again denotes the (periodic) shift by \(h \) on \(L_q(L_\vartheta) := L_q([0,1], L_q(\vartheta, \nu)) \) then (Rq) for \(X = L_\vartheta(\vartheta, \nu) \) is equivalent to
\[
\| (I - S_h) K \| \to 0 \quad \text{as} \quad h \to 0.
\]
Hence, again by interpolation, \(K \) satisfies (Rp) on \(L_\vartheta(L_p) \). Indeed, by [2], Theorem 5.1.2, we have
\[
\| (I - S_h) K \|_{L_\vartheta(L_p)} \leq \| (I - S_h) K \|_{L_q(L_{q-\theta})}^{1-p} \| (I - S_h) K \|_{L_q(L_q)}^{p}
\]
where in the case \(1 < p < 2 \) we choose \(q = 1 \) and \(\theta = 2/p \) and in the case \(2 < p < \infty \) we choose some \(q \) with \(p < q < \infty \) and \(\theta = 2(q - p)/(p(q - 2)) \). Since we have \(\| (I - S_h) K \|_{L_q(L_q)} \leq 2C \), an appeal to Theorem 2.4 completes the proof.

References

Mathematisches Institut I
Universität Karlsruhe
Englerstr. 2
D-76128 Karlsruhe, Germany
E-mail: Lute.Weis@math.uni-karlsruhe.de
Volker.Goerssmeyer@math.uni-karlsruhe.de

Received May 6, 1998
Revised version October 23, 1998

STUDIA MATHEMATICA 134 (2) (1999)

Function spaces and spectra of elliptic operators on a class of hyperbolic manifolds

by

HANS TRIEBEL (Jena)

Abstract. The paper deals with quasiconformal decompositions and entropy numbers in weighted function spaces on hyperbolic manifolds. We use these results to develop a spectral theory of related Schrödinger operators in these hyperbolic worlds.

1. INTRODUCTION

A bounded connected domain \(\Omega \) in \(\mathbb{R}^n \) is called a \(d \)-domain if, roughly speaking, its boundary \(\partial \Omega \) is an inner Minkowski \(d \)-set. Here \(n - 1 \leq d < n \), with \(d = n - 1 \) in the case of a Lipschitzian boundary, whereas \(n - 1 < d < n \) indicates fractal distortions. We convert \(\Omega \) in a non-compact hyperbolic manifold \(M \) of bounded geometry and with positive injectivity radius by introducing the Riemannian metric
\[
(1.1) \quad ds^2 = g^2(x) \, dx^2, \quad x \in \Omega,
\]
where \(g(x) \) is a positive \(C^\infty \) function in \(\Omega \) with
\[
(1.2) \quad (\text{dist}(x, \partial \Omega))^{-1} \sim g(x), \quad x \in \Omega,
\]
where "\(\sim \)" means that the quotients of the two functions involved can be estimated from above and from below by positive constants which are independent of \(x \in \Omega \). Based on [Tri86] and [Tri87] we developed in [Tri92], Ch. 7, a theory of two scales of function spaces \(F^s_{pq}(M) \) and \(B^s_{pq}(M) \) on (abstract) Riemannian manifolds with bounded geometry and positive injectivity radius. These scales include (fractional) Sobolev spaces, (classical) Besov spaces, Hölder–Zygmund spaces and (inhomogeneous) Hardy spaces. Under the above more special circumstances there is no problem to introduce weighted spaces \(F^s_{pq}(M, g^w) \) with \(w \in \mathbb{R} \). The paper deals with the following topics:

4095
A. Quarkonial (or subatomic) decompositions of some spaces \(F_{p_1,1}^q (M, g^{\alpha}) \).

This extends what has been done in [Tri97], Sect. 14, and in particular in [Tri98], from the euclidean case to the above Riemannian case.

B. Based on A we estimate the entropy numbers \(e_k \) of the compact embedding

\[
(1.3) \quad \delta : F_{p_1,1}^q (M, g^{\alpha}) \to F_{p_2,2}^q (M, g^{\alpha})
\]

where \(0 < p_1 \leq p_2 < \infty, 0 < q_1 \leq \infty, 0 < q_2 \leq \infty, \)

\[
(1.4) \quad \delta = \left(s_1 - \frac{n}{p_1} \right) - \left(s_2 - \frac{n}{p_2} \right) > 0, \quad \alpha = \alpha_1 - \alpha_2 > 0.
\]

We obtain

\[
(1.5) \quad e_k \sim k^{-((s_1 - s_2)/n)}, \quad k \in \mathbb{N}, \text{ if } \alpha > \delta d/n,
\]

\[
(1.6) \quad e_k \sim k^{-\alpha/(d+1/p_2 - 1/p_1)}, \quad k \in \mathbb{N}, \text{ if } \alpha < \delta d/n.
\]

Of course the interpretation of “\(\sim \)” is as in (1.2) now with respect to \(k \in \mathbb{N} \). This behaviour is in general similar to the euclidean case, where \(M, g(x), d \) is replaced by \(\mathbb{R}^n, (1 + |x|^2)^{1/2}, n \). We refer to [ET96], 4.3.2, pp. 170–171, based on [HaT94], and recently substantially extended in [Har98] (limiting cases).

C. On the basis of A and B, and the technique used in [Tri97], one can now develop a spectral theory of weighted (fractal) pseudodifferential operators on the above hyperbolic manifold \(M \). This will not be done here in detail. We restrict ourselves to an example. It is well known that the Laplace–Beltrami operator \(-\Delta_g \) with its domain of definition

\[
(1.7) \quad \text{dom}(-\Delta_g) = H^2(M) = F_{2,2}^0(M)
\]

is self-adjoint in \(L_2(M) := F_{2,2}^0(M) \) and bounded from below. Let \(\varrho \in \mathbb{R} \) be such that

\[
(1.8) \quad \text{spec}(-\Delta_g + \varrho \text{id}) \subseteq [1, \infty).
\]

Then we are interested in the negative spectrum of the relatively compact perturbation

\[
(1.9) \quad H_\varrho = -\Delta_g + \varrho \text{id} - \beta g^{-\alpha}, \quad \alpha > 0, \beta > 0,
\]

of \(-\Delta_g + \varrho \text{id} \). In other words we ask for the behaviour of

\[
(1.10) \quad N_\varrho = \{ \text{spec}(H_\varrho) \cap (-\infty, 0) \} \quad \text{as } \beta \to \infty.
\]

Problems of this type attracted a lot of attention in the euclidean setting (i.e. with \(\mathbb{R}^n \) in place of \(M \)). They originate from (euclidean) quantum mechanics and the semi-classical limit \(\hbar \to 0 \) (Planck’s constant tending to zero) and \(\beta \sim \hbar^{-2} \), considered there. Let \(|x|_g \) be the Riemannian distance of \(x \in M \) to a fixed off-point, say, \(0 \in M \). Then there are two positive continuous functions

\[
(1.11) \quad m(x) \sim 1, \quad M(x) \sim 1, \quad x \in \Omega,
\]

such that

\[
(1.12) \quad g(x) = M(x) 2^m(x)|x|_g, \quad |x|_g \geq 1.
\]

Hence the potential \(g^{-\alpha}(x) \) in (1.9) is of exponential decay measured against \(|x|_g \). We obtain

\[
(1.13) \quad N_\beta \sim g^{d/\alpha} \quad \text{if } 0 < \alpha < 2d/n \quad (\beta \to \infty),
\]

\[
(1.14) \quad N_\beta \sim g^{n/2} \quad \text{if } \alpha > 2d/n \quad (\beta \to \infty),
\]

which might be considered as the main result of this paper. Again there is a striking similarity to the euclidean case where \(M, g, d \) is replaced by \(\mathbb{R}^n, (1 + |x|^2)^{1/2}, n \). We refer to [ET96], 5.4.7–5.4.9, pp. 236–242, based on [HaT94*], and extended in [Har98]. To imitate the hydrogen atom in \(\mathbb{R}^n \) (where \(n = 3 \) has physical relevance) we put \(\alpha = 1 \) in (1.9) and multiply near the off-point with the “Coulomb" potential \(|x|_g^{-1} \), hence

\[
(1.15) \quad H_\varrho = -\Delta_g + \varrho \text{id} - \beta(g \min(1, |x|_g))^{-1}.
\]

It turns out that for \(n \geq 3 \) the local perturbation \(|x|_g^{-1} \) does not influence (1.13) and that

\[
(1.16) \quad N_\varrho \sim \varrho^d, \quad \beta \to \infty, \quad n \geq 3.
\]

Hence the physicists in the hyperbolic world \((M, g) \) claim that one can find out by local measurement (1.16) how fractal \(n - 1 \leq d < n \) the invisible boundary of their infinite world might be (under the assumption \(\alpha = 1 \)).

We collect definitions, results and further comments in Section 2. Proofs are given in Section 3. Here we are in a comfortable situation. The paper is an application of [Tri98] combined with the techniques developed in [Tri97] in connection with fractal pseudodifferential operators. With these results the proofs are not so complicated.

