic if
there is ny € N such that f, is homotopic to ! whenever n > ny.

DEFINITION 3.4. We say that f € MEW)(E, E') is a homotopy equiva-
lence if there exists ¢ € ME(V)(E', E) such that go f € ME(V)(E, E) is
homotopic to idg and fog e MEW)E', E") is homotopic to idg:.

DEFINITION 3.5. Two spectra F and B’ are said to be homotopy equiva-
lent or to have the same homotopy type if there is a homotopy equivalence
f € ME(W)(E, E"). The homotopy type of the spectrum F is denoted by
[E].

REMARK 3.6. For a given spectrum E = ((En);2,, 5y (5.,1);"3“(13)) its
homotopy type is uniquely determined by the homotopy type of the pointed
space B, with n sufficlently large. In particular, if (sﬁ)?:n( £ 18 replaced by
another sequence (£7,)57.., gy satistying conditions (b) and (c) of Definition
3.1 then the resulting spectrum has the same homotopy type as the original
one. Therefore, in order to define a homotopy type [E] one only needs a se-
quence of spaces B = (En)z‘;n( &) Such that $*{") B, is homotopy equivalent
t0 B4 for n sufficiently large. :

Denote by 0 a spectrum such that for each n > 0, the space E, consists
only of a base point, and &, maps the point in E, to the point in E, 1. The
suspension functor acts trivially on such spaces, i.e. SE, = E,, and hence
0 e OE(v) for every v: N - N

DEFINTTION 3.7. We say that the homotopy type of a spectrum E is
trivial if B is homotopy equivalent to 0.

4. The Conley index. In this section we keep all the assumptions
and notations of Section 2. In addition, we denote by P, : H — H the
orthogonal projection onto H™ := @} o Hi. Let H; (resp. HF), »n > 1,
denote the I-invariant subspace of H, corresponding to the part of the
spectrum of L with negative (resp. positive} real part. Define v N — N by
v(n) = dim B4, n=0,1,...

We hegin with a special case. Assume [ : H — H, flz) = Lz + K(x),
is an LS-vector field satisfying condition (2.3), i.e. f is subquadratic. Let
n:Rx H ~ H be the £S-flow generated by f and let X C H be an isolating
neighbourhood for 7. :

Define f,, : H™ — H™ and Fy, : H"* x {0,1] — H»*1 by

fulz) 1= Lo+Po(K (), Fulz,s) = Lz+(1-8)Po(K (z))+5Poy1(K(z)).

Let 0, : Rx H™ — H™ denote the flow induced by fn, and En:Rx H™ %
[0,1] — A"t the family of flows induced by Fr.
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We will need the following.

LeMMA 4.1, There exists ng € N such that if n > ng then X,, = XN H™
is an isolating neighbourhood for the flow 1, and for the family of flows &,.4.

Proof. Define a family of LS-vector fields, F': H x [0,1] — H, by
F(z,8) = Lz + (1 +n)(1 —ns)Pryi(K(z))
+nl(n+1)s — 1P {K(z)) for

F(z,0) = f(=).

Obviously for any s € [0,1] the £LS8-vector field F(-,s) satisfies (2.3).
Thus F' generates a family of £LS-flows £ : R x H x [0,1] — H. Proposition
2.3 implies that Inv(X x [0,1],&) is a compact subset of X x [0,1]. Since
Inv{X % {0,1],£) N X x {0} C Int(X)} there is sy > 0 such that

Inv(X % [0,1],£) N X x [0, sp] C Int(X) x [0, 8o].

Choosing ng such that 1/ng < 59 we conclude the proof. m

1
< X
n+1<s"n’

By Lemma. 4.1, X, is an isolating neighbourhood for the flow 1, n > ng.
Set Sy, = Inv(Xn, 7). Thus S, admits an index pair (¥, Z,) (cf. [5], [L6])
and the Conley index of S, is the homotopy type of the pointed space V., /Z,.
Let

Dy :={eeH:|z]|<1}, D7:={zxeH;:|af <1},
OD7 :={z € H : ||«l| = 1}.