2. DEFINITIONS, RESULTS, COMMENTS

2.1. Manifolds

2.1.1. Preliminaries. Let \(\Omega \) be a bounded connected domain in \(\mathbb{R}^n \). Then \(\text{dist}(x, \partial \Omega) \) denotes the distance of \(x \in \Omega \) to the boundary \(\partial \Omega \) of \(\Omega \). It is well known (and can be checked easily) that there is a positive \(C^{\infty} \) function \(g(x) \) in \(\Omega \) with

\[
(2.1) \quad g(x) \sim (\text{dist}(x, \partial \Omega))^{-1}, \quad |D^\gamma g(x)| \leq c_\gamma g^{\alpha + |\gamma|}(x), \quad x \in \Omega, \quad \gamma \in \mathbb{N}_0^n,
\]

for some positive constants \(c_\gamma \). We use \(\sim \) for two positive functions \(a(x) \) and \(b(x) \) or two sequences of positive numbers \(a_k \) and \(b_k \) (say, \(k \in \mathbb{N} \)) if
there are two positive numbers c and C such that
\[ca(x) \leq b(x) \leq Ca(x) \quad \text{or} \quad ca_k \leq b_k \leq Ca_k \]
for all admitted variables x or k. We equip Ω with the Riemannian metric
\[ds^2 = g^j(x) \, dx^j. \tag{2.2} \]
Then we obtain a non-compact hyperbolic manifold, denoted by M, of bounded geometry and with positive injectivity radius. Details about the notation used may be found in [Tri92], 7.2.1, pp. 281–285, and the references given there. We used this type of interplay between Riemannian and euclidean metrics in [Tri88] to study pseudodifferential operators.

2.1.2. The covering. Let
\[\Omega_j = \{ x \in \Omega : 2^{-j} \leq \text{dist}(x, \partial \Omega) \leq 2^{-j+1} \}, \quad j \in \mathbb{N}_0. \tag{2.3} \]
We assume, without restriction of generality, that $\Omega_j \neq \emptyset$ for all $j \in \mathbb{N}_0$ and $\text{dist}(x, \partial \Omega) < 1$ for any $x \in \Omega$. For a fixed small positive number c we cover Ω_j by balls $B_{j,m}$ of radius $c \cdot 2^{-j}$ centred in Ω_j such that
\[B_{j,m} \subset \Omega_{j-1} \cup \Omega_j \cup \Omega_{j+1}, \quad j \in \mathbb{N}_0, \tag{2.4} \]
(with $\Omega_{-1} = \emptyset$) and $m = 1, \ldots, M_j$. The covering
\[\Omega = \bigcup_{j=0}^{\infty} \bigcup_{m=1}^{M_j} B_{j,m} \tag{2.5} \]
is assumed to be locally finite: there is $N \in \mathbb{N}$ such that at most N balls involved in (2.5) have a non-empty intersection. Furthermore we assume that there is a number λ with $0 < \lambda < 1$ such that all the balls $\lambda B_{j,m}$ are disjoint. Here $\lambda B_{j,m}$ stands for the ball with the same centre as $B_{j,m}$ and of radius λ times the radius of $B_{j,m}$.

2.1.3. Definition. Let $n - 1 \leq d < n$. The above domain Ω, or likewise the related Riemannian manifold (M, g), is called a d-domain if there is a covering of the above type such that
\[M_j \sim 2^{jd}, \quad j \in \mathbb{N}_0. \tag{2.6} \]

2.1.4. Remark. If Ω has a Lipschitz boundary then $d = n - 1$. If $n - 1 < d < n$ then $\partial \Omega$ is a fractal. Notation of this type is useful in connection with the spectral theory of the (euclidean) Laplacian $-\Delta$ in bounded domains with fractal boundary [Lap91, Hei97, EvH93, Ber98]. In the notation introduced there d is the inner Minkowski dimension of Ω. We refer to [Fal85a, Fal90, Mat95] for the background of fractal geometry. A short description of some relevant aspects may also be found in [Tri97], including what is called a d-set.

2.1.5. Examples: Thorny star-like d-domains. The prototype of an $(n-1)$-domain in the above context is the Poincaré n-ball, that is, the unit ball $B = \Omega$ in \mathbb{R}^n equipped with the Riemannian metric
\[ds^2 = (1 - |x|^2)^{-2} \, dx^2, \quad |x| < 1. \tag{2.7} \]
Let Q be the unit cube in \mathbb{R}^{n-1} and let $0 < s < 1$. In [Tri97], Sect. 16, pp. 119–133, we constructed a positive function $x_n = f(x')$ with $x' = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$, compact support in Q, and $f \in C^s(\mathbb{R}^{n-1})$ (Hölder spaces) such that its graph $\{(x', f(x')) : x' \in \mathbb{R}^{n-1}\}$ is an $(n-s)$-set in \mathbb{R}^n. As indicated in [Tri97], p. 123, with obvious modifications one can replace Q by the unit sphere $\{x \in \mathbb{R}^n : |x| = 1\}$ and x_n by the radial direction. Then one obtains a rather thorny star-like (with respect to the origin) simply connected d-domain where $d = n - s$.

2.2. Function spaces

2.2.1. Basic notation. Let $S'(\mathbb{R}^n)$ be the Schwartz space of all complex-valued, rapidly decreasing, infinitely differentiable functions on \mathbb{R}^n. By $S'(\mathbb{R}^n)$ we denote the dual space of all tempered distributions on \mathbb{R}^n. Furthermore, $L_p(\mathbb{R}^n)$ with $0 < p \leq \infty$ is the usual quasi-Banach space with respect to the Lebesgue measure, quasi-normed by
\[||f||_{L_p(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |f(x)|^p \, dx \right)^{1/p}. \tag{2.8} \]
with the usual modification if $p = \infty$. If $\varphi \in S(\mathbb{R}^n)$ then
\[\varphi(\xi) = (F \varphi)(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-i\xi x} \varphi(x) \, dx, \quad \xi \in \mathbb{R}^n, \tag{2.9} \]
denotes the Fourier transform of φ. As usual, φ'' or $F^{-1} \varphi$ stands for the inverse Fourier transform, given by $\varphi''(\xi) = \hat{\varphi}(-\xi)$. Both F and F^{-1} are extended to $S'(\mathbb{R}^n)$ in the standard way. Let $\varphi \in S(\mathbb{R}^n)$ with
\[\varphi(x) = 1 \quad \text{if} \ |x| \leq 1, \quad \varphi(y) = 0 \quad \text{if} \ |y| \geq 3/2. \tag{2.10} \]
We put $\varphi_0 = \varphi$, $\varphi_1(x) = \varphi(x/2) - \varphi(x)$, and
\[\varphi_k(x) = \varphi_1(2^{-k+1}x), \quad x \in \mathbb{R}^n, \quad k \in \mathbb{N}. \tag{2.11} \]
Then, since
\[1 = \sum_{k=0}^{\infty} \varphi_k(x) \quad \text{for all} \ x \in \mathbb{R}^n, \tag{2.12} \]
the φ_k form a dyadic resolution of unity. Recall that $(\varphi_k F)''(x)$ is an entire analytic function on \mathbb{R}^n for any $f \in S'(\mathbb{R}^n)$.
2.2.2. The F-scale. Let $s \in \mathbb{R}$ and $0 < p \leq \infty$, $0 < q \leq \infty$ (with $q = \infty$ if $p = \infty$). Then $F_{pq}^s(\mathbb{R}^n)$ is the collection of all $f \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$
\|f| F_{pq}^s(\mathbb{R}^n)\| = \left(\sum_{j=0}^{\infty} 2^{jq} \| (\varphi_j f)^{\gamma}(\cdot) \|_p \right)^{1/q} \| L_p(\mathbb{R}^n) \|
$$

(with the usual modification if $q = \infty$) is finite. The theory of these spaces has been developed in [Tri83], [Tri92], and more recently in [ET96], [Rus96], [Tri97]. In particular they are quasi-Banach spaces which are independent of φ (have equivalent quasi-norms with the somewhat sloppy omission of φ on the left-hand side of (2.13)). We mention that

$$
H_p^s(\mathbb{R}^n) = F_{pq}^s(\mathbb{R}^n), \quad s \in \mathbb{R}, \quad 1 < p < \infty,
$$

are the usual (fractional) Sobolev spaces with the (classical) Sobolev spaces

$$
W_p^k(\mathbb{R}^n) = H_p^k(\mathbb{R}^n), \quad k \in \mathbb{N}_0, \quad 1 < p < \infty,
$$

as a subclass. Furthermore,

$$
\mathcal{C}^s(\mathbb{R}^n) = F_{pq}^{s,\infty}(\mathbb{R}^n), \quad s > 0,
$$

are the Hölder-Zygmund spaces. In what follows one might always think in terms of the special cases (2.14)–(2.16), accepting that there is a generalisation $F_{pq}^s(\mathbb{R}^n)$. In connection with manifolds the F-scale has always preference compared with the B-scale consisting of the spaces $B_{pq}^s(\mathbb{R}^n)$, where $s \in \mathbb{R}$, $0 < p \leq \infty$, $0 < q \leq \infty$. We refer to [Tri92], Ch. 7. We only mention that $B_{pp}^s = F_{pp}^s$.

2.2.3. Definition. Let Ω be a bounded domain in \mathbb{R}^n. Let $s \in \mathbb{R}$, $0 < p \leq \infty$, $0 < q \leq \infty$ (with $q = \infty$ if $p = \infty$).

(i) We set

$$
F_{pq}^s(\Omega) = \{ f \in D'(\Omega) : \text{there is a } g \in F_{pq}^s(\mathbb{R}^n) \text{ with } g|\Omega = f \},
$$

and

$$
\| f | F_{pq}^s(\Omega) \| = \inf \| g | F_{pq}^s(\mathbb{R}^n) \|,
$$

where the infimum is taken over all $g \in F_{pq}^s(\mathbb{R}^n)$ such that the restriction $g|\Omega$ coincides in $D'(\Omega)$ with f. Furthermore, $\hat{F}_{pq}^s(\Omega)$ is the completion of $D(\Omega)$ in $F_{pq}^s(\Omega)$.

(ii) We also set

$$
\hat{F}_{pq}^s(\Omega) = \{ f \in D'(\Omega) : \text{there is a } g \in F_{pq}^s(\mathbb{R}^n) \text{ with } \supp g \subset \bar{\Omega} \text{ and } f = g|\Omega \},
$$

and

$$
\| f | \hat{F}_{pq}^s(\Omega) \| = \inf \| g | F_{pq}^s(\mathbb{R}^n) \|,
$$

where the infimum is taken over all g admitted in (2.19). Furthermore

$$
\hat{F}_{pq}^s(\bar{\Omega}) = \{ f \in F_{pq}^s(\mathbb{R}^n) : \supp f \subset \bar{\Omega} \}.
$$

2.2.4. Properties. Of course, $D(\Omega) = C_c^\infty(\Omega)$ stands for the collection of all complex C^∞ functions with compact support in Ω, whereas $D'(\Omega)$ is the dual space of complex distributions. $F_{pq}^s(\mathbb{R}^n)$ and $\hat{F}_{pq}^s(\mathbb{R}^n)$ are quasi-Banach spaces in $D'(\Omega)$, while $\hat{F}_{pq}^s(\Omega)$ is a closed subspace of $F_{pq}^s(\mathbb{R}^n)$. Under the additional assumption that Ω is a bounded C^∞ domain we studied these spaces in [Tri98]. We list some of the properties proved there which are useful later on (always assuming that Ω is bounded and C^∞). Recall $a_+ = \max(a, 0)$ if $a \in \mathbb{R}$.

(i) If $0 < p < \infty$, $-\infty < s < 1/p$, $0 < q < \infty$, then

$$
F_{pq}^s(\Omega) = \hat{F}_{pq}^s(\Omega).
$$

(ii) If $0 < p \leq \infty$, $0 < q \leq \infty$ (with $q = \infty$ if $p = \infty$), and

$$
\max(1/p - 1, n(1/p - 1)) < s < \infty,
$$

then

$$
\hat{F}_{pq}^s(\Omega) = \hat{F}_{pq}^s(\Omega).
$$

(iii) If $0 < p < \infty$, $0 < q < \infty$, and

$$
\hat{F}_{pq}^s(\Omega) = \hat{F}_{pq}^s(\Omega),
$$

with $s = n(1/p - 1)_+$ and $s - 1/p \notin \mathbb{N}_0$,

then

$$
\hat{F}_{pq}^s(\Omega) = \hat{F}_{pq}^s(\Omega).
$$

Proof and comments, and references may be found in [Tri98].

2.2.5. Spaces on M. Let Ω be a bounded connected domain in \mathbb{R}^n. Furnishing Ω with the Riemannian metric (2.1), (2.2), we obtain a non-compact hyperbolic manifold with bounded geometry and positive injectivity radius, denoted by M or (M, g). On manifolds of this type we introduced in [Tri92], Ch. 7, in an abstract way, spaces $F_{pq}^s(M)$ where $s \in \mathbb{R}$, $0 < p \leq \infty$, $0 < q \leq \infty$ (with $q = \infty$ if $p = \infty$). We do not repeat this definition here, but we assume in the sequel that this is done by using a resolution of unity related to the covering (2.5), where the balls $B_{r_{\text{Rm}}}^r$ are approximately congruent with respect to the Riemannian metric. This resolution of unity will be described below. Details may also be found in Step 1 in 3.1. Under these circumstances it makes sense to speak about weights on M and related weighted spaces.

2.2.6. Definition. Let (M, g) be the above manifold and let $\kappa \in \mathbb{R}$. Then

$$
F_{pq}^s(M, g^\kappa) = \{ f \in D'(\Omega) : g^\kappa f \in F_{pq}^s(M) \},
$$

and

$$
\| f | F_{pq}^s(M, g^\kappa) \| = \| g^\kappa f | F_{pq}^s(M) \|.
$$
2.2.7. **Resolution of unity.** Let \(\Omega \) be covered according to (2.5). We may assume that there is a related resolution of unity,

\[
(2.29) \quad \sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \varphi_{jm}(x) = 1 \quad \text{if } x \in \Omega,
\]

of \(C^\infty \) functions \(\varphi_{jm}(x) \) with

\[
(2.30) \quad \text{supp } \varphi_{jm} \subset B_j
\]

and, for suitable \(c_\gamma > 0 \),

\[
(2.31) \quad |D^\gamma \varphi_{jm}(x)| \leq c_\gamma 2^{j\gamma r}, \quad \text{where } \gamma \in \mathbb{N}_0^n.
\]

Recall the abbreviations

\[
(2.32) \quad \sigma_p = \left(\frac{1}{p} - 1 \right)_+ \quad \text{and} \quad \sigma_{pq} = \left(\frac{1}{\min(p, q)} - 1 \right)_+
\]

where \(0 < p \leq \infty, 0 < q \leq \infty \).

2.2.8. **Theorem.** Let either

\[
(2.33) \quad 1 < p \leq \infty, \quad 1 < q \leq \infty \quad (q = \infty \text{ if } p = \infty), \quad s \in \mathbb{R},
\]

or

\[
(2.34) \quad 0 < p \leq \infty, \quad 0 < q \leq \infty \quad (q = \infty \text{ if } p = \infty), \quad s > \sigma_{pq},
\]

Let \(\Omega \in \mathbb{R} \) and let \(F^s_{pq}(M, g^m) \) be the space introduced in 2.2.6. Then \(f \in D'(\Omega) \) belongs to \(F^s_{pq}(M, g^m) \) if, and only if,

\[
(2.35) \quad \left(\sum_{j=0}^{\infty} \sum_{m=1}^{M_j} 2^{j(\nu-s+n)/p} \| \varphi_{jm} f \|_{F^s_{pq}(\mathbb{R}^n)} \right)^{1/p} < \infty
\]

(with the usual modification if \(p = q = \infty \)). Furthermore, (2.35) is an equivalent quasi-norm.

2.2.9. **Remark.** The theorem gives a perfect link between the weighted spaces \(F^s_{pq}(M, g^m) \) on the above hyperbolic manifold \(M \) and related spaces on \(\mathbb{R}^n \). For our later purposes (2.34) would be sufficient. But we incorporated (2.33) to make it clear that (2.35) holds in particular for the interesting weighted (fractional) Sobolev spaces

\[
(2.36) \quad H^s_{pq}(M, g^m) = F^s_{pq,2}(M, g^m), \quad 1 < p < \infty, \quad s \in \mathbb{R}.
\]

On the other hand, the restrictions (2.33), (2.34) allow a direct application of the pointwise multiplier assertions in [Tri98], 3.9. But there is hardly any doubt that the theorem holds for all \(0 < p \leq \infty, 0 < q \leq \infty \) (\(q = \infty \) if \(p = \infty \)), and \(s \in \mathbb{R} \). Furthermore, (2.35) indicates how the spaces \(F^s_{pq}(M, g^m) \) and the corresponding spaces on \(\Omega \) introduced in 2.2.3 and described in 2.2.4 are related.

2.2.10. **Theorem.** Let \(\Omega \) be a bounded \(C^\infty \) domain in \(\mathbb{R}^n \) and let \((M, g) \), or, for short, \(M \), be the related Riemannian manifold introduced in 2.1.1.

(i) Let

\[
(2.37) \quad 0 < p \leq \infty, \quad 0 < q \leq \infty \quad (q = \infty \text{ if } p = \infty), \quad s > \sigma_{pq}.
\]

Then

\[
(2.38) \quad F^s_{pq}(M, g^{-n/p}) = F^s_{pq}(\Omega)
\]

(with equivalent quasi-norms).

(ii) Let

\[
(2.39) \quad 0 < p \leq \infty, \quad 0 < q \leq \infty \quad s > \sigma_{pq}, \quad s - 1/p \notin \mathbb{N}_0.
\]

Then

\[
(2.40) \quad F^s_{pq}(M, g^{-n/p}) = F^s_{pq}(\Omega).
\]

(iii) Let

\[
(2.41) \quad 1 < p \leq \infty, \quad 1 < q \leq \infty \quad (q = \infty \text{ if } p = \infty), \quad -\infty < s < 1/p.
\]

Then

\[
(2.42) \quad F^s_{pq}(M, g^{-n/p}) = F^s_{pq}(\Omega).
\]

2.2.11. **Remark.** The above theorem holds under the additional assumption that the bounded domain in \(\Omega \) is \(C^\infty \). In particular \(\Omega \) is an \((n-1)\)-domain according to 2.1.3. This restriction comes from [Tri98] where we dealt exclusively with bounded \(C^\infty \) domains. Combined with the two lifts described below, in this case any space \(F^s_{pq}(M, g^m) \) can be reduced to spaces on \(\Omega \) in the euclidean setting.