Let Spi1p = Inv(Xpnyp1 x [0,1], &) and Spp1n(s) := {2 € Xpya @ {2,8) €
Sn+1,n}- Clearly

(Yax D} x Dy, 2, x 8D, x D))

is an index pair for the isolated invariant set S, = Sp41,,(0) with respect
to the flow £,(-, -, 0). Thus the Conley index of $,, with respect to &,(.,+,0)
is the homotopy type of

(Y x D:fq-l % Do)/ (2 % 6Djf+1 x Do y),

which in turn is equal to the homotopy type of S*("(Y;/Z,). Moreover
Xn+1 is an isolating neighbourhood for the flow &,(:,-,s) for all s € [0, 1].
Therefore, by the continuation property of the Conley index (see [5], [16])
¥ (Y, /Z,) is homotopy equivalent to Ynt1/Zns1. Thus, in view of Re-
mark 3.6, the sequence

(En)'?'l‘o:ng = (Yn/ ﬂ)?:nu
determines uniquely the homotopy type. [E].
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DEFINITION 4.2. Let 1 be an £LS-flow generated by a subquadratic £S-
vector field and let X be an isolating neighbourhood for 7. Define

h’.CS(X: 77) = [E]
We call hes(X,n) the £S-homotopy Conley index of X with respect to n or
simply the £LS-homatopy index,

Turning to the general case assume that f : H — H, f(z) = Lz + K (z),
is an LS-vector field and X ¢ H is an isolating neighbourhood for the local

flow n generated by f. Choose s € R such that X C B(0,s) and define
iR —Rby

1 ift < s,
,u(t)-—-{l-l-s—t ife<t<s+1,
0 ft>st1,

and d: H — [0,1] by d(z) = u(i|z|]).

Clearly, the map K; : H — H, Ki(z) := d(z)K (z), is completely con-
tinuous, locally Lipschitz continuous and the closure of K {H) is compact.
Hence f1 : H — H, fi{z) = Lz + K1 (z), is a subquadratic £LS-vector field.
Moreover, the flow 7, generated by f; and the local flow » coincide on X.
That is, n(z,t) € X for ¢t € [0, a] implies 71 (z,t) = n(z,t) for ¢t € [0,0]. In
particular, X is an isolating neighbourhood for n;. Note also that if o is
another £S-flow generated by a subquadratic £8-vector flield fp such that
fa(z) = f(z) for all x € X then

hes(X,m) = hes(X, m). .

DEFINITION 4.3. Let f be an L£S-vector fleld, n the local flow generated
by f and let X be an isolating neighbourhood for %. Define

hes(X,n) == hes(X,m).

We call hrs(X,n) the £LS-homotopy Conley index of X with respect to 1 or
simply the £S-homotopy indes.

The following propositions give the basic properties of the £LS-homotopy
index.

ProrosiTioN 4.4 (Nontriviality). Let n : D(n) — H be the local flow
generated by an LS-vector field and let X C H be an isolating netghbourhood
forn. If hes(X,n) # 0 then Inv(X,n) # 0.

Proof With no loss of generality we may suppose that n is generated
hy a subquadratic £S-vector field f. Let F' be the family of LS-vector fields
defined for # in the proof of Lemma 4.1, so that f = F(,0). The family of
L£S-flows generated by F will be denoted by ¢. Proposition 2.3 implies that
Inv(X % [0,1], ) is a compact subset of X x[0, 1]. Assume that Inv(X, n) = 0.
Then there is sg > 0 such that - :
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Inv(X x [0,1],6) 1 X % [0,80] =@

and therefore Inv(X,,,n,) = 0 for each n > 1/sp. Now, the classical Conley
index theory says that all the spaces E,, n > 1/s9, obtained in our con-
struction of a spectrum for X have the homotopy type of one-point space
and therefore [F] = [0]. =

PROPOSITION 4.5 (Continmation). Let A be a compact, connected and
locally contractible metric space. Assume that n: D(n) — H is the family
of local flows generated by a family of £L8-vector fields f: H x A — H. Let
X be an tsolating neighbourhood for the flow n for some A € A, Then there
is o compact neighbourhood C C A of A (X € Int(C')) such that

h',C.S(X; 77#) = hES(Xa nu)

Proof. Thisis a direct consequence of the continuation property of the
classical Conley index. m '

forall p,v e C.