2.2.12. **Lifts.** Let \((M, g) \) be the above hyperbolic non-compact manifold with bounded geometry and positive injectivity radius. Let \(-\Delta_g \) be the corresponding Laplace–Beltrami operator. Let \(0 < p \leq \infty, 0 < q \leq \infty \) (\(q = \infty \) if \(p = \infty \)), and \(s \in \mathbb{R} \). Then for any sufficiently large \(\epsilon \in \mathbb{R} \),

\[
(2.43) \quad -\Delta_g + \epsilon: F^{s+\epsilon}_{pq}(M) \rightarrow F^s_{pq}(M)
\]

is an isomorphic mapping (lift). This assertion is proved in [Tri92], Theorem 7.4.3, p. 316, based on [Tri86], [Tri87]. The Laplace–Beltrami operator \(-\Delta_g \) and, more generally, pseudodifferential operators on Riemannian manifolds attracted a lot of attention: (essential) self-adjointness in \(L^2(M) \), dependence on \(p \) of the spectrum in \(L^p(M) \) with \(1 < p < \infty \), mapping properties etc. We refer to [Tri88], [Dav89], Ch. 5, [Tay89], [Skr89], [Shu93], and most recently [Skr98*]. We need here an extension of (2.43) to \(F^s_{pq}(M, g^m) \) and mapping properties of the pointwise multiplication operator \(G_{\mu} \),

\[
(2.44) \quad G_{\mu} : f \mapsto g^\mu f, \quad \mu \in \mathbb{R}, \quad f \in D'(\Omega).
\]
2.2.13. Theorem. Let \(0 < p \leq \infty, 0 < q \leq \infty \) \((q = \infty \text{ if } p = \infty)\), \(s \in \mathbb{R}\) and \(x \in \mathbb{R}\). Let \(F^s_{pq}(M, g^{\alpha})\) be the spaces defined in 2.2.6.

(i) If \(\varrho \in \mathbb{R} \) is sufficiently large, then
\[
\Delta_{\varrho} + \varrho \text{id} : F^{s+2}_{pq}(M, g^{\alpha}) \to F^s_{pq}(M, g^{\alpha})
\]
is an isomorphic mapping.

(ii) Let \(\mu \in \mathbb{R} \). Then
\[
G_{\mu} : F^s_{pq}(M, g^{\alpha}) \to F^s_{pq}(M, g^{\alpha-\mu})
\]
is an isomorphic mapping.

2.2.14. Remark. If \(x = 0 \), then (2.45) is covered by (2.43). However, the arguments in [Tri92] can be extended to all \(x \in \mathbb{R} \). In other words: We take part (i) of the above theorem for granted. Part (ii) follows from Definition 2.2.6.

2.2.15. Embeddings. We recall basic facts on embeddings between \(F^s_{pq}\) spaces on \(\mathbb{R}^n\) and on bounded domains \(\Omega \) in \(\mathbb{R}^n\). Let
\[
\begin{align*}
&-\infty < s_2 < s_1 < \infty, \\
&0 < p_1 \leq p_2 \leq \infty, \\
&0 < q_1 \leq \infty, \\
&0 < q_2 \leq \infty
\end{align*}
\]
\((q_1 = \infty \text{ if } p_1 = \infty, \text{ and } q_2 = \infty \text{ if } p_2 = \infty)\). Then
\[
F^{s_1}_{p_1q_1}(\mathbb{R}^n) \subset F^{s_2}_{p_2q_2}(\mathbb{R}^n)
\]
if, and only if, \(\delta \geq 0 \), where
\[
\delta = \left(s_1 - \frac{n}{p_1} \right) - \left(s_2 - \frac{n}{p_2} \right).
\]
The same assertion holds with \(\Omega \) in place of \(\mathbb{R}^n\). Since \(\Omega \) is bounded we know in addition that
\[
F^{s_1}_{p_1q_1}(\Omega) \subset F^{s_2}_{p_2q_2}(\Omega)
\]
is compact if, and only if, \(\delta > 0 \). We refer to [Tri83], 2.7.1, and [ET06], 3.3.1. Using Theorems 2.2.8 and 2.2.13(i) one has the following counterpart.

2.2.16. Proposition. Let \(M \) be a manifold as in 2.1.1 and let the spaces \(F^{s_1}_{p_1q_1}(M, g^{\alpha})\) and \(F^{s_2}_{p_2q_2}(M, g^{\alpha})\) be defined by 2.2.6 under the condition (2.47) and \(x_1 \in \mathbb{R}, x_2 \in \mathbb{R}\). Let \(\delta \) be given by (2.49). Then
\[
F^{s_1}_{p_1q_1}(M, g^{\alpha}) \subset F^{s_2}_{p_2q_2}(M, g^{\alpha})
\]
(continuous embedding) if, and only if, \(\delta \geq 0 \) and \(s_1 \geq s_2 \). Furthermore, (2.51) is compact if, and only if, \(\delta > 0 \) and \(s_1 > s_2 \).

2.2.17. Remark. This proposition is the direct counterpart of the corresponding assertions for weighted spaces on \(\mathbb{R}^n\) as developed in [HaT94] and [ET96], 4.2.3, p. 160. As indicated in (1.3)–(1.6) it is one of the main aims of this paper to calculate the entropy numbers of these compact embeddings.

For this purpose we need first quarkional (subatomic) representations of the related spaces.

2.3. Quarkional decompositions

2.2.1. Preliminaries. As already mentioned, this paper is a continuation of [Tri98]. This applies in particular to quarkional (or subatomic) decompositions. In [Tri98], 2.5, we gave a description of quarkional decompositions of the spaces \(\widetilde{F}^s_{pq}(\mathbb{R}^n)\) and added a few comments and references about atomic and subatomic decompositions. This will not be repeated here. Whereas atoms in (euclidean) function spaces are quite fashionable nowadays, there are only a few papers dealing with atomic decompositions for function spaces on Riemannian manifolds. We refer in particular to [Skr96], [Skr97], [Skr98].

Let \(\Omega \) be a bounded \(C^\infty\) domain in \(\mathbb{R}^n\) and let \(\widetilde{F}^s_{pq}(\Omega)\) be the (euclidean) spaces introduced in (2.19), (2.20). If \(p, q, s \) are restricted by (2.37) then we have (2.38), and (2.35) reduces to
\[
\left(\sum_{j=0}^{\infty} \sum_{n=1}^{M_j} \| \varphi_{jm} f \|_{\widetilde{F}^s_{pq}(\mathbb{R}^n)} \right)^{1/p} < \infty.
\]
This coincides with [Tri98], Theorem 2.2.2. This assertion is the basis to prove the quarkional decomposition for the spaces \(\widetilde{F}^s_{pq}(\Omega)\) obtained in [Tri98], Theorem 2.5.7. In other words, if one accepts (2.35) under the restriction (2.34) then one can take over the arguments from [Tri98]. The only point is that one has to adapt the quarks to account for the additional factor \(2^{(l-n+1)/p}\) in (2.35). But this causes no trouble.

2.3.2. Some notation. We follow essentially [Tri98], 2.5.6. Let \(\Omega \) be a bounded connected domain in \(\mathbb{R}^n\). There are positive numbers \(c_l \ (l = 1, \ldots, 8)\) and \(c_r \ (\gamma \in \mathbb{N}_0)\), (irregular) lattices
\[
\{x^{j,m} : m = 1, \ldots, N_j\} \subset \Omega \quad \text{for } j \in \mathbb{N}_0,
\]
and subordinate resolutions of unity \(\{\varphi_{jm} : m = 1, \ldots, N_j\}\) with the following properties:

(i) we have
\[
\begin{align*}
&c_1 \leq N_j 2^{-jn} \leq c_2 \quad \text{for } j \in \mathbb{N}_0; \\
&|x^{j,m_1} - x^{j,m_2}| \geq c_2 2^{-j} \quad \text{for } j \in \mathbb{N}_0, \ m_1 \neq m_2; \\
&\text{dist}(K_{jm}, \partial \Omega) \geq c_4 2^{-j} \quad \text{for } j \in \mathbb{N}_0, \ m = 1, \ldots, N_j, \\
\text{with }
&K_{jm} = \{ y : |y - x^{j,m}| \leq c_0 2^{-j} \} \subset \Omega.
\end{align*}
\]
(ii) $\psi_{jm}(x)$ are C^∞ functions with
\begin{align}
(2.58) \quad &\sup_j \psi_{jm} \subset K_{jm} \quad \text{for } j \in \mathbb{N}_0, \quad m = 1, \ldots, N_j, \\
(2.59) \quad &|D^\gamma \psi_{jm}(x)| \leq c_\gamma \alpha^{j/|\gamma|} \quad \text{for } \gamma \in \mathbb{N}_0^\infty, \quad m = 1, \ldots, N_j,
\end{align}
and
\begin{equation}
(2.60) \quad c_\gamma \leq \sum_{m=1}^{N_j} \psi_{jm}(x) \leq c_\gamma \quad \text{if } x \in \Omega \text{ with } \text{dist}(x, \partial \Omega) \geq c_\delta 2^{-j}
\end{equation}
for all $j \in \mathbb{N}_0$. For short, we call $\{\psi_{jm}\}$ a family of approximative resolutions of unity in Ω if one finds lattices $\{x^{j,m}\}$ with all the properties (2.54)-(2.60). Let $\chi_{jm}(x)$ be the characteristic function of K_{jm} in (2.57). Then
$$
\chi_{jm}(x) = 2^{-j/\gamma} \chi_{jm}(x)
$$
with $0 < p \leq \infty$ is the p-normalized version. As usual in construction with atoms and quarks for F_{pq}^s spaces we introduce the sequence space
\begin{equation}
(2.61) \quad f_{pq}^s = \left\{ \lambda : \|\lambda \cdot f_{pq}^s\| = \left\| \left(\sum_{j=0}^{\infty} \sum_{m=1}^{N_j} \lambda_{jm} x_{jm}^{[s]}(\cdot)^{j/\gamma} \right)^{1/\gamma} \right\|_{L_p(\Omega)} < \infty \right\}
\end{equation}
where
\begin{equation}
(2.62) \quad \lambda = \{\lambda_{jm} \in \mathbb{C} : j \in \mathbb{N}_0, \quad m = 1, \ldots, N_j\}
\end{equation}
are the related sequences. We put
\begin{equation}
(2.63) \quad \lambda_{\gamma} = \{\lambda_{jm} \in \mathbb{C} : j \in \mathbb{N}_0, \quad m = 1, \ldots, N_j\} \quad \text{for } \gamma \in \mathbb{N}_0^\infty.
\end{equation}

2.3.3. Normalised γ-quarks. Let $s \in \mathbb{R}, \quad 0 < p < \infty, \quad \gamma \in \mathbb{N}_0^\infty, \quad \alpha \in \mathbb{R}$. Let $\{\psi_{jm}\}$ be a family of approximative resolutions of unity in Ω as described above. Then
\begin{equation}
(2.64) \quad (\gamma \text{qu})_{jm}(x) = -2^{-j(s-n/p)+j/\gamma} 2^{-\beta(s-x+n/p)}(x - x^{j,m})^\gamma \psi_{jm}(x)
\end{equation}
are the normalised elementary building blocks we are looking for. Here
\begin{equation}
(2.65) \quad k = k(j, m) \quad \text{such that } x^{j,m} \in \Omega_k
\end{equation}
according to (2.3). In [Tri97], [Tri98], we called constructions of type (2.64) γ-quarks, which might explain the notation. Compared with [Tri98], (2.92), we now have the additional factor $2^{-k(s-x+n/p)}$ with (2.65) which comes from the related factor in (2.35). By [Tri97], Sect. 14, and [Tri98] we have
\begin{equation}
(2.66) \quad \|((\gamma \text{qu})_{jm} | F_{pq}^s(M, g^\alpha))\| \sim (\gamma)
\end{equation}
which means that the elementary building blocks in (2.64) are approximately normalised, where the related constants are independent of j and m.

2.3.4. Theorem. Let Ω be a bounded connected domain in \mathbb{R}^n. Let p, q, s satisfy (2.34). Let $s \in \mathbb{R}$. There are a number $\mu_0 > 0$ and a family
$\{\psi_{jm}\}$ of approximative resolutions of unity in Ω as described above with the following property. Let $\mu > \mu_0$ and let $(\gamma \text{qu})_{jm}(x)$ be given by (2.64), (2.65). Then $f \in D'(\Omega)$ belongs to $F_{pq}^s(M, g^\alpha)$ if, and only if, it can be represented as
\begin{equation}
(2.67) \quad f = \sum_{\gamma \in \mathbb{N}_0^\infty} \sum_{j=0}^{\infty} \sum_{m=1}^{N_j} \lambda_{jm}^\gamma (\gamma \text{qu})_{jm}(x)
\end{equation}
with
\begin{equation}
(2.68) \quad \sup_{\gamma} 2^{\mu/\gamma} \|f_{\gamma}\|_{L_\infty(\Omega)} < \infty.
\end{equation}
Furthermore, the infimum of the expression in (2.68) over all admissible representations (2.67) is an equivalent quasi-norm in $F_{pq}^s(M, g^\alpha)$.

2.3.5. Remark. This is the counterpart of Theorem 2.5.7 in [Tri98]. In 2.5.8 of that paper we gave a discussion and related references. So we restrict ourselves here to a few comments to make it clear what is going on in the above theorem. If $s = -n/p \geq 0$ then by (2.35) and $s > \sigma_{pq}$, and the related embeddings, it follows that
\begin{equation}
(2.69) \quad F_{pq}^s(M, g^\alpha) \subset L_1(\Omega).
\end{equation}
We may assume that c_δ in (2.57) is small. Hence,
\begin{equation}
(2.70) \quad 2^{j/\gamma} \|x - x^{j,m}\|^\gamma \psi_{jm}(x) \leq \psi_{jm}(x).
\end{equation}
Then by (2.68) the expansion (2.67) converges absolutely in $L_1(\Omega)$. If s is small then by (2.46) one has a corresponding assertion in the weighted space $L_1(\Omega, g^\alpha)$ for some $\alpha \in \mathbb{R}$. The number μ may be chosen large, but the equivalence constants in the above assertions depend in turn on μ.

2.3.6. Remark. Although it is clear by construction, we remark that there is a number $c > 0$ such that $k \leq c j$ in (2.65). We may even assume $k \leq j$ in (2.65) and (2.64).

2.3.7. Remark. If $s = -n/p$ then (2.35) reduces to (2.52). In this case we proved Theorem 2.3.4 in [Tri98] in a slightly different context. (If one starts from (2.52) then the assumption in [Tri98] that Ω is C^∞ is not needed.) The different scaling in (2.35) is just the k-term in (2.64). In other words: Theorem 2.3.4 follows from Theorem 2.2.8 and the technique in [Tri98].

2.3.8. Generalisation. By the lifts in Theorem 2.2.13 one can start from Theorem 2.3.4 and derive quarkonial decompositions for all spaces $F_{pq}^s(M, g^\alpha)$ defined in 2.2.5 and 2.2.6. We will not need this.
2.4. Entropy numbers

2.4.1. Preliminaries. Let A, B be quasi-Banach spaces and let $T \in L(A, B)$. Put $U_A = \{a \in A : \|a\| \leq 1\}$. Then for all $k \in \mathbb{N}$, the kth entropy number $e_k(T)$ of T is defined by

$$e_k(T) = \inf \left\{ \varepsilon > 0 : T(U_A) \subseteq \bigcup_{j=1}^{2^k-1} (b_j + \varepsilon U_B) \text{ for some } b_1, \ldots, b_{2^k-1} \in B \right\}. \tag{2.71}$$

Let $T \in L(A)$ be compact and let

$$|\mu_1(T)| \geq |\mu_2(T)| \geq \ldots > 0 \tag{2.72}$$

be the ordered sequence of its non-zero eigenvalues listed with algebraic multiplicity. Then

$$|\mu_k(T)| \leq \sqrt{k} e_k(T), \quad k \in \mathbb{N} \tag{2.73}$$

(Carl's inequality). We do not go into further details which may be found in [ET96], Ch. 1. There one can find proofs, references and (historical) comments. A short summary of what is needed may also be found in [Tri97], Sect. 6. We use (2.73) later on. First we are interested in entropy numbers of the compact embedding operator

$$id : F_{p_1,q_1}^s(M, g^{n_1}) \rightarrow F_{p_2,q_2}^s(M, g^{n_2}) \tag{2.74}$$

of Proposition 2.2.16.

2.4.2. Theorem. Let $n - 1 \leq d < n$. Let Ω be a connected bounded d-domain as in Definition 2.1.3. Let (M, g) be the related non-compact hyperbolic manifold with the function spaces as given in Definition 2.2.6. Let $\varpi_1, \varpi_2 \in \mathbb{R}$, $\varpi_1 < 0 < \varpi_2 \leq \infty$,

$$0 < q_1 \leq \infty, \quad 0 < q_2 \leq \infty \tag{2.75}$$

$q_1 = \infty$ if $p_1 = \infty$, and $q_2 = \infty$ if $p_2 = \infty$, with

$$s = \left(s_1 - \frac{n}{p_1} \right) - \left(s_2 - \frac{n}{p_2} \right) > 0, \quad \varpi = \varpi_1 - \varpi_2 > 0. \tag{2.76}$$

Then the id in (2.74) is compact and for the related entropy numbers $e_k = e_k(id)$ we have

$$e_k \approx k^{-(s_1 - s_2)/n}, \quad k \in \mathbb{N}, \quad \varpi > \delta d/n \tag{2.77}$$

$$e_k \approx k^{-(s_1 - s_2)/n}, \quad k \in \mathbb{N}, \quad \varpi < \delta d/n. \tag{2.78}$$

2.4.3. Comment. The proof given below is based on the quarkonial decomposition of Theorem 2.3.4 and the technique developed in [Tri97]. Based on these results, (2.73) paves the way to a related spectral theory described in the next subsection. It is of interest to compare the above theorem with a corresponding theory with the replacement of

$$F_{p_0}^s(M, g^{n_0}) \text{ by } F_{p_0}^s(\mathbb{R}^n, w_{\infty}), \quad w_{\infty}(x) = (1 + |x|^3)^{n/2}. \tag{2.79}$$

The results are very similar. As in the above behaviour of e_k in (2.77), (2.78) there is also a splitting point which is then $\varpi = \delta$. First results were obtained in [HaT94], which may also be found in [ET96], 4.3.2, pp. 170–171. The state of art in this euclidean setting may be found in [Har98] and [Har99] where special attention is paid to just these limiting cases. In the above hyperbolic setting $\varpi = \delta d/n$ corresponds to this limiting case which we avoided so far. By comparison with the euclidean case it should also be possible to extend (2.75) to some cases with $p_2 < p_1$.