5. Applications to Hamiltonian systems. In this section we discuss
some examples in which our theory is applied. These may show why the
theory presented here can sometimes give better results than other Morse
type theories recently developed.

Now, we briefly recall a general setting in which our examples will he
discussed. For more details we refer the reader to [17]. Given a Hamiltonian
G € C}R?™ x R,R) which is 2n-periodic in ¢ consider the Hamiltonian
system of differential equations

(5.1) &= JVG(z,1)

where J = [g “OI ] is the standard symplectic matrix. Here and throughout

the rest of this section V denotes the gradient with respect to » € R2™.
Throughout the section we assume

(5.2) [VG(z,t)]| €c14callz]®  for {z,t) € B*™ x R and some s > 0.

We will be concerned with the existence of 2r-periodic solutions of (5.1).
Denote by H = H/2(3* R*™) the Hilbert space of 2n-periodic, R2™-valued
functions '

z(t) = ap + i(”"“ cos(kt) + by sin(kt))  where ag, ax, by € R*™,
with the inner pr]:i::lct given by
(5.3) (z,2")g = 2m{ao,ap) + 7 i k({aw, ag) + (bk,. b))
k=1
where (a,b) denotes the standard inner product of a,b € R?™.
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Any z € H can also be written in the form

2m
(5‘4) Z = Z Zi€y
=1
where z; € H'/2(S' R) and ey, ..., esn, is the standard basis in R®™.

It is well known that z(t) is a 2r-periodic solution of (5.1) if and only if
it is a critical point of the functional ¢ € C*(H, R) defined by

(5.5) B(2) = —5(Lz, 2)n — ¢(2),
where
2ar 2
(5.6) (Lz, 2y = {(J2,2)dt,  ¢(2) = | Glz1)dt

0 0

(cf. [13]). It is also shown in {13] that the mapping V¢ is compact and
therefore V& ; H — H is a vector field which can be written in the form

~V@(z) = Lz + K(z)
where K := V¢ : H — H is completely continuous.
Let '
H(0) = span{es,...,eam},
H(k) := span{cke; + spJe; 1= 1,...,2m}, ke Z—{0},
where ¢ (t) := cos(kt) and sg(t) := sin(kt). It follows from (5.3) and (5.5}
that I is a selfadjoint operator in H such that Lz = 0if z € H(0) and —Lz =
42 for every z € H(%k), k > 0. Set Hy = H(0) and Hyx = H{(k) ® H(—k),
k=1,2,... Obviously, H = @i, Hi and Hy = ker L. Each z € H can be
written z = S5 o zr, where 2 := px(2) and px : H — H is the orthogonal
projection onto My, k=0,1,... - 1
Using this notation we define A : H — H by A(2) := 20 + 3y 5%
Directly from the definition of the inner product in H we have

(5.7) Vo(z) = A{w), where w(t)=VG(z(t),1).
Thus we conclude that F 1= —V& is an LS-vector field. Moreover, the

map v : N = N which appears in the definition of spectrum is constant:

v(n) = 2m for each k € N. _
Assume now that A : B2™ — R2™ js a linear symrmnetric map and consider

the linear Hamiltonian system
2 =.JAz
In this case G(2) = 3(Az,2), the LS-vector field —Vé : H — H corre-

sponding to that system preserves all spaces H} and the restriction of V@
to Hyg, k > 1, with respect to the basis {ck€1, - - - Ck€am, Sk€1y. -+, 5kE€2m



228 K. Geha et al.

is represented by the matrix

(5.8) Ti(A) = ["L%A _“%{4] ;

moreover, To(A) = —A on Hy (see [17]).
The following numbers are well defined (cf. [1]):

(A) = M™(=A) + ) (M~ (T(4)) — 2m),

k=1
L(A4) = M (-A) + i M°(Tk(4)),
k=1

where M~ (B) is the number (with multiplicity) of negative eigenvalues of
a symmetric matrix B and M°(B) is the dimension of its kernel.