2.5. Spectral theory

2.5.1. Preliminaries. Let $\lambda > 0$, $0 \leq \gamma \leq 1$, and

$$b(\cdot, D) \in \mathcal{E}_{-\lambda}^{\gamma}(\mathbb{R}^n) \tag{2.80}$$

be a pseudodifferential operator in \mathbb{R}^n in the Hörmander class indicated. Let $1 \leq r_1 \leq \infty$, $1 \leq r_2 \leq \infty$, and

$$b_1 \in L_{r_1}(\mathbb{R}^n, w_{s_1}), \quad b_2 \in L_{r_2}(\mathbb{R}^n, w_{s_2}), \quad x_1 \in \mathbb{R}, \quad x_2 \in \mathbb{R}, \quad \varpi = s_1 + s_2 > 0. \tag{2.81}$$

Based on [HaT94], we developed in [ET96], 5.4, a spectral theory of the degenerate pseudodifferential operator

$$B = b_2 b_{\cdot}^*(\cdot, D) b_1 \tag{2.82}$$

with the euclidean counterpart of Theorem 2.4.2 as starting point. More recent results in this direction may be found in [Har98]. In [Tri97], Ch. 5, we discussed a corresponding spectral theory for fractal pseudodifferential operators. Armed with Theorem 2.4.2 one can try to extend this theory from the euclidean case to the above hyperbolic manifolds. Pseudodifferential operators on manifolds with bounded geometry and positive injectivity radius, especially the Laplace–Beltrami operator, have been considered in [Dav89], [Tay89], [Shu92], [Stu93], [Skr98*], [Tr1988], [Tri92], Ch. 7. Especially the mapping properties proved there can be taken as the starting point for a spectral theory of the hyperbolic counterpart of (2.82). This will not be done here. We restrict ourselves to a special case which is physically relevant in the euclidean setting.

2.5.2. The set-up. Let (M, g) be the manifold as in 2.1.1. The related Laplace–Beltrami operator $-\Delta_g$ is self-adjoint in $L_2(M)$ with the Sobolev space $H^2(M) = F_{2,2}^2(M)$ as domain of definition. Furthermore,

$$\text{spec}(-\Delta_g + g \text{id}) \subset [1, \infty) \quad \text{for some } g \in \mathbb{R}. \tag{2.83}$$
In addition we have the isomorphic mappings described in (2.43) and Theorem 2.2.13(i). The necessary references are given in 2.2.12 and 2.5.1. Let
\begin{equation}
H_\beta = -\Delta_g + \mathrm{id} - \beta g^{-\infty}, \quad \beta > 0.
\end{equation}
By Theorem 2.2.13,
\begin{equation}
B = (-\Delta_g + \mathrm{id})^{-1} \circ g^{-\infty}
\end{equation}
is an isomorphic map from \(L_2(M) \) onto \(H^2(M, g^\infty) = F^2_{2,2}(M, g^\infty) \).

Furthermore, \(B \), considered as an operator in \(L_2(M) \), is compact. This follows from Theorem 2.4.2 in the case of \(d \)-domains. But this qualitative assertion also holds without this additional assumption. Hence, \(H_\beta \) is a self-adjoint relatively compact perturbation of \(-\Delta_g + \mathrm{id} \). Then the essential spectra of \(H_\beta \) and \(-\Delta_g + \mathrm{id} \) coincide ([EdE87], Theorem 2.1 on p. 418).

We ask about the behaviour of the number of negative eigenvalues
\begin{equation}
N_\beta = \#(\text{spec}(H_\beta) \cap (-\infty, 0]) \quad \beta \to \infty.
\end{equation}
At least in the euclidean setting problems of this type attract a lot of attention. In quantum mechanics one considers the semi-classical limit \(\hbar \to 0 \) (the admittedly tiny Planck's constant \(\hbar \) has the miraculous property of tending to zero). Physical reasoning (euclidean case) creates problems of type (2.84), (2.87) with \(\beta \sim \hbar^{-2} \).

2.5.3. Theorem. Let \(n - 1 \leq d < n \). Let \(\Omega \), or likewise \((M, g) \), be a connected bounded \(d \)-domain as in Definition 2.1.3. Let \(H_\beta \) and \(N_\beta \) be given by (2.84) and (2.87). Then
\begin{align}
N_\beta &\sim \beta^d \chi \quad 0 < \chi < 2d/n, \quad \beta \to \infty, \\
N_\beta &\sim \beta^{d/2} \quad \chi > 2d/n, \quad \beta \to \infty.
\end{align}

2.5.4. Remark. Here \(\sim \) must be understood as explained in 2.1.1 with respect to \(\beta, \beta \geq \beta_0 \), where \(\beta_0 \) is a sufficiently large positive number. As already mentioned, the problem of the "negative spectrum" has been widely discussed in the euclidean setting. One finds background information and references in [ET96], Ch. 5. Related problems for degenerate elliptic problems have been treated in [HaT94*], [ET96], 5.4.7–5.4.9, pp. 236–242, and [Har88] (limiting cases). For fractal potentials we refer to [Thir97], Sect. 31. In any case, (2.89) is the expected "Weyl behaviour". Our interest in the above theorem is twofold. First, we wished to find out what is the appropriate problem for hyperbolic manifolds. Secondly, what is the influence of the invisible fractal boundary of this hyperbolic world?

2.5.5. Hydrogen-like atoms in \((M, g)\). It is well known that the euclidean version of (2.84) in \(\mathbb{R}^n \) has physical relevance, at least when \(n = 3 \). With \(c|x|^{-1} \) in place of \(g^{-\infty}(x) \) it describes the hydrogen atom. From this point of view it is desirable to replace the smooth "potential" \(g^{-\infty}(x) \) by potentials admitting local singularities. This can be done by extending the "euclidean" technique developed in [ET96], Ch. 5, to the above hyperbolic case. Then one needs the full power of Theorem 2.4.2. This will not be done here. But we look at the special case of hydrogen-like atoms in the hyperbolic world of \(d \)-domains. We fix an off-point in \(\Omega \), say \(0 \in \Omega \), where the nucleus is located. Assume that locally the Coulomb potential is proportional to \(|x|^{-1}_g \), where \(|x|_g \) is the Riemannian distance of \(x \in \Omega \) to \(0 \). As will be proved in 3.7 there are two continuous functions \(m(x) \) and \(M(x) \) in \(\Omega \), bounded from above and from below by positive constants,
\begin{equation}
m(x) \sim 1 \quad \text{and} \quad M(x) \sim 1, \quad x \in \Omega,
\end{equation}
such that
\begin{align}
g(x) &= M(x) 2^m(x)|x|_g, \quad |x|_g \geq 1, \\
|x|_g &\sim \log g(x), \quad |x|_g \geq 1.
\end{align}
Hence, measured against \(|x|_g \) the potential \(g^{-\infty}(x) \) in (2.84) is of exponential decay (as it should be in hyperbolic worlds). At least from the mathematical point of view and in analogy to the euclidean case the Coulomb potential for hydrogen-like atoms in the hyperbolic world should behave off the origin like \(g^{-\infty}(x) \) for some \(\alpha > 0 \) or like \(g^{-\infty}(x)(\log g(x))^\alpha \). Whether there is any physical reasoning to specify \(\alpha \) and \(\sigma \) is not clear. We take the simplest case \(\alpha = 1 \) and \(\sigma = 0 \). Then we modify \(H_\beta \) in (2.84) by
\begin{equation}
H_\beta = -\Delta_g + \mathrm{id} - \beta g^{-\infty}(x)(\log g(x))^{-1}.
\end{equation}
At least if \(n \geq 3 \) then the counterpart of \(B \) in (2.85) is compact in \(L_2(M) \). Hence
\begin{equation}
N_\beta = \#(\text{spec}(H_\beta) \cap (-\infty, 0]), \quad \beta > 0,
\end{equation}
is finite.

2.5.6. Corollary. Let \(2 \leq n - 1 \leq d < n \). Let \(\Omega \), or \((M, g) \), be a connected bounded \(d \)-domain as in Definition 2.1.3. Let \(H^\theta \) and \(N^\theta \) be given by (2.93) and (2.94). Then
\begin{equation}
N^\theta \sim \beta^d, \quad \beta \to \infty.
\end{equation}

2.5.7. Remark. As already mentioned, \(H^\theta \) in (2.93) should be considered as an example. The technique indicated allows one to incorporate local perturbations belonging to \(L^p_{loc}(M) \) for some \(p \geq 1 \). More interesting are global perturbations of type \(L^p(M, g^\infty) \) or a replacement of \(g^{-\infty}(x) \) in (2.84) by \(g^{-\infty}(\log g(x))^\alpha \). For this purpose one needs hyperbolic counterparts of the euclidean techniques in [HaT94*], [ET96], Ch. 5, and [Har88].
3. PROOFS

3.1. Proof of Theorem 2.2.8

Step 1. Let \((M, g)\) be the manifold introduced in 2.1.1. According to [Tri98], 2.3.1, it is a complete connected Riemannian manifold with bounded geometry and positive injectivity radius. For the Riemannian background we refer to [Tri92], 7.2.1, pp. 281–285, but this is not really needed here since we reduce everything to the euclidean case. Let

\[
\sigma \in \mathbb{R}, \quad 0 < p \leq \infty, \quad 0 < q \leq \infty \quad (\text{with } q = \infty \text{ if } p = \infty),
\]

and let \(\{ \varphi_{jm} \} \) be the resolution of unity given by (2.29)–(2.31). Let temporarily \(x^{j,m} \) be the centres of the balls \(B_{j,m} \) in (2.30). Then \(F_{pq}^s(M)\) is the collection of all \(f \in D'(\Omega)\) such that

\[
\left(\sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \left\| (\varphi_{jm} f)(x^{j,m} - x) \right\| F_{pq}^s(\mathbb{R}^n) \right)^{1/p} < \infty.
\]

is finite. By [Tri98], 2.4.4, this definition is independent of the chosen resolution of unity (up to equivalent quasi-norms) and can be taken as an equivalent quasi-norm in \(F_{pq}^s(M)\), originally introduced in [Tri92], 7.2.2, pp. 285–286, via geodesic coordinates.