If i%(4) = 0 then V@ is a linear isomorphism. Then § := {0} is an
isolated invariant set for the flow n induced by —V®. Moreover, if r > 0
then D(r) :={z € H:||z| < r} is an isolating neighbourhood and

hes(D{r),n} = [E]
where E is a spectrum such that B, = SP" with p(n) = i (A) +n-2m for
sufficiently large n.

Thus, using elementary properties of hrg we obtain the following two
observations:

REMARK b.1. Assume that G(z,t) = L(Apz, 2) +g(2, 1), where Ag is lin-
ear symmetric and Vy(z,t) = o{|2|)) uniformly int as z - 0. If i%(Ag) =0
then for r sufficiently small and positive, D(r) = {z € H : ||2|| < r} is an
wsolating neighbourhood of S = {0} and

hLS(D('r): n = [E]
where E, = SPM for n sufficiently large.

REMARK 5.2. Assume that G{z,t) = L{A2,2) + g(2,t), where A
is linear symmetric and Vg(z,t) is bounded. If i%(Ay) = 0 then for r
sufficiently large D(r) is an isolating neighbourhood and

hes(D{r),n) = [E]
where By, = SP() forn sufficiently large.

We begin our discussion with the following two lemmas.

LEMMA 5.3. Let B be a Banach space and F' : B x R? 3 (z,y) —
F(z,y) € B be ¢ CP-map. Suppose that F(0,0) =0, DpF(0,0): B — B is
an isomorphism and the partial derivatives Dy, F(0,0) : R* x ... x R® — B

are zero fori=1,....p. Let¢p :R* DV 5y &(y) € B be the implicit
function defined by F(¢(y),y) = 0, where V is an open neighbourhood of
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0 € R™. Then the derivatives D*¢(0) : R* x ... x R"* -— B are zero maps for
i=1,...,p. m

LemMA 54. Let F : BXR* — B x R* be o CPt'omap, F(z,y) =
(Fi(m,y), Fo(z,y)). Assume that Fy : B xR* — B satisfies the assumptions
of Lernma 5.3 and let ¢ : R® DV 3 y — ¢(y) € B be the implicit function
defined by F1(¢{y),y) = 0, y € V. Additionally, suppose that DpF3(0,0) :
B — R™ 1s zer0. Define 1 R* DV 2y - o(y) € R* byy(y) = Fa(o(¥),u).
Then D'4p(0) = D Fa(0,0) :R® % ... x R* +R® fori=1,....p+ 1.

As an immediate consequence of the above lemmas we obtain

COROLLARY §5.5. Let F' be as in Lemma 5.4. Assume that the first non-
vanishing derivative D%, F2(0,0) : R® x ... x R® — R" is nondegenerate,
ie. Dh Fa(0,0)(y, ..., y) = 0 iff y = 0. Then the origin (0,0) € B x R™ is
isolated in the set F~1(0) of zeros of F: BxR* - BxR™. m

Now, we turn to our examples,

ExaMPLE 5.1. Let m =1 and define G : B2 x R —» R by

G(z,y,t) = 5(2 + %) + (2° — 3zy/”) cos(31),
ie. G(z,t) = 3{Aoz,2) + g(z,t), where z = (z,7) € R?, Ag = Id and
g(z,t) = (2% — 3zy?) cos(3t).