Step 2. Let \(p, q\), and \(s\) be restricted by (2.34). Let \(B_\lambda\) be the ball of radius \(\lambda > 0\) centred at the origin in \(\mathbb{R}^n\). Let

\[
h \in F_{pq}^s(\mathbb{R}^n) \quad \text{with } \supp h \subset B_\lambda \quad \text{and } 0 < \lambda \leq 1.
\]

Then

\[
\| \varphi_{jm} f \| F_{pq}^s(\mathbb{R}^n) \sim \lambda^{s-n/p} \| \varphi_{jm} f \| F_{pq}^s(\mathbb{R}^n),
\]

where \(\sim\) means independence of \(h\) with (3.3) and of \(\lambda\). We refer to [Tri98], 3.9, formula (3.80). We apply this equivalent to (3.2) with \(c = 2^{-j}\) and obtain

\[
\| f \| F_{pq}^s(M) \sim \left(\sum_{j=0}^{\infty} \sum_{m=1}^{M_j} 2^{-j(s-n/p)p} \| \varphi_{jm} f \| F_{pq}^s(\mathbb{R}^n) \right)^{1/p}.
\]

This proves (2.35) with \(\kappa = 0\). Let \(p, q, s\) be again restricted by (2.34) and let

\[
\eta \in C^\infty(\overline{B}_\lambda), \quad \| D^\gamma \eta(x) \| \leq c_\gamma \lambda^{-|\gamma|}, \quad \gamma \in \mathbb{N}_0^n.
\]

Then for \(h\) given by (3.3),

\[
\| \varphi_{jm} f \| F_{pq}^s(\mathbb{R}^n) \leq c \| h \| F_{pq}^s(\mathbb{R}^n),
\]

where \(c\) is independent of \(h\) and \(\lambda\) (but depends on finitely many \(c_\gamma\)). We refer to [Tri98], 3.9, formulas (3.81), (3.82). If \(f \in F_{pq}^s(M, g^\infty)\) then we have

\[
(3.5) \quad \text{with } g^\infty \text{ in place of } f. \quad \text{We apply the translated inequality (3.7) to } \eta = \varphi_{jm} f \text{ and } \eta = 2^{-j} g^\infty \text{ or } \eta = 2^{j} g^{-\infty} \text{ and obtain}
\]

\[
(3.8) \quad \| g^\infty \varphi_{jm} f \| F_{pq}^s(\mathbb{R}^n) \sim 2^{j \| \varphi_{jm} f \| F_{pq}^s(\mathbb{R}^n)},
\]

where again \(\sim\) is independent of \(j\) and \(m\). Here the needed estimates in (3.6) are covered by (2.1). This completes the proof of (2.35) under the assumption (2.34). If \(p, q, s\) are restricted by (2.33) then one can use the same duality arguments as in [Tri98], 3.9(iii), or directly the homogeneity assertions and pointwise multiplier properties proved there.

3.2. Proof of Theorem 2.2.10. By (2.35) we have

\[
(3.9) \quad \| f \| F_{pq}^s(M, g^{s-n/p}) \sim \left(\sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \| \varphi_{jm} f \| F_{pq}^s(\mathbb{R}^n) \right)^{1/p}.
\]

Since \(\Omega\) is bounded and \(C^\infty\) we obtain part (i) from [Tri98], Theorem 2.2.2. Now part (ii) is a special case of [Tri98], Theorem 2.4.2. Finally, part (iii) is a consequence of [Tri98], Theorem 2.3.3 and (3.9).

3.3. Proof of Proposition 2.2.16

Step 1. Let \(\delta \geq 0\) and \(x_1 \geq x_2\). We wish to prove (2.51). We may assume in addition that both \(p_1, q_1, s_1\) and \(p_2, q_2, s_2\) satisfy (2.34): the general case can be reduced to this special case by iterative use of the lifts in (2.45). Then it follows by (2.48) and (3.4) that

\[
2^{-j(s_n-n/p_1)} \| \varphi_{jm} f \| F_{pq_1}^{s_1}(\mathbb{R}^n) \leq c 2^{-j(s_n-n/p_1)} \| \varphi_{jm} f \| F_{pq_2}^{s_1}(\mathbb{R}^n),
\]

where \(c\) is independent of \(j, m, f\). Then (2.51) is a consequence of \(x_1 \geq x_2\) and (2.35). If, in addition, \(\delta > 0\), then we have (2.50). If \(x_1 > x_2\) we see by the same reduction that the embedding (2.51) is even compact.

Step 2. Assume that the embedding (2.51) is continuous, resp. compact. Then, by 2.2.15, \(\delta \geq 0\), resp. \(\delta > 0\). Again by (3.4) and the above assumption that \(p_1, q_1, s_1\) and \(p_2, q_2, s_2\) satisfy (2.34) we have

\[
2^{-j(s_n-n/p_2)} \| \varphi_{jm} f \| F_{pq_2}^{s_1}(\mathbb{R}^n) \sim 2^{-j(s_n-n/p_1)} \| \varphi_{jm} f \| F_{pq_2}^{s_1}(\mathbb{R}^n),
\]

where we may assume that \(\sim\) is independent of \(j\) and \(m\). But then it follows that for continuity, resp. compactness, \(x_1 \geq x_2\), resp. \(x_1 > x_2\), is necessary.

3.4. Proof of Theorem 2.3.4. As indicated in 2.3.7, for \(\kappa = s - n/p\) (2.35) reduces to (2.52). Then we can argue as in [Tri98], 3.13, which proves the theorem in this special case. However, in general we have simply to take the factors \(2^{j(s_n+n/p)}\) in (2.35) into account. This has been done in (2.64).

The rest is unchanged compared with [Tri98], Theorem 2.5.7, and its proof in [Tri98], 3.13.
3.5. Proof of Theorem 2.4.2

Step 1. We outline the proof of
\[e_k \leq c k^{-(s_1-s_2)/n}, \quad k \in \mathbb{N}, \text{ if } \varkappa > \delta d/n, \]
\[e_k \leq c k^{-d+1/p_1-1/p_2}, \quad k \in \mathbb{N}, \text{ if } \varkappa < \delta d/n, \]
for some \(c > 0 \). By Theorem 2.2.13 we may assume that Theorem 2.3.4 can be applied to the spaces involved. Then we have the quarkional decomposition (2.67), (2.68) with the \(\gamma \)-quarks \((\gamma q u)_j m(x)\) given by (2.64). This brings us in the same position as in [Tri97], Proposition 20.5, pp. 162-165. First we remark that by the arguments given there the values of \(q_1 \) and \(q_2 \) in (2.25) are unimportant (we avoid limiting cases). Hence we may assume \(q_1 = p_1 \) and \(q_2 = p_2 \). Then we are in the \(B \)-scale and we can apply directly the arguments in [Tri97]. The crucial point of the proof in [Tri97], pp. 163-165, is the reduction
\[e_k \leq c e_k(\text{id}), \quad k \in \mathbb{N}, \]
where in our case
\[\text{id} : \ell_{\infty}[2^{p_1}] \to \ell_{\infty}(\ell_{p_2}^{x_1} \ell_{p_2}^{x_2}) \]
is a compact embedding between the sequence spaces indicated. These spaces have been considered in Sect. 9 of [Tri97], including equivalence relations for the related entropy numbers \(e_k(\text{id}) \). For details we refer to [Tri97], Sects. 8 and 9. But we have to explain what is meant in our context by the ingredients in (3.15). The numbers \(q_1 \) and \(q_2 \) originate from \(\mu \) in (2.68) which can be chosen arbitrarily large. As in [Tri97] we may assume
\[q_1 > q_2 > 0 \quad \text{large}, \]
otherwise these numbers are immaterial. Furthermore, \(\ell_{p_1}^{x_1} \) stands for an \(L_{p_1} \)-dimensional \(\ell_{p_1} \)-space, interpreted as a block in the matrix space \(\ell_{p_1}(\ell_{p_2}^{x_1} \ell_{p_2}^{x_2}) \) with \(r \in \mathbb{N} \). Here \(\varkappa > 0 \) has the same meaning as in (2.76). Crucial for the estimate of \(e_k(\text{id}) \) in (3.14) is the knowledge of \(L_{p_1}^{x_1} \). By the technique developed in [Tri97] we have to compare the normalising factors of the \(\gamma \)-quarks (2.64) with respect to the two spaces (2.74) involved. The quotient of these two factors is of interest. Then both \(\delta \) and \(\varkappa \) from (2.76) are coming in. To fix ideas we may assume by Theorem 2.2.13 that \(x_2 = 0 \) and hence \(\varkappa = x_1 > 0 \). If \(r \in \mathbb{N} \) then we have to estimate the number \(L_r \) of balls \(K_{j m} \) given by (2.57) with
\[\text{dist}(K_{j m}, \partial \Omega) \sim 2^{-l} \quad \text{for } l = 0, \ldots, j, \]
and
\[r \varkappa \sim l \varkappa + (j-l) \delta. \]
Here we used \(l \leq j \) according to Remark 2.3.6 without restriction of generality. Hence \(L_r \) is the number of those balls \(K_{j m} \) where the quotient of the normalising factors of the related \(\gamma \)-quarks (2.64) is \(\sim 2^{-r \varkappa} \). For fixed \(l \) with \(l = 0, \ldots, r \) we have to estimate the number \(L_r^{x_1} \) of balls \(K_{j m} \) of radius \(\sim 2^{-l} \) which, say, intersect \(\Omega \) given by (2.3) and satisfying (3.18). Hence
\[L_r^{x_1} \sim (\text{vol} \Omega) 2^{-l(1-n-d)\varkappa} \sim 2^{d \delta (r-l)n \varkappa/\delta}. \]
We used (2.6). Summation over \(r \) yields
\[L_r \sim 2^{r \delta \varkappa / \delta} \sum_{l=0}^{r} 2^{l(1-n-d)\varkappa / \delta}. \]
We obtain
\[L_r \sim 2^{r \delta \varkappa / \delta} \quad \text{if } d > n \varkappa / \delta, \]
\[L_r \sim 2^{n \varkappa / \delta} \quad \text{if } d < n \varkappa / \delta. \]
Now the entropy numbers of the compact embedding id in (3.15) follow from [Tri97], Theorem 9.2, p. 47,
\[e_k(\text{id}) \sim k^{-\varkappa+n+1/p_1-1/p_2}, \quad k \in \mathbb{N}, \text{ if } \varkappa < \delta d/n, \quad \text{and} \]
\[e_k(\text{id}) \sim k^{-\delta /n+1/p_1-1/p_2} = k^{-(s_1-s_2)/n}, \quad k \in \mathbb{N}, \text{ if } \varkappa > \delta d/n. \]
Together with (3.14) we obtain (3.12) and (3.13).