Let Ag denote the derivative of —V® at 0. Evidently it is a selfadjoint
operator and ker.4p = H(1) C H; is a subspace of dimension 2 spanned by
U1, Uz, where

uy(t) = cos(t) - ey +sin(t) - ea,  us(t) = —sin(t) - e1 + cos(?) - ez.

The subspaces V1 = im Ay and V3 = ker.4p are orthogonal in H and H =
Vi & Vy. Let wy,me : H — H denote the orthogonal projections onto V1, V3,
respectively. Define Fy : Vi & Vo — Vi by Fi{v1,vs) = —m 0 V@(v1,v2) and
Fy: Vi@ Vy — Vs by Falvy, ) = ~ma 0 V(vy,v2). Clearly, Dy, F5(0,0) =
w0 Aoy, + Vi — Vi is an isomorphism and Dy, F1(0,0) = m o Agpy, -
Vo — Vj is zero. By Lemma 5.3 the implicit function ¢ : U — V; defined
by Fi{¢(vs),v2) = 0, U an open neighbourhood of the origin in V3, satisfies
D(0) = 0. Consequently, by Lemma 5.4, D*%(0) = D}, F>(0,0) for i = 1,2,
where ¢(up) = Fa(d(v2),v2)- ‘ .

Choosing the basis {uy(t),u2(t)} we introduce a coordinate system in

V3. For each vo € V3 one has
vy (t) = auy (t) + bup ()
= (acos(t) — bsin(t))e; + (asin(t) + beos(t))ez, abeR
We replace z by acos(t) — bsin(t) and y by asin(t) + bcos(?) in VG. The
resulting map u(£) is an element of H'/2(§1,R?) and
ma(u(t)) = (u(t), wa () - wa(t) + (u(t), up(f))m - ua ().
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Using the above procedure one shows that up to a positive factor,

F3(0, (a, b)) = (a* — b%, —2ab)
in some neighbourhood of 0 € V;. Thus Dy, F5(0,0) = 0 and D, Fy(0,0)
is nondegenerate at 0. Therefore, by Corollary 5.5, 0 € H is isolated in
V&~1(0). Since we are dealing with a gradient vector field, 0 & H is an
isolated invariant set for the semiflow generated by F = — V.

Now, if the local flow on V5 is generated by Fy(0,-) : U — V4 then
we easily compute the Conley index of {0} which is equal to [S§* v 8§, 4],
the homotopy type of the join of 2 copies of 1-dimensional pointed spheres.
Using (5.8) we then find that the Conley index of {0} in H is equal to the
homotopy type of the spectrum £ with B, = §*+3 v §2%+3 the wedge of
two pointed spheres of dimension 2n + 3, n=1,2,...

EXAMPLE 5.2. Let m =1 and define G: R2 xR — R by
Glz,y,t) = (2 + 1) + (& + %)% + h(z,v,1).
The same arguments as in Example 5.1 show that 0 € H is an isolated

invariant set for the semiflow n generated by F = —VP, whete 6 : H — R

is the functional corresponding to the system (5.1) with G as above. This
time we find that up to a positive factor,

Fo(0, (a, b)) = (a® + ab?, a®b 4 %)
in a neighbourhood of 0 € V.
Now, the Conley index of {0} is the homotopy type of the spectrum B
with E, = §2"*2, n=1,2,...
Throughout the rest of this section we will be concerned with a Hamil-

tonian G € C?(R? x R,R) 2n-periodic in ¢ and satisfying the following two
conditions:

(G.0)  there exists cg > 0 such that |2| < ¢o implies G(z,t) = £(Agz, 2)+
go{2,t}, where A is a linear symmetric operator and Vao(z,t) =
o(|z|) uniformly in ¢ as z — 0; -

(G.oo)  there exists co > 0 such that |2] > co implies G(z, ) = 1 {Awz,2)
+ goo(2, 1), where Ao, is linear symmetric, i°(A) = 0 and Ve, is
bounded.

If & satisfies the above assumptions then 0 is a critical point of VP,

Generalizing some earlier results, Szulkin has proved in [17] (Theorem 7.2)
that if

(5.9) i (Aoo) ¢ [i7(Ao),8°(Ao) +i™ (Ao)]
then (5.1) has a nontrivial solution (in addition to the trivial one z = 0).

The following examples show how the L8-Conley index can be used to
obtain similar results even if (5.9) is not satisfied.

icm
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ExamPLE 5.3. Suppose that
(i) Gz, y,t) = 2{z? + %) + (2% — 3232} cos(8t) if 22 +y? < ¢y, for some
c1 > 0

(i) G(z,y,t) = 2d(z® +y?) + gz, y,1t) if 22 + 4% > ¢y for some ¢z > &1
with g having a bounded derivative and d € (0,1) U (1, 2).

From Example 5.1 we know that § = {0} is an isolated invariant set for
the £S-flow generated by —V® whose Conley index is the homotopy type
of a spectrum E with E, = §2n+3y gin+d,

It is also evident that if we take U to be an open ball in H of a suffi-
ciently large radius, then U is an isolating neighbourhood. Let S, denote
the maximal invariant subset contained in U/. The Conley index of S is the
homotopy type of a spectrum E’ such that:

(a) B!, = 82 if d € (0,1),
(b) Bl = St if d € (1,2),

for n sufficlenty large.

Since [E] # [F'] we conclude that So 7# {0} and therefore there must
be another zero of V&, which gives a nontrivial solution of (5.1).

Finally, one easily verifies that ¢~ (4q) = 2, i°(do) = 2, i7(Ax) = 2 if
d e (0,1) and i~ (Aeo) = 4 if d € (1,2). This shows that (5.9) is not satisfied.

However, our example has also a disadvantage. Consider the linear iso-

morphism L : H — H defined

Tz = Lz ifze @J?;lHk’
Tz if z € Hp.

Let U © H be an open and bounded set and let f: U — H be of the
form f(z) = L(z) + K (2), where K : U — H is completely continuous and
f has no zeros on the boundary of U. Then one defines the Leray—Schauder
degree with respect to L to be

deg(f,U, 0) = degrg(1d+ L7* o K, U, 0)

where the right hand side is the classical Leray—Schauder degree (cf. [8]).
Now, an easy computation shows that in our example the local degree of

~V@(z) = Lz + K(z) = Lz + K(2)

at 0 is equal to —2 and if U is a disc centred at 0 with radius sufficiently
large then deg(—V®,U,0) is 1. Consequently, there is at least one z # 0
such that V&(z) = 0. |

In the next example that kind of argument cannot be used.
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EXAMPLE 5.4. Suppose that

() Gz, y.t) = 222 +4?) + (2® + y?)? + k(z,p,t) if 2% +9* < ¢ for
some ¢; > 0, with h being a smooth perturbation of order higher than 4
(with respect to z and y variables);

(ii) Glz,y. t) = 2d(z® + y%) + glz, ¥, t) if £* + 3* = o for some ¢z > ¢;
with ¢ having a bounded derivative and d € (1,2).

From Example 5.2 we know that 5§ = {0} is an isolated invariant subset
for the £L8-flow generated by —V$ whose Conley index is the homotopy
type of a spectrum E with E, = S22,

Again it is clear that an open ball U C H of a sufficiently large radius
is an isolating neighbourhood. The Conley index of Sec = Inv({7) is the
homotopy type of a spectrum E’ such that B/ = §2"* for n sufficiently
large. We have [E] # [E'] and therefore S, # {0}. Since F is a gradient
vector field, S, has to have at least two stationary points.

Note that in this example we have i~ (4o) = 2, 1%(4y) =2, i (Ae) = 4,
which gives i~ (As) € [i7(Aa),i7(4o) + i%(4p)] and thus the theorems
proved eg. in [1], [9], [10], [17] cannot be applied. The Leray-Schauder
degree gives us no extra information either. The local degree at 0 and the
degree on a sufficiently large disc of —V® (with respect to L) are equal to 1.
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