Step 2. The main aim of Step 1 was to find out how the arguments given in [Tri97] must be changed if the \(\gamma \)-quarks in (2.64) have now the additional factor \(2^{-k(\varkappa-s+n/p)} \). This is the point where both the Riemannian metric and the weights \(\gamma \) are coming in. We obtain (3.21) and (3.22). On this basis and (3.23), (3.24) one can now prove inequalities inverse to (3.12) and (3.13) in the same way as in [Tri97], pp. 167-168.

3.6. Proof of Theorem 2.5.3

Step 1. As mentioned in 2.5.2, with \(H^2(M) \) as domain of definition, \(H_{\gamma} \) in (2.84) is self-adjoint in \(L_2(M) \). As remarked there, \(B \) in (2.86) is compact and hence the essential spectra of \(H_{\gamma} \) and \(-\Delta_{\gamma} + g \text{id} \) coincide. We assume (2.83). To estimate \(N_{\gamma} \) in (2.87) (under the conditions of Theorem 2.5.3) from above we use the entropy version of the Birman-Schwinger principle as described in [Tri97], 31.1, p. 243. We obtain
\[N_{\gamma} \leq \frac{1}{\beta} \{ k \in \mathbb{N} : \sqrt{2} \beta e_k(B) \geq 1 \}. \]
Here \(e_k(B) \) are the entropy numbers of the compact operator \(B \). By the above explanations we have
\[e_k(B) \sim e_k(\text{id}), \quad k \in \mathbb{N}, \]

\begin{align*}
(3.25) & \quad N_{\gamma} \leq \frac{1}{\beta} \{ k \in \mathbb{N} : \sqrt{2} \beta e_k(B) \geq 1 \}.
(3.26) & \quad e_k(B) \sim e_k(\text{id}), \quad k \in \mathbb{N},
\end{align*}
with
\[(3.27)\quad \text{id} : H^2(M, g^\omega) \to L_2(M).\]

By Theorem 2.4.2 with \(s_1 = p_1 = p_2 = 2, s_2 = \alpha_2 = 0\) and \(\alpha = \alpha_1\) we obtain
\[(3.28)\quad e_k(\text{id}) \sim k^{-\omega/d}, \quad k \in \mathbb{N}, \text{ if } 0 < \omega < 2d/n,\]
\[(3.29)\quad e_k(\text{id}) \sim k^{-2/\omega}, \quad k \in \mathbb{N}, \text{ if } \omega > 2d/n.\]

We insert (3.28), resp. (3.29), via (3.26) in (3.25) to obtain
\[(3.30)\quad N_\beta \leq c_\beta^{n/\omega} \text{ if } 0 < \omega < 2d/n,\]
\[(3.31)\quad N_\beta \leq c_\beta^{n/2} \text{ if } \omega > 2d/n.\]

Step 2. Recall that \(H_\beta\) is self-adjoint in \(L_2(M)\). This is needed now to prove the inverse inequalities to (3.30) and (3.31). We modify the scheme of [Tri97], p. 250, and shift the problem to quadratic forms and the Max-Min principle. By (2.84) the related quadratic form is given by
\[(3.32)\quad (H_\beta f, f)_{L_2(M)} \sim \|f| H^1(M)\|^2 - \beta \|g^{-\omega/2} f| L_2(M)\|^2 = \|f| H^1(M)\|^2 - \beta \|f| L_2(M, g^{-\omega/2})\|^2.\]

Let \(r \in \mathbb{N}\). We apply the arguments in 3.5, Step 1, to
\[(3.33)\quad H^1(M) = F^1_{L_2(M)} \quad \text{and} \quad L_2(M, g^{-\omega/2}) = F^2_{L_2(M, g^{-\omega/2})}.\]

In particular we have \(\delta = 1\) and \(\omega/2\) in place of \(\omega\) in (3.18) and (3.21), (22). Then we find an orthonormal system \(\{\varphi_{jm}\}\) in \(H^1(M)\), related to the balls \(K_{jr}\) in (3.17), consisting of \(L_r\) elements with pairwise disjoint supports such that
\[(3.34)\quad \|\varphi_{jm} \| L_2(M, g^{-\omega/2}) \| \sim 2^{-r/\omega}.\]

We choose \(\beta = c 2^{n/\omega}\) with \(c > 0\) small (but independent of \(r \in \mathbb{N}\)) and insert finite linear combinations of these quadratic forms \(\varphi_{jm}\) in (3.32). We find that for these functions the quadratic form is always negative. Hence \((H_\beta f, f)_{L_2(M)}\) with \(\beta = c 2^{n/\omega}\) is negative on a subspace of \(H^1(M)\) of dimension \(L_r\). By the Max-Min principle (see [EdEv87], pp. 489–492), it follows that
\[(3.35)\quad N_\beta \geq L_r, \quad \text{where} \quad \beta = c 2^{n/\omega}.\]

With \(\delta = 1\) and \(\omega/2\) in place of \(\omega\) it follows by (3.21) and (3.22) that
\[(3.36)\quad \beta \geq c_1 2^{n/2} = c_2 \beta^{n/\omega} \quad \text{if} \quad 0 < \omega < 2d/n,\]
\[(3.37)\quad \beta \geq c_1 2^{-r/2} = c_2 \beta^{n/2} \quad \text{if} \quad \omega > 2d/n,\]

where \(c_1\) and \(c_2\) are positive numbers. Together with (3.30), (3.31) we obtain (2.88), (2.89).

3.7. Proof of (2.91)

By (2.2) and (2.3) the Riemannian width of each slice \(\Omega_t\) is approximately 1. If one starts from an outer point \(x \in \Omega\) with, say, \(g(x) \sim 2^t\), then one needs approximately \(j\) steps of Riemannian length 1 to reach a given inner point, say, \(0 \in \Omega\). Hence
\[(3.38)\quad g(x) \sim 2^t \sim 2^{m(x)|x|}\]

with a suitable function \(m(x)\) bounded from above and from below by positive constants. This proves (2.91) with (2.90).

3.9. Proof of Corollary 2.5.6

Since \(n \geq 3\) we always have
\[(3.39)\quad n < 2(n - 1) \leq 2d.\]

Hence with \(\omega = 1\) we have
\[(3.40)\quad N_\beta \sim \beta^d, \quad \beta \to \infty,\]
in Theorem 2.5.3. It remains to check that the local perturbation in \(H^\beta\) in (2.93) does not influence this assertion. But this is essentially a euclidean matter. It is covered by [ET96], Theorem 5.4.5, p. 239, and its proof.

References

INFOMATION FOR AUTHORS

Manuscripts should be typed on one side only, with double or triple spacing and wide margins, and submitted in duplicate, including the original typescript copy.

An abstract of not more than 200 words and the AMS Mathematics Subject Classification are required.

Figures must be prepared in a form suitable for direct reproduction. Sending EPS, PCX, TIF or CorelDraw files will be most helpful. The author should indicate on the margin of the manuscript where figures are to be inserted.

References should be arranged in alphabetical order, typed with double spacing, and styled and punctuated according to the examples given below. Abbreviations of journal names should follow Mathematical Reviews. Titles of papers in Russian should be translated into English.

Examples:

Authors’ affiliation should be given at the end of the manuscript.

Authors receive only page proofs (one copy). If the proofs are not returned promptly, the article will be printed in a later issue.

Authors receive 50 reprints of their articles. Additional reprints can be ordered.

The publisher strongly encourages submission of manuscripts written in TeX. On acceptance of the paper, authors will be asked to send disc (preferably PC) plus relevant details to the Editorial Committee, or transmit the file by electronic mail to:

STUDIA@IMPAN.GOV.PL

Recommended format of manuscripts:

\documentclass[12pt,leqno]{article} \textwidth=30pc \baselineskip=16truemp

(Plain TeX or A/wS-TeX)

Home page: http://www.impan.gov.pl/PUBL/am.